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Abstract. Sensor-mission assignment involves the allocation of sensor and other

information-providing resources to missions in order to cover the information

needs of the individual tasks in each mission. This is an important problem in

the intelligence, surveillance, and reconnaissance (ISR) domain, where sensors

are typically over-subscribed, and task requirements change dynamically. This

paper approaches the sensor-mission assignment problem from a Semantic Web

perspective: the core of the approach is a set of ontologies describing mission

tasks, sensors, and deployment platforms. Semantic reasoning is used to recom-

mend collections of types of sensors and platforms that are known to be “fit-

for-purpose” for a particular task, during the mission planning process. These

recommended solutions are used to constrain a search for available instances of

sensors and platforms that can be allocated at mission execution-time to the rel-

evant tasks. An interface to the physical sensor environment allows the instances

to be configured to operate as a coherent whole and deliver the necessary data to

users. Feedback loops exist throughout, allowing re-planning of the sensor-task

fitness, reallocation of instances, and reconfiguration of the sensor network.

1 Introduction

Sensor-mission assignment involves the allocation of sensors and other information-

providing resources to missions in order to cover the information needs of the individual

tasks in each mission. This is an important problem in the intelligence, surveillance,

and reconnaissance (ISR) domain, for a variety of reasons.1 Firstly, the informational

demands placed on available sensors and other ISR resources typically exceeds their

supply in terms of inventory: commanders tend to want more than the available assets

can provide, so careful allocation and resource sharing is usually necessary. Secondly,

the deployment environment is chaotic and subject to frequent changes: mission plans

must evolve to cope with unforeseen events, leading to changes in the tasks required

and hence the ISR needs. Any solution to the sensor-mission assignment problem must

therefore support a high degree of agility in terms of identifying alternative resources

and re-assigning or re-purposing resources to tasks.

This paper approaches the sensor-mission assignment problem from a Semantic

Web perspective: the core of the approach is a set of ontologies describing mission

1 For background on this problem from a military perspective, see for example

http://www.dtic.mil/doctrine/jel/new pubs/jp2 01print.pdf, pages III–10–11.
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Fig. 1: Overall picture of the sensor-task assignment process

tasks, sensors, and deployment platforms. Figure 1 shows how the various aspects of

our approach fit together. Working from the mission planners’ ISR requirements (what

capabilities are needed, in what environment, and with what quality-of-information),

semantic reasoning is used to recommend collections of types of sensors and platforms

that are known to be “fit-for-purpose” for a particular task. The reasoner is able to take

account of logistical information concerning the potential availability of assets (includ-

ing their location, types, and operational status). Then, these recommended solutions

are used to constrain a search for available instances of sensors and platforms that can

be allocated at mission execution-time to the relevant tasks. This stage takes account

of data on the operational status of the various assets in the field (for example, if they

degrade in some way, perhaps due to damage). An interface to the physical sensor en-

vironment then allows the instances to be configured to operate as a coherent whole

and deliver the necessary data to users. Feedback loops exist throughout, allowing re-

planning of the sensor-task fitness, re-allocation of instances, and re-configuration of

the operational sensor network.

Our overall goals are to provide three elements of an integrated solution to the

sensor-mission assignment problem:

– A framework that offers a “top-to-bottom” solution to the problem of deploying

sensors to meet the information needs of tasks in a mission context. At the core is

a set of modular ontologies covering task requirements, sensor capabilities, and a

structured framework to associate tasks with sensors.

– A combination of reasoning at mission-planning time, and optimisation algorithms

at mission execution-time: the reasoner recommends a collection of sensor types



which cover the needs of the mission, while the optimisation algorithms select the

best collections of instances of those sensor types.

– Support to dynamically configure a deployment of selected sensor instances by

means of a sensor infrastructure (the Sensor Fabric), which handles subscription to

physical-world sensors, routing, information fusion, and delivery of information to

users.

In this paper, we focus mainly on the first of these elements, the ontology-centric frame-

work. Although the second and third elements are not the primary focus of this paper,

we will describe the relationship between the ontology-centric framework and the other

elements, and summarise the status of our overall integrated approach.

Figure 2 provides an overview of our con-

ceptual architecture. At its core is a set of in-

terlinked ISR ontologies, together with a rea-

soner that performs sensor-task fitting. The

interlinked ontologies define various dimen-

sions of the ISR domain, including the infor-

mation requirements of mission tasks, and de-

scriptions of various aspects of sensors and

sensor platforms. These build on existing on-

tologies, schemas, and catalogues of tasks,

sensors, etc where appropriate, including at-

tributes exposed by the Sensor Fabric, which

provides an interface to the deployed sensor

Delivery to users

ISR ontologies: tasks, sensors, etc
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Fig. 2: Conceptual architecture

environment, allowing sensor selection, data routing, fusion and filtering. The Missions

and Means Framework (MMF) ontology supports the sensor-task fitting reasoner by ar-

ticulating the relationships between task requirements and sensor/platform capabilities.

The reasoner is able to recommend collections of sensor types to cover mission require-

ments: this is done at mission-planning time, and allows for user intervention in the

selection process. The selected collections of sensor types are made available at mis-

sion execution-time to the sensor-task allocation algorithms, which attempt to assign

sets of sensor instances in a near-optimal manner. The delivery layer is tightly cou-

pled with the fabric, and allows users to subscribe dynamically to the sensor instances

assigned by the sensor-task allocation algorithms.

The paper is organised as follows: Section 2 describes the various ontologies we

have developed to model the relationships between tasks and assets in the ISR domain.

Section 3 describes the reasoning procedure for sensor-task fitting. Section 4 describes

the sensor-task allocation framework, and explains how it complements the work done

by the reasoner. Section 5 examines the status of our implementation based on the

Sensor Fabric. Finally, Section 6 summarises and concludes the paper.

2 Ontologies for assessing the fitness-for-purpose of sensors to tasks

We advocate the use of semantic matchmaking [1] to address the assessment of the

fitness-for-purpose of alternative means to accomplish a given ISR task, which in turn

will support the effective allocation of assets to multiple competing tasks. This approach

relies on the use of ontologies as an expressive and logically-sound way to represent

knowledge and reason with it. More specifically, our approach uses ontologies in the

following activities:



– specifying the requirements of a task, in terms of the ISR capabilities needed;

– specifying the capabilities provided by ISR assets (sensors and sensor platforms);

– comparing the specification of a task against the specification of available assets to

assess their fitness-for-purpose.

2.1 Missions and Means Framework Ontology

Although it is possi-

ble to imagine a single

all-encompassing “ISR

ontology”, we adhere to

the Semantic Web vi-

sion of multiple inter-

linking ontologies cov-

ering different aspects of

the domain: sensors, plat-

forms, tasks, etc. This

allows us to build on

substantial pre-existing

work but, as we will see,
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Fig. 3: Mission and Means Framework

leave us with the problem of relating sensors/platforms to tasks. To fill this gap, we pro-

vide an ontology based on the Missions and Means Framework (MMF) [2], which is

essentially a collection of concepts and properties to reason about the capabilities re-

quired to accomplish a mission it (e.g. mission, task, capability, asset, etc.). MMF was

developed by the US Army Research Laboratory to provide a model for explicitly spec-

ifying a military mission and quantitatively evaluating the utility of alternative means

to accomplish it. Ours is the first attempt to define an ontology based on the frame-

work; using MMF allows us to benefit from its familiarity to users. The way MMF

describes the linking between missions and means — shown in Figure 3 — naturally

fits the notion of matchmaking: on the one hand, we have missions breaking down into

operations, and operations into tasks, where each task may require different capabilities

to be accomplished; on the other hand, we have the capabilities provided by assets as a

result of aggregating the capabilities of its constituent systems and subsystems.

Figure 4 sketches the main

concepts of our MMF ontology.

On the left hand side, we have

the concepts related to the mis-

sion: a mission comprises sev-

eral operations to be carried out,

and each operation breaks down

into a number of tasks that must

be accomplished. On the right

hand side we have concepts re-

lated to means: a sensor is a

system that can be attached to

a platform; inversely, a platform

can mount one or more systems;

both platforms and systems are

assets; assets provide capabili-
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ties; a capability can entail a number of more elementary capabilities and is required to

perform certain type of tasks; and inversely, a task is enabled by a number of capabil-

ities; some sensors can interfere with other sensors, so they cannot be used simultane-

ously; and finally, at some point, assets will be allocated to specific tasks that require

the capabilities provided by them.

Note that all concepts shown in Figure 4 are general MMF concepts with the ex-

ception of sensor, which we have introduced (as a refinement of the MMF core concept

system) in order to link the MMF ontology with the ISR domain specific ontologies.

This is because, while the MMF ontology describes the main concepts used in our

matchmaking framework — and is generic to military and military-style missions and

means in the widest sense — in order to describe specific instances of those concepts

we need domain-specific vocabulary discussed in the next section.

2.2 ISR Ontology

There is already a sizeable amount of work done in providing descriptive schemas and

ontologies for sensors, sensor platforms, and their properties, such as SensorML [3],

OntoSensor [4], CIMA [5], and the MMI Platforms ontology [6] among others. There

are also several well-known structured descriptions of tasks in the military missions

context, most notably the US Universal Joint Task List (UJTL)2, the CALL thesaurus3,

the US JC3IEDM model and the UK JETL/METL task lists. These existing representa-

tions provide partial coverage of what we need to model but, as they originate in either

the sensor/platform or task spaces, they lack knowledge of how capabilities provided

by the types of sensors/platforms may satisfy the capabilities required by tasks. Conse-

quently, our approach has been to reuse existing concept sets, and to extend these with

representations of capabilities.

During the knowledge analysis and acquisition stage we found a number of issues

that we have taken into account in our approach to the representation of the ISR domain,

including the following:

– The absence of standardised taxonomies, and the existence of alternative, some-

times inconsistent, classifications for the same concepts.

– Existing attempts to conceptualize the domain are based on different dimensions,

and more usually, several dimensions are mixed. For example, UAV (Unmanned

Air Vehicle) classifications tend to mix dimensions such as size or weight (e.g. Mi-

croUAV vs MiniUAV), performance (e.g. Medium Altitude vs High Altitude), task

type (Maritime Reconnaissance, Wide Area Surveillance, etc.), or ad-hoc features

such as their landing and take off capabilities.

– There are fuzzy concepts that are difficult to classify as a single category. For exam-

ple, LIDAR (LIght Detection and Ranging) is a type of sensor that has properties

of both optical sensors and radars.

– Concepts that are supposed to refer to the same aspect of the domain are described

at different abstraction levels. Closely related to this issue is the tension between

considering a concept as primitive, or as a composition of more basic elements; for

example, a reconnaissance capability might be seen as implying a combination of

mobility and sensing capabilities.

2 See http://orlando.drc.com/semanticweb/daml/ontology/condition/ujtl/condition-ont for an

existing UJTL-based ontology.
3 http://call.army.mil/thesaurus



In order to deal with the challenges introduced above, we propose a compositional

and multidimensional approach to conceptualize the ISR domain. Such an approach is

well suited to Description Logics (DL) [7] languages such as OWL DL. One of the most

powerful features of DLs is their ability to define classes in terms of sufficient and nec-

essary conditions. New concepts can be defined by specifying property restrictions and

relations on existing concepts. As an example, consider the following DL definitions

for some concepts relating to aerial sensor platforms:

– Aircraft ≡ (Platform ⊓ ∃ hasRealm.Atmosphere)

– UnmannedVehicle ≡ (Platform ⊓ ∃ hasQuality.Without-crew-mobility)

– UAV ≡ (Aircraft ⊓ UnmannedVehicle)

– CombatUAV ≡ (UAV ⊓ ∃ providesCapability.Firepower)

– MALE ≡ (UAV ⊓ ∃ providesCapability.MediumAltitude ⊓ ∃ providesCapabil-
ity.LongEndurance)

– EnduranceUAV ⊑ ¬ (SmallUAV ⊔ TacticalUAV).

By using OWL DL, we can apply off-the-self reasoners to infer new classifications

based on concept definitions, which is very appropriate because different classifications

are useful for different purposes. For example at some point one might be interested in

selecting a platform in terms of the type of tasks that it can perform (reconnaissance,

surveillance, battle damage assessment, etc), but in other circumstances one might be

interested in selecting a platform according to its takeoff and landing capabilities (cata-

pult, runaway, VTOL, etc). Some of these dimensions are:

– For platforms: mobility, realm, performance (range, endurance, altitude, speed,

etc.), application or mission type (surveillance, reconnaissance, target acquisition,

etc.), firepower, landing and takeoff, communications, vulnerability and survivabil-

ity, availability.

– For sensors: phenomena detected (type and spectrum), performance (resolution,

sample rate, etc), weather/terrain/contamination influence, vulnerability, interfer-

ences with other sensors.

(a) Platforms (b) Sensors (c) ISR tasks (d) Intelligence

Fig. 5: Sample of concept taxonomies relevant to the ISR domain

Figure 5 shows a sample of some of the taxonomies we have developed for the ISR

ontology. Platforms (a) and sensors (b) are used to characterize ISR assets; the former

draws on concepts from OntoSensor and CIMA, the latter from the MMI Platforms



ontology (as referenced at the start of this section). Note that a member may belong to

multiple classes in different branches of the tree, as far as it complies with the class defi-

nition; for example, PredatorB is asserted to be a subclass of MALE (Medium Altitude

Long Endurance) UAV, but it is also classified as a subclass of CombatUAV because it

is a UAV that provides Firepower capability, as stated in the definition of CombatUAV
above. ISR tasks (c) represent the main requirements used to select a type of platform,

while intelligence disciplines (d) are used to select sensor types supporting the pro-

duction of specific types of intelligence (e.g. optical sensors support the production of

IMINT (Imagery Intelligence)). Both (c) and (d) are drawn mainly from the ISR-related

sections of the CALL thesaurus, though (c) also draws upon UJTL.

We use different properties to relate sensors and platforms to the capabilities they

provide. There is a main object property called providesCapability, that takes instances

of Asset as its domain, and has instances of Capability as its range. In addition we have

properties that are subtypes of the providesCapability property, such as hasRange,

hasCoverage, etc. Some of these properties are used to represent capabilities that are

represented as partition values, like the UAVRange class, which is partitioned into three

classes: CloseRange, ShortRange, and LongRange. We have included also a num-

ber of data-type properties that are essentially used to characterised numeric attributes

of an asset, such as for example the ceiling, endurance, mission radius and speed of an

aircraft.

Figure 6 shows class examples of both a sensor and a platform, as shown in the

Protégé Ontology Editor4. On the right hand-side of the figure we see the description of

the FLIR (forward looking infrared) sensor class, which is a subclass of IR (infrared).

FLIR sensors are able to detect thermal energy, which gives them the ability to oper-

ate night and day, have foliage penetration (FOPEN) capability, provide high-quality

identification of targets, fair resolution and good coverage. On the left-hand side we see

the description of the PredatorB platform class, which is a subclass of MALE UAV.

The PredatorB can carry several types of sensors, including optical sensors (FLIR),

synthetic aperture radar (SAR), laser designator and range finder (LDRF), and Signals

Intelligence (SIGINT) sensors. Some capabilities are inherited from superclasses (e.g.

MediumAltitude is inherited from MALE), while others are specifically asserted (e.g.

FirePower).

3 Semantic matchmaking of sensors and tasks

The use of semantically-rich specifications enable the use of specific forms of match-

making that are not available when using a syntactic approach, such as the use of sub-

sumption (e.g. [1, 8]) and logical satisfaction (e.g. [9]). Figure 7 shows very basic exam-

ples of the subsumption-based matching relations we have considered, using examples

from the ISR domain. Q denotes a query which specifies some intelligence require-

ments to be met, and S1 through S5 denote the specification of ISR assets (sensors and

sensor platforms) to be matched against Q.

In particular, our example query poses two requirements to be met: provide infrared

(IR) vision, and be able to carry out a night reconnaissance task. From left to right we

see first the specification of the query Q, then we see the specification of several assets

with different types of matching. Following [1], we list them below in decreasing order

of matching strength:

4 http://protege.stanford.edu/



Fig. 6: Examples of ISR classes: PredatorB platform and FLIR sensor

1. Exact: holds when the query Q is equivalent to the specification S: S ≡ Q. In the

example, S1 describes an asset that provides IR vision and is designed to perform

night reconnaissance tasks, just as stated in Q, so S1 and Q are equivalent.

2. Plugin: holds when S is subsumed by Q: S ⊑ Q. In the example, the asset de-

scribed by S2 refers to a cooled FLIR, which is a specific type of IR camera, and

provides night reconnaissance, so S2 is subsumed by Q. (Note that exact matches

are a special case of plugin, where S ≡ Q.)

3. Subsumes: holds when Q is subsumed by S: Q ⊑ S. In the example, S3 refers to

an asset providing night vision capability, which is a more general concept than IR

vision, and it provides also night reconnaissance, so Q is subsumed by S3.

4. Overlaps: holds when the conjunction of Q and S is not empty: Q⊓S 6= ⊥, in other

words, Q⊓S is satisfiable. In our example, S4 describes an asset that provides night

reconnaissance as required by Q, but the first requirement is not satisfied, since it

carries a type of radar (SAR) instead of an IR camera, and these two concepts are

disjoint.

5. Disjoint(S4, Q): holds when the conjunction of Q and S is empty: Q ⊓ S = ⊥,

in other words, Q ⊓ S is unsatisfiable. In the example, S5 describes an asset that

provides TV video and is suited to perform day reconnaissance tasks; radar imagery

is disjoint with IR vision, day reconnaissance is disjoint with night reconnaissance,

so there is no intersection between Q and S5.

A matchmaking application is not entirely characterised by the basic semantic re-

lations that can be established among concepts. An important issue of a matchmaking

application is the distinction between the attribute-level and the component-level: a

component may be described by different attributes, and so different matching schemas

could be applied to each attribute depending on the particular meaning or role it plays

within the component.

In our application, we have identified two main classes of components to be matched

against the ISR requirements of a task, each one characterised by different attributes that
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deserve a separate treatment. Note that the kind of capability requirements relevant to

selecting a specific kind of sensor are quite different from the requirements that are rel-

evant to select a platform. For example, in order to assess the utility of different sensors

it is very important to consider the kind

of intelligence to be produced (IMINT,

ACINT, SIGINT, etc.), since each type

of sensor provide information that sup-

ports a different kind of intelligence (e.g.

infrared cameras support IMINT, while

acoustic sensors support ACINT). In ad-

dition, to select a specific platform (e.g.

UAV) for a reconnaissance mission there

are other factors to consider, such as the

range to the targets of interest, the pres-

ence or absence of enemy anti-air assets,

and so on. Moreover, UAVs are limited in
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Fig. 8: Abstract matching architecture

the weight and type of sensors they can carry, and the performance of some sensors may

be influenced by conditions that depend on the platform they are attached to, such as

the altitude. Therefore, one cannot select sensors and platforms independently; instead,

the interaction between these kinds of components must also be taken into account.

To address the issues introduced above, we propose an abstract architecture shown

in Figure 8. This architecture has three main components:

– Task: defines the goals to be achieved and the capabilities required to accomplish

those goals. In addition, a task may have environmental conditions (weather, ter-

rain, enemy, etc) attached that are expected to impact the performance of a task.

– Sensor: these are the assets that collect the information required to satisfy the intel-

ligence requirements of a mission. However, sensors do not operate as independent

entities, as they have to be attached to systems that provide them with energy, pro-

tection, mobility, etc.

– Platform: these are the systems to which sensors are attached so as to get energy,

protection, mobility, communication, etc. Platforms include both static and mobile

systems operating on land, sea and air.

The three components involved and the dependencies between them result in the

following three matching relations:

– Task-Sensor matching: a sensor class S matches a task T , match(T, S), if S pro-

vides the information-collecting capabilities satisfying T ’s ISR requirements.



– Task-Platform matching: a platform class P matches a task T , match(T, P ), if P
provides the kind of ISR-supporting capabilities (mobility, survivability, communi-

cation) required to perform T .

– Platform-Sensor matching: a sensor S matches a platform P , match(P, S), if S
can be carried by and is compatible with the characteristics of P .

In order to satisfy the ISR requirements of a task one needs to select (at least) both

a platform and a combination of sensors such that our three matching relations are

simultaneously satisfied.

In some situations, all requirements can be satisfied by a single platform mount-

ing one or multiple sensors: given a task T specifying a set of requirements RT =
{R1, ..., Rn}, a single solution for T is a platform configuration Π = 〈P,S〉, where

P is a type of platform, and S = {S1, ..., Sm} is a set of sensor types that can be

mounted in P simultaneously (there are no interferences among them). A platform con-

figuration is a valid solution if the combined capabilities of P and S satisfy RT , where

satisfaction is computed as a plugin (or exact) match, that is:

〈P,S〉 ∈ V(T ) ⇐⇒ ∀Ri ∈ RT : (P ⊑ ∃C.Ri) ⊔ (Si ∈ S ⊑ ∃C.Ri)

where V(T ) = {Π1, ...,Πn} is the set of valid solutions for task T , and C denotes the

object property providesCapability. Any subproperty of providesCapability is thus

applicable in the former definition.

For example, given a set of requirements RT = {MaritimeSurveillance, IMINT,

DayAndNight} a valid solution will be 〈FireScout, {IRCamera}〉, since FireScout
is a class of UAV that provides the capability MaritimeSurveillance (exact match),

and IRCamera is a class of sensor that supports the production of IRINT, which is

subsumed by IMINT (plugin match), and provides DayAndNight operation capability.

In many cases, a task involving several requirements can not be achieved by a sin-

gle platform, but it can be achieved by a combination of different platforms. In general,

a combination of different assets will increase the utility of the information obtained

from a single asset, or be the same. To address the general case, we enumerate all

valid multiple-platform multiple-sensor solutions: each solution may comprise multi-

ple platforms, and each platform may mount several sensors. A solution is valid if the

combined capabilities of all the assets (platforms and sensors) included in the solution

together satisfy the requirements. We model this as an instance of the set cover problem,

where sets comprise the combined capabilities provided by a single platform configu-

ration 〈P,S〉, and set elements are capabilities; the goal is to find a small family of sets

that covers the set of requirements (also a set of capabilities).

After finding the valid solutions, we drop those solutions that are not minimal, i.e.,

those containing more platforms than necessary. The result is a set of valid solutions

V(T ) = {V1, ..., Vn}, where each solution is a set of platform configurations, Vi =
{Πi

1, . . . ,Π
i
m}. We call the overall procedure the Set Cover Matchmaker (SCM).

SCM is a brute force algorithm, limiting the number of assets per package to avoid

excessive computation.

Finally, we have introduced a mechanism to sort the set of solutions according to nu-

meric criteria, such as the economic cost. For example, with the following task require-

ments: RT = {ConstantSurveillance, IRINT, SIGINT}, SCM obtains the following

ranking of solutions, with cheaper solutions ranked first.

– V1 = {〈PredatorB, {IRCamera, SIGINTSensor}〉}



– V2 = {〈E-Hunter, {IRCamera}〉, 〈I-GNAT, {SIGINTSensor}〉}
– V3 = {〈GlobalHawk, {IRCamera}〉, 〈I-GNAT, {SIGINTSensor}〉}

In this example, the first solution involves a single platform carrying two types of

sensor, IR and SIGINT, and two solutions involving two platforms. The most expensive

one is the one with the GlobalHawk, since that platform alone costs twice as much as

any of the other platforms in the example. Other valid solutions are excluded from the

final output because they are not minimal; for example {〈GlobalHawk,{IRCamera}〉,
〈Predator,{SIGINTSensor}〉} is a valid solution, but we can remove the GlobalHawk
and use only the PredatorB, which is actually our first solution.

SCM is implemented using the Jena5 and Pellet6 packages to process and reason

with our OWL DL MMF and ISR ontologies7.

4 Optimal allocation of sensors to competing tasks

After the reasoning process has determined which types of sensors and platforms are

appropriate for which tasks, the next step is to allocate instances of the assets to tasks.

Resources are constrained by available inventory, so it may not be possible to satisfy all

tasks, even within the various possible solutions determined by the fitness-for-purpose

reasoning. At this stage, tasks are potentially in competition for resources. Since the

tasks may vary in difficulty and importance, two kinds of decisions must be made.

First, which tasks shall be attempted and which shall be abandoned? Second, for each

attempted task, which resources should be assigned to it? Hence, algorithms to effi-

ciently allocate assets are necessary.

However, the application of these algorithms in practice needs utility functions that

attach a value to each pair 〈task, resource〉, so that the overall utility of different alloca-

tions of resources can be compared to decide which one is best. In our view, the utility

functions should aggregate a number of qualitative and quantitative factors.

There are a number of proposals to apply quantitative metrics to assess the utility

of alternative ISR assets, such as the Sensor Mix Model (SMM) [10], that takes into

account numeric attributes such as the dwelling time (time on station), the area to be

covered, the sweep width of the sensors mounted on the platform, etc. However, we

have no knowledge of previous proposals to take into account qualitative capabilities,

such as the ones represented in our ISR ontology (e.g. all-weather operation, day and

night, foliage penetration, moving target detection capability, etc).

By introducing qualitative capabilities to the description of ISR resources and tasks,

we are considerably extending the range of scenarios that can be modeled using purely

numeric models. Existing frameworks are typically focused on a single resource type, or

predefined resource packages, while in our approach we can find new resource packages

on demand by dynamically reasoning about their different capabilities.

In our approach, we use the matchmaker before allocating resources so as to filter

out solutions that are not fit-for-purpose because of their qualitative properties; in other

words, we discard those solutions that are expected to be useless, and by doing so, we

reduce the search space while running the allocation algorithms. Note that the majority

of the qualitative attributes we have identified as relevant to the problem depend on the

abstract asset types, that is, the classes of sensors and platforms available, while most

5 http://jena.sourceforge.net/
6 http://pellet.owldl.com/
7 Available from http://www.csd.abdn.ac.uk/research/ita/sam/webpages/home.php



of the numeric attributes depend on actual instances of those classes deployed in the

field (typically there will be several instances of the same asset class involved in a given

situation).

In the rest of this section we briefly describe one of the models we have considered

to enable the application of resource-allocation algorithm for multiple competing tasks:

Semi-Matching with Demands (SMD) [11, 12]. This model is based on the use of

additive utility values for each pair asset-task, and different priorities and demands for

each task, all of these being numeric attributes.

Problem instance: A weighted bipartite graph G = 〈A, T , P, D, E〉, where A =
{A1, ..., An} is a collection of assets, T = {T1, ..., Tm} is a collection of tasks,

P = {p1, ..., pm} is a collection of task profit values, D = {d1, ..., dm} is a col-

lection of task demands, and E = {eij : i ∈ [1, n], j ∈ [1, m]} is a collection of

non-negative weights for the edges A× T .
Goal: Find a semi-matching F ⊆ A × T (no two chosen edges share the same asset)

maximizing the sum of the profits pj of the satisfied tasks, where Tj is satisfied if

its total utility reaches its demand, i.e.,
∑

(Ai,Tj)∈F eij ≥ dj .

We note that the SMD problem as defined above is quite abstract. That means that

the variables used may have different meanings and interpretations. The utility values

eij can be calculated using different metrics and functions. The profits represent the

contribution of every task to the global utility obtained from all tasks as a whole. The

idea here is to give tasks different degrees of importance depending on their overall

context. For example, if a task is critical for the success of other tasks, then the first

task will have higher importance, and will be assigned a high profit value. Finally,

demands represent a numeric notion of the amount of resources required by a task,

and its particular interpretation is closely related to the metric used to calculate utility

values; for example, if we use SMM demands will represent the area to be covered.

In order to integrate the SMD model and the fitting reasoner, we have so far consid-

ered only single-platform configurations. More precisely, the application of the model

assumes:

1. Every asset Ai ∈ A is assumed to be an instantiation of a single platform con-

figuration Π = 〈P,S〉, which cannot be re-configured on demand to satisfy the

requirements of a specific task.
2. For every asset-task pair (Ai, Tj), if Ai is an instantiation of a platform configura-

tion (Π ∈ V (Tj)), then we apply a utility metric like SMM to obtain a particular

utility value eij ; otherwise eij is assumed to be zero and it is ignored by the alloca-

tion algorithms.

It is in this way that we can obtain an SMD problem instance and thereby take ad-

vantage of existing allocation algorithms. In ongoing research, we plan to extend SMD

and its assignment algorithms to the more general setting of multi-platform solutions, as

those resulting from the application of SCM. We emphasize that two separate computa-

tional problems must be solved. The first is to determine which possible combinations

of assets are sufficiently fit-for-purpose for every different task, according to the classes

of sensors and platforms available in the theater of operations. The second is to find a

global assignment of particular instances of those assets, based on their actual utility

values.

The challenge in the second problem is to maximize the global mission success

given limited access to resources. Indeed, the SMD formulation is known to be NP-

hard, as well as NP-hard to approximate in the most general setting [11]. Under the



assumption that the degree d of the problem instance (the maximum number of assets

within range of any task) is limited, however, a simple greedy algorithm can guarantee

a d-approximate solution. An alternative, knapsack-like formulation, SUM, has been

described in [13].

5 Fabric for sensor deployment and delivery

We are currently working on the problem of deploying selected sensor instances on the

network, so that they operate as a coherent system that can deliver the required infor-

mation to users. Our main focus at present is to interface the fitting and allocation com-

ponents with a particular sensor infrastructure — the Sensor Fabric — a prototype im-

plementation of which has been built using commercial off-the-shelf components [14].

While the main aim of the fabric is to research and apply algorithms for the retrieval

and dissemination of task-specific information across sensor networks, it provides three

main components that complement the fitting and allocation work previous described:

1. Sensor Catalogue: provides a global inventory/registry of sensor instances, describ-

ing all known assets and their availability. It manages the visibility of, and access

to, sensor data feeds. The Sensor Catalogue is used to select the sensors required to

fulfill the requirements of a specific task.

2. Topology Manager: manages the network topology and inter-node communication,

describing all known network nodes and their availability. The Topology Manager

is used for node location and routing information.

3. Fabric Manager: responsible for the control (configuration and sensor-mission as-

signment) and monitoring of individual sensors and intermediate nodes, and es-

tablishing the communication channels between them. The Fabric Manager also

provides a container for running in-network information fusion and filtering algo-

rithms, and registering them as assets with the Sensor Catalogue.

Figure 9 sketches the Sensor Fabric

architecture and the three main services

provided: the Sensor Catalogue (SC), the

Topology Manager (TM), and the Fab-

ric Manager (FM). There is one instance

each of the Sensor Catalogue and Topol-

ogy Manager per Sensor Fabric, and one

instance of the Fabric Manager per node.

Sensor nodes publish data locally to a

topic in a global topic name space, and

similarly consumers subscribe locally to

the same global topic name. The Fab-

ric establishes the communication chan-
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Fig. 9: Overview of the Fabric

nel between the two automatically, and ensures that published messages are delivered

correctly. In this example data published from sensors S1, S2, and S3 on node E is

accessed by the client on node A as if it is local. The Fabric transparently delivers the

data across the network between the nodes, E to B to A.

We have defined interfaces that allow the fitting and allocation components to call

on the Sensor Catalogue to obtain several kinds of information, including: available

asset types (for fitting), available asset instances (for allocation), and current status of

assets (obtained from the Fabric Manager and providing, for example, data to be used as



part of the computation of a utility value). Then, an interface to the Topology Manager

allows us to specify how a set of selected instances needs to be configured to operate as

a coherent system to deliver data to a user.

Fig. 10: Tool for integrating the reasoner and the Sensor Fabric

Figure 10 is a screenshot of a software prototype we are developing to enable the

integration of the services provided by the reasoner and those provided by the Sensor

Fabric. This screenshot shows the main user interface, which enables the specification

of tasks, and supports users in the allocation of appropriate assets for their their tasks.

Each task is characterised by qualitative requirements used by the reasoner to discover

platforms that are fit-for-purpose. In addition, each task can define a geographic area of

interest where some information has to be collected. The left part of the interface shows

a map provided by Google Map Web services8, where the user can specify the area of

interest (overlapping rectangle) for a particular task. After selecting some requirements

for the task, the user can retrieve the assets available that satisfy them, together with

information on their availability and geographic location. In addition, the location of

the assets is depicted on the map. In the example, we can see that user needs Imagery

Intelligence (IMINT), which can be provided by three assets: one UAV of class Predator

(P1) and two UAVs of class PredatorB (P1 and P5). In addition, we can see that one

of the PredatorB platforms is not available, because it has crashed previously (P8).

Therefore, in this case the user can select either P1 or P5 to accomplish the task.

Multiple tasks can be defined, and then the assets committed to one task will not be

available to other tasks. The next step is to integrate the allocation algorithms so as to

maximize the global profit from multiple tasks.

6 Discussion and Conclusion

At present, we have initial implementations of the complete set of ontologies described

in Section 2, a prototype of the semantic reasoner that performs the sensor-task fitting,

8 http://code.google.com/apis/maps/



implementations of the SMD and SUM allocation algorithms outlined in Section 4, and

an initial integration with the Sensor Fabric as described in Section 5.

Evaluation is ongoing: the fitting and Fabric components have been demonstrated

and delivered to prospective US and UK users. Feedback on the overall approach has

been positive, in particular:

– Grounding the framework on the Missions and Means Framework gives prospective

users confidence in the overall fitting approach.
– The ability to draw on pre-existing sensor and task representations is seen as a key

advantage of the ontology-centric approach.
– The extensibility of the multi-dimensional approach is viewed as a highly desirable

and attractive element.

Moreover, the feedback obtained so far has highlighted a number of areas for further

work:

– Allowing the user to specify ISR requirements at a higher level; currently, the ISR

capabilities are framed too much in terms of intelligence types (IMINT, RADINT,

etc, as shown in Figure 5(d)), and it would be desirable for users to specify “what

they want” (e.g. detect vehicles at a particular location) rather than “how to get

it” (IMINT, RADINT, etc). We are therefore working on mapping from such high-

level information tasks to the kinds of intelligence suitable to satisfy them, as a step

prior to the current fitting.
– Allowing the user to get explanations of the solutions recommended by the fitting

process, and to explore “what if” alternatives.
– More detailed handling of deployable resources, to take better account of the cost of

getting resources into the desired area when making fitting and allocation decisions.

In addition to these points, work on the integration is continuing; our longer-term goal

is to use the fully-integrated set of components (sensor-task fitting, allocation, and de-

ployment) to experiment with strategies to achieve maximum responsiveness and agility

in assigning sensor assets to mission tasks in a distributed, dynamic, and multi-mission

environment. The immediate challenges for these aspects of our work are to:

– expand and deepen the ontologies by working with domain experts in ISR, contin-

uing to draw on pre-existing ontologies where possible;
– further develop the reasoning mechanisms used in the fitting process, including var-

ious approaches to non-exact matching allowing different ways to rank alternatives;
– fully integrate the fitting and allocation steps, including providing a richer treatment

of utility.
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Appendix - Glossary of acronyms

ACINT: Acoustic Intelligence
ISR: Intelligence, Surveillance and Reconnaissance
FOPEN: Foliage Penetration
HALE-UAV: High Altitude Long Endurance UAV
IMINT: Imagery Intelligence
LDRF: Laser Designator and Range Finder
MALE-UAV: Medium Altitude Long Endurance UAV
MMF: Missions and Means Framework
SCM: Set Cover Matchmaker
SIGINT: Signals Intelligence
SMM: Sensor Mix Model
UAV: Unmanned Aerial Vehicle
VTOL: Vertical Takeoff and Landing


