

Abstract – A growing interest for pervasive applications and
an increasing diversity of pervasive computing devices
integrated in our surroundings demand incorporating
context-awareness in such applications in order to protect
users from being disturbed by such services while on their
regular duty. The behavior of these applications should
depend not only on their internal state and user interactions
but also on the context sensed during their execution. Context
and context awareness, therefore, are the key components of
pervasive computing so as to perform tasks on behalf of
users. In this paper, we propose ontology based reusable
context model. The model facilitates the context reasoning by
providing structure for contexts, rules and their semantics.
Initial prototype of the use of the model in a multi-domain
platform is created and the result obtained is promising.

Keywords: context modeling, context reasoning, context
management, context-aware computing, pervasive computing

1. Introduction

The emergence of a computing model for mobile ad-
hoc networks in pervasive environments, the wide spread
of pervasive enabling technologies and the availability of
computing enabled handheld appliances like smart phones
and personal data assistances make computing more
distributed in such a way that computing could be with the
user every where and every time. The growth of number of
computing devices that interfere with our daily activities in
our environment may be frustrating if they are not properly
adapted to our situations and if they all require our
attention. Hence, context and context awareness are the
key components in pervasive computing.

The conceptual framework in our work that shows the
basic elements of a pervasive computing environment is
given in Figure 1. The arrows running from and to the
nodes show the relationship that exists between the
elements.

Figure 1-Our conceptual framework showing basic

elements of context-aware pervasive computing

Pervasive environment as one of the elements is
characterized by dynamicity, heterogeneity and ubiquity of
users, devices and resources, ad-hoc connection among the
devices and existence of hardware and software sensors.
Context modeling deals with how contexts are collected,
organized, represented, stored and presented. Context
awareness performs reasoning about the context and
passes decisions about the actions to be triggered.

How application programmers can effectively manage
and use context information typically in the pervasive
environments is still a challenge. Our objective in this
work is to propose and investigate ontology based
semantically rich, reusable and scalable context
management model that supports collaborative reasoning
in a multi-domain pervasive context-aware application.

The rest of the paper is organized into the following
sections. In section 2, we discuss related works. Section 3
presents our innovative context model. Section 4 indicates
case study on the use of the model. In section 5, we give
concluding remarks and prospective.

2. Related works

Context-aware computing has been introduced as a key
feature in different projects over the last decade and many
works have been done so far that demonstrate the
importance of context awareness in pervasive computing.
Earlier works like CoolTown [1] focus on the development
of application specific context-aware systems.

Henricksen et al [2], [3] introduce a reusable context
model and is use in the software engineering process for
programming context-aware pervasive systems. It can be
enhanced to support semantic reasoning if used with
ontology approach. CoBrA-ONT [4] is architecture to
enable distributed agents to control the access of their
personal information in a context-aware environment. It
provides a context model based on semantic web approach
but depends on the assumption that there always exists a
context-broker server that is known by all the participants.
Other similar works include CONON [5] and CSCP [6].
CONON is based on ontology for reasoning and
representation of contexts and CSCP is based on resource
description framework for representation and manipulation
of context data.

Strang et al. [7] present a survey of six context
modeling approaches: Key-value modeling, markup
scheme modeling, object oriented modeling, graphical
modeling, logic based modeling and ontology based
modeling approaches. Their analysis favors ontology based
context modeling.

In this paper, we propose a comprehensive
neighborhood based and data independent ontology based
semantically rich context management model that inures
reusability of context resources and reasoning axioms and
rules.

3. Context modeling

Computational entities in pervasive environments need
to be context-aware so that they can adapt themselves to
changing situations. This requires domain independent

An ontology-based approach to context modeling
and reasoning in pervasive computing

Dejene Ejigu — Marian Scuturici — Lionel Brunie
Laboratoire LIRIS-UMR-CNRS 5205, INSA de Lyon,

7 avenue Jean Capelle, 69621 Villeurbanne cedex, France
{dejene.ejigu ; marian.scuturici; lionel.brunie}@insa-lyon.fr

context models for context representation, context
management and semantic interoperability. In this section,
we show our ontology based approach to generic context
modeling.

3.1 What is context?

The most widely referenced definition of context is
given by Dey et al [8] and states that context is “Any
information that can be used to characterize the situation
of an entity. An entity is a user, a place, or a physical or
computational object that is considered relevant to the
interaction between a user and an application, including
the user and application themselves.” Using Dey’s
definition and our conception about context in relation to
its descriptors, we consider the term context as an
operational term whose definition depends on the
interpretation of the operations involved on an entity at a
particular time and space rather than the inherent
characteristics of the entity.

We classify source of context into computing entity
classes. This classification is important in our context
modeling process where context representation depends on
these entities and the relationships created between them.
The classes are:

-User context: identity, preference, activity, location…

-Device context: processor speed, screen size, location...

-Application context: version, availability…

-Physical environment context: illumination, humidity…

-Resource context: availability, size, type, etc.

-Network context: minimum speed, maximum speed…

-Location context: contents, where it is subsumed...

- Activity context: start time, end time, actor, etc.

isa

Context

User
context

Device
context

Location
context

Activity
context

Application
context

Resource
context

Network
context

Physical
Environment context

...

...

Domain
dependant
descriptors

Figure 2-Context entities and a view of their domain
dependant components

These entities can be organized into a class hierarchy
(Figure 2) where the root of the hierarchy is the term
context itself. The listing of basic context entities as
subclasses of the root term context indicates that all
descriptors have some common properties to inherit from
the root. The lower sub classification indicates domain
dependant views of context where each component can be
defined depending on the specific domain of application
(hospital, home, car, truism, etc). This listing of entities
can by no means be a complete list and therefore we need
to have a scalable model to accommodate additions of new
components.

The primary characteristic of a context is, therefore,
that it possesses an actor or a subject. The type and value
of the context is expressed in terms of multiple properties.

In our subsequent discussion, we use the terms predicate
and object to represent the situation of the subject with
respect to a specific property. This naming convention
goes directly with the RDF-triple naming style which we
intend to use for modeling context using Ontology. This
gives the basic RDF triple <subject predicate object>.
Additional context metadata information about the basic
triple like time of occurrence, accuracy and source from
which the context is captured can also be included as part
of the context representation model.

3.2 Using reification in context modeling

In addition to the subject, predicate and object triples,
context modeling requires context attributes like source,
time, place, validity, claims, doubts, proofs, etc. to describe
the context itself and to extend the context model towards
probabilistic, or confidence-carrying models. Such
attributes are applied to the entire reified triple, which are
meaningful only when thought of as referring to a
particular instance of the triple. To realize this principle
and include these parameters into the context model, we
need to introduce a higher-order RDF statement that helps
us to make statement about another statement. This can be
achieved by building a model of the original statement, and
this model is a new resource to which we can attach
additional properties. This process is called reification [9]
and a reified RDF database contains each original
statement as a resource and the other additional statements
made about it. The four properties used to model the
original statement as the RDF resource are: subject,
predicate, object and type. A new resource with these four
properties represents the original statement and can be
used as the subject or object of other statements and have
additional statements made about it.

Figure 3 shows an example RDF data model of a
context data. The RDF/OWL reification principle is,
therefore, an ideal solution to represent additional number
of context attributes to the basic context triple.

rdf :statement

Blank node (ns:XX)

ns:isReportedBy ns :hasTimeStamp

ns :Library

« 11 :40» « 88%»

ns :locatedIn ns :Bob

rdf :predicate rdf :object

ns:Student

rdf :type

« 11 :50 »

ns :hasClosingTime

« Sensor#5 »

ns :hasAccuracy

rdf :subject rdf :type

Figure 3 – Example RDF data model for context reification

The RDF triple to show reification on this example
using abridged RDF/XML syntax can be given as follows.

<ns:Bob ns:isA ns:Student/> //original statement
<ns:Bob ns:isLocatedIn ns:Library/> //original stat ement
<ns:Library ns:willBeClosedAt “11:50”/> //original statement
<ns:XX rdf:type resource=rdf:Statement/> //reification starts
 <ns:XX rdf:subject resource= ns:Bob/>

<ns:XX rdf:predicate resource=ns:isLocatedIn/>
<ns:XX rdf:object resource= ns:Library/> //reification ends

<ns:XX ns:isReportedBy “Sensor#5”/> // using reifie d XX
<ns:XX ns:hasTimeStamp “1140”/> // using reified XX
<ns:XX ns:hasAccuracyOf “88%”/>// using reified XX

3

3.3 The need for semantically rich context model

Considering the situation of staff members’ (Ben, Dan
and Rita) tea break scenario in the table below, a simple
query (select Subject from context_table where predicate=
“isLocatedIn” and Object= “Room-305”) selects “Ben” as
an output. But in reality, if the information in the table is
given to a human assistant who knows, by common sense,
that the terms “Office” and “Room” are synonymous in the
domain of interest, s/he will respond “Ben” and “Rita” to
the query. In addition to this, a human assistance can also
deduce that Ben and Rita are now together. But
incorporating such semantic interpretation of data using
standard database schema is not a straight forward task.

Subject Predicate Object Time
Ben isLocatedIn Room-305 200602231030
Dan isLocatedIn Room-3001 200602231035
Rita isLocatedIn Office-305 200602231030
… … … …

This simple example demonstrates the need for a
context model that describes concepts, concept hierarchies
and their relationships. A web ontology language, OWL, is
used when the information contained in documents needs
to be processed by applications, as opposed to situations
where they are presented to humans as shown in the above
query.

We chose OWL for our context modeling due to several
reasons. It is a W3C recommendation that employs web
standards for information representation such as RDF and
XML Schema. OWL allows the necessary semantic
interoperability between context-aware systems. It also
provides a high degree of inference making by providing
additional vocabulary along with a formal semantics to
define classes, properties, relations and axioms. For the
concepts Office and Room in the above table, for example,
we can use the owl:sameAs property that defines them as
the same concepts. Similarly, the concepts together and
coLocatedWith can also be defined as the same concepts
using OWL as follows:
Similarity
<rdf:Description rdf:about= “#Office”> //similarit y between classes
 <owl:sameAs rdf: resource = “#Room”>
</rdf:Description>

<rdf:Description rdf:about= “#together”> //similar ity between properties
 <owl:sameAs rdf: resource = “#coLocatedWith”>
</rdf:Description>

Similarly, we can define the concept that
coLocatedWith is symmetric, which means if X is
coLocatedWith Y then we can say that Y is coLocated
with X and vice versa.

We can also define a rule that states “if user1 is located
in a room and user2 is also located in the same room then
conclude that they are coLocatedWith each other or
according to the above similarity definition they are
together”. This rule can for example be represented using
the generic rule languages in Jena (from sourceforge.net)
reasoner which we intend to use in our prototype:

[rule1: ?user1 nsp:locatedIn ?roomN)
(?user2 nsp:locatedIn ?roomN)

 -> (?user1 nsp:coLocatedWith
?user2)]

3.4 Ontology based context management model

We now present our ontology based approach for
modeling context and its management. The expressive
power, hierarchical organization, formality, standard,
support for efficient reasoning, support for programming
abstraction and interoperability are among the attractive
features of ontology in context modeling. As partly
demonstrated in our earlier paper [10], hierarchy of
ontology classes are used to represent context entities,
concept hierarchies and relationships.

For capturing, interpretation, representation and
management of context data, we propose a Generic
Context Management Model (GCoMM). GCoMM (Figure
4) consists of three basic components; context semantics
(ontology), context instance data and context related rules.

Ontology represents semantics, concepts and
relationships in the context data. It is formed by the merger
of ontology that describes domain independent generic
contexts and domain specific contexts. Context data
represent instances of contexts. Contexts may exist in the
form of stored data on a disk file (context database) or in
the form of context instances obtained from the sensors.
Rules represent derivation axioms that are used by context-
aware systems to derive decisions and conclusions about
the actions that follow. These rules have two sources; rules
that are explicitly given by the users through the user
interface and rules that are implicitly learnt by the system
itself.

Figure 4-GCoMM structure with its functional components

In GCoMM, the base ontology part is derived from our
context descriptors while domain ontology part is
dependent on domain specific sub descriptors.

Demonstration on the GCoMM components can be
given using a cell phone ringing tone management service
example based on the scenario of a university regulation on
the use of cell phone for students. To comply with the
regulation, students must have their cell phones set to non
disturbing modes during different activities: attending
lectures, consultation with their professors, in libraries, etc.
Students therefore need to have their phones automatically
switched to silent mode or vibrating mode while in the
library, attending lectures, or discussing with their
professors and switch back to ringing mode when they are
engaged in none of these activities. They would also like to

use a decent ringing tone when in the vicinity of the
university campus and a hot musical ringing tone when
outside the university campus.

A small portion of the OWL representation of part of the
context ontology for the campus telephone ringing tone
management scenario is given in Figure 5.

Ontology representation
<rdf:RDF …….
 <owl:Class rdf:ID="Student">
 <rdfs:subClassOf> <owl:Class rdf:ID="User"/> </ rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Library">
 <rdfs:subClassOf> <owl:Class rdf:about="#Location" /> </rdfs:subClassOf>
 </owl:Class>
 <owl:ObjectProperty rdf:ID="ownedBy">
 <rdfs:range rdf:resource="#User"/>
 <rdfs:domain rdf:resource="#Device"/>
 <rdf:type rdf:resource="http://www.w3.org/.../owl #FunctionalProperty"/>
 <owl:inverseOf> <owl:ObjectProperty rdf:ID="own erOf"/> </owl:inverseOf>
 </owl:ObjectProperty>
 <Student rdf:ID="Bob">
 <ownerOf>
 <PDA rdf:ID="PDA001">
 <hasScreenSize

 rdf:datatype="http://www.w3.org/2001/XMLSchema#st ring">Medium
 </hasScreenSize>
 </PDA>

 </ownerOf>
 <ownerOf rdf:resource="#Cellphone001"/>
 </Student>
…...
</rdf:RDF>

Figure 5-Part of context ontology for the campus scenario

Persistent data about static contexts (e.g. ownership
relationship of persons to devices like telephone or PDA)
can be stored in any standard database format which can be
linked by using libraries for the database connectivity and
can then be selectively populated as context instances into
the ontology structure at runtime. Sensed context is to be
communicated to GCoMM using XML or RDF triples
representation format and is then converted to the indicated
representation (Figure 6) to make the data ready for
reasoning, interpretation, aggregation and decision. This
representation is the Jena generic rule format.

Context data representation

Profiled context defined in the Ontology
->(Bob sys:type gcom:Student). //type = instance of
->(CellPhone001 sys:type gcom:Phone).
->(PDA001 sys:type gcom:PDA).
->(Bob gcom:owns PDA001).
->(Bob gcom:owns CellPhone001).

Case 1: Bob, according to his schedule, has just entered in ClassRoom001
to attend a lecture

->((PDA001 gcom:locatedIn ClassRoom001) gcom:hasTim e 200603251002).
//new context

->(ClassRoom001 sys:type gcom:ClassRoom).
->(Semantic-Theory sys:type gcom:Class).
->(Bob gcom:hasSchedule Semantic-Theory).
->(Semantic-Theory gcom:scheduledIn ClassRoom001).
->(Semantic-Theory gcom:startTime 200603251000).
->(Semantic-Theory gcom:endTime 200603251100).

Case 2: Bob has finished his activity of the day and is just getting out
of the campus.

->(PDA001 gcom:locatedIn gcom:OutSideCampus). //new context

Case 3: Bob has just entered in the library reading room
 ->(ns:PDA-01 gcom:locatedIn ns:DocINSA). //new c ontext

Figure 6- Context representation for the campus scenario

Rules for students’ explicit wishes in the scenario and
context data expressed again using Jena generic rule (this
time rule with preposition) are given in Figure 7.

Rules representation

Rules derived from ontology (just to show what type of implicit rules we have in the ontology)

[OntoRule1: (?a gcom:locatedIn ?b) (?b gcom:locatedIn ?c) -> (?a gcom:locatedIn ?c)] //transitive

[OntoRule2: (?a gcom:ownerOf ?b) -> (?b gcom:ownedBy ?a)] //inverse

…..

Defined Rules
[locatedRule:(?device gcom:locatedIn ?location)

 (?device gcom:ownedBy ?person)
 -> (?person gcom:locatedIn ?location)

]
[libraryRule:(?student gcom:locatedIn gcom:Library)

(?student gcom:owns ?phone)
 -> (?phone “setRingTone” “silent”)

]
[classRule:(?student gcom:hasSchedule ?class)

(?class gcom:isScheduledIn ?classRoom)
(?class gcom:startTime ?t1)
(?class gcom:endTime ?t2)
((?Student gcom:locatedIn ?classRoom) gcom:hasTime ?t)

(?t sys:greaterThan ?t1)(?t sys:lessThan ?t2)
(?student gcom:owns ?phone)
� (?phone “switchMode” “Vibrating”)

]
[meetingRule:(?student gcom:hasSchedule ?meeting)

(?meeting gcom:scheduledIn ?meetingRoom)
(?meeting gcom:startTime ?t1)
(?meeting gcom:endTime ?t2)
((?student gcom:locatedIn ?meetingRoom) gcom:hasTim e ?t)
(?t sys:greaterThan ?t1) (?t gcom:lessThan ?t2)
(?student gcom:owns ?phone)
�(?phone “switchMode” “Silent”)

]
[campusRule:(?student gcom:locatedIn gcom:InCampus)

(not classRule) (not meetingRule)(not libraryRule)
//because InCampus subsumes ClassRooms, MeetingRoom s and Library
(?student gcom:owns ?phone)
�(?phone “switchMode” “DecentRingingTone”)
]

[xcampusRule:(?Student gcom:locatedIn OutSideCampus)
(?student gcom:owns ?phone)
� (?phone “switchMode” “MusicRingingTone”)

]

Figure 7- Rule representation for the campus scenario

4. Case Study on Context Reasoning

Figure 8 shows a context-aware service platform
classified into four functional groups; Interface, data
source, core service and supplementary service.

Interface Manager: Manages a user interface and
interface between the platform and other modules specific
to domains of applications. It also hosts action triggering
process depending on the specific application domain in
which the platform is used.

GCoMM (Basic Data Source): Components in this
group are responsible to provide the data necessary to
provide proactive or reactive context-aware service. It
consists of three basic elements; context capture, context
ontology and rule capture. Context capture is the interface
to the context sources either in the user interface or other
devices. It filters and sends useful contexts to the context
database. Context Ontology consists of domain dependant
ontology and the generic domain independent ontology
combined in to one as context ontology. They are fetched
into the reasoning engine for further use. Rule capture is an
interface to the rule sources either in the user interface or
the datamining tools. It keeps the rules in the rule database.

Context-Aware Service: Responsible to provide the
core context-aware service after reasoning on the context.

Supplementary Service: Consists of the knowledge
discovery service that adds features to enhance self
learning, and the collaboration service that adds features
for collaboration between peers in the neighborhood space.
Components in this group can be extended to

5

accommodate other services like security and adaptation
that are important to enhance the core service.

Figure 8-View of GCoMM in a context-aware platform

Figure 9 shows a java code that uses Jena API to put
together all the major components of the service platform
for reasoning, inferences and decisions using the GCoMM
as a source of data. A demonstration of the implementation
of the reasoning engine in the platform is given using the
campus cell phone ringing tone management service
scenario data that is stored on a disk file. Ontology data is
represented using OWL while context and rule data can be
represented using text files or any other Jena compatible
database format like MySQL, PostgresSQL or Oracle. Our
example in this scenario uses text files named
“cellphone.rules”, “cellphone.ctxt” and “cellphone.owl”.

//Code listing for part of reasoning and decision engine in the campus scenario
//imports …
public class OwlReasoner {

public static void main(String[] args) {
 //Reasoning setup

 List rules = Rule.rulesFromURL("file:cellphone.rul es");
 OntModelSpec customInfSpec = new OntModelSpec(OntM odelSpec.OWL_MEM);
 GenericRuleReasoner reasoner = new GenericRuleRea soner(rules,

customInfSpec.getReasonerFactory());
 List context = Rule.rulesFromURL("file:cellphone.c txt ");
 reasoner.addRules(context);

 customInfSpec.setReasoner(reasoner);
 OntModel model= ModelFactory.createOntologyModel(c ustomInfSpec, null);
 model.read("file:cellphone.owl");

 //Example usage
 String queryString = "PREFIX coca: <http://www.owl -

ontologies.com/unnamed.owl#> "+
 "SELECT ?phone WHERE {?phone coca:setRingTone coca :Silent.}";
 Query query = QueryFactory.create(queryString) ;
 QueryExecution qexec = QueryExecutionFactory.creat e(query,model) ;
 ResultSet results = qexec.execSelect() ;
 for (; results.hasNext() ;)
 {
 QuerySolution res = results.nextSolution() ;
 RDFNode phone = res.get("phone") ;
 System.out.println("Setting ringing tone of "+ ph one +“ to silent”);
 fireProactiveAction(“RingingTone”, phone,”silent”); //Module Call
 }
 qexec.close();
 }
}

Figure 9- A portion of code t for reasoning and decisions
in a campus scenario based on the GCoMM model

After combining these together by the reasoner, we can
draw parameters for the action. In this example, we use the
RDQL/SPARQL query tool to draw parameter for the
setRingingTone action.

5. Conclusions and future work

We have proposed ontology based generic context
management model, the GCoMM. Initial prototype of the
use of GCoMM in a multi-domain context-aware platform
is created. The ontology based context model with the
parsing and interfacing mechanism of rules and context
instances play an important role for reasoning and
decisions involved to provide context-aware services.

The run-through example about the campus scenario on
cell phone ringing tone management is implemented in the
prototype. We have also tested this same module with data
from a hospital scenario on patient monitoring and follow
up service.

Prototyping modules are developed as independent
components and the interface part is missing in this initial
implementation. As a continuation to this work, we are
aiming to develop a complete context-aware platform that
uses the GCoMM. We will also continue to work on some
benchmark issues that will help to evaluate the
performance of our proposed model and platform and
perform a comparative study with other works in the area.

6. Reference

 [1]Kindberg T., Barton J. “A web-based nomadic computing
system”, Computer Networks, 35(4):443–456, 2001.

 [2] Henricksen K., Indulska J., Rakotonirainy A. “Modeling
Context Information in Pervasive Computing Systems”,
Proceedings Pervasive 2002 -Zurich August 2002.

 [3] Henricksen K. and Indulska J., "Developing context-aware
pervasive computing applications: Models and approach,"
Pervasive and Mobile Computing, Elsevier, 2005.

[4] Chen H., Finin T., Joshi A. “An ontology for context-aware
pervasive computing environments”, Special Issue on
Ontologies for Distributed Systems, Knowledge Engineering
Review, Acapulco MX, August 2003.

[5] Wang X., Zhang D. Q., Gu T., Pung H. K. “Ontology Based
Context Modeling and Reasoning using OWL”, workshop on
context modeling and reasoning at IEEE International
Conference on Pervasive Computing and Communication ,
Orlando, Florida, March 2004.

 [6] Held A., Buchholz S., Schill A. “Modeling of Context
Information for Pervasive Computing Applications”, Proc. of
the 6th World Multiconference on Systemics, Cybernetics
and Informatics (SC12002), Orlando, FL, USA, Jul 14-18,
2002.

[7] Strang T., Linnhoff-Popien C. “A Context Modeling Survey”,
Proceedings of the First International Workshop on Advanced
Context Modelling, Reasoning and Management, Sixth
International Conference on UbiComp2004. Nottingham,
England, 2004.

 [8] Dey A. K., Salber D., Abowd G. D. “A Conceptual
Framework and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications”, Context-Aware
Computing: A Special Triple Issue of Human-Computer
Interaction, Lawrence-Erlbaum March 2002.

 [9] Staab S., Erdmann M., Maedche A., Decker S. “An
Extensible Approach for Modeling Ontologies in RDF(S)”
Proceedings of ECDL 2000 Workshop on the Semantic Web,
Lisbon, Portugal, 2000.

 [10] Chaari T. , Ejigu D., Laforest F., Scuturici M. “Modeling
and Using Context in Adapting Applications to Pervasive
Environments”, In the Proceedings of the IEEE International
Conference on Pervasive Services (ICPS'06), Pages 111-120,
Lyon, France, June 2006.

