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Abstract. KnowWE is a semantic wiki that provides the possibility to
define and maintain ontologies and strong problem-solving knowledge.
Recently, the ontology engineering capabilities of KnowWE were signifi-
cantly extended. As with other ontology engineering tools, the support of
ontology debugging during the development of ontologies is the deficient.
We present an Ontology Debugger for KnowWE that is based on the
delta debugging approach known from Software Engineering. KnowWE
already provides possibilities to define test cases to be used with various
knowledge representations. While reusing the existing testing capabili-
ties we implemented a debugger that is able to identify failure-inducing
statements between two revisions of an ontology.

1 Introduction

In software engineering changing requirements and evolving solutions are well-
known challenges during the software development process. Agile software devel-
opment [3] became popular as it tackles these challenges by supporting software
engineers with methods based on iterative and incremental development.

In the field of ontology engineering the challenges are similar. It is extremely
rare that the development of an ontology is a one-time task. In most cases an
ontology is developed continuously and collaboratively. Even though this insight
is not new and tool support has improved in recent years, a mature method for
agile ontology development still is a vision.

The idea of continuous integration (CI) has been adapted for the development
of knowledge systems (cf. Baumeister et al. [1] or Skaf-Molli et al. [14]). CI for
knowledge system uses automated integration tests in order to validate a set of
modifications. In software engineering the continuous integration is applied by
unit and integration tests to mostly manageable sets of changes, which often is
sufficient to isolate bugs. In accordance to Vrandečić et al. [16], who adapted
the idea of unit testing to ontologies, we consider unit tests for ontologies to be
difficult to realize. Additionally in ontology engineering changes can be rather
complex, e.g. when large amounts of new instance data is extracted from texts
and added automatically to an ontology.



As abandoning a complete change set because of an error is as unrealistic
as tracing down the failure cause manually, a method for isolating the fault
automatically is necessary. We developed a debugging plugin for the semantic
wiki KnowWE that is able to find the failure-inducing parts in a change set.
The debugger is based on the Delta Debugging idea for software development
proposed by Zeller [18].

The remainder of this paper is structured as follows: Section 2 describes the
delta debugging approach for ontologies; in Section 3 we present the developed
plugin for KnowWE in detail. Section 4 contains a short case study while Sec-
tion 5 concludes with a discussion and the description of future work.

2 Delta Debugging for Ontologies

2.1 Prerequisites

The proposed Delta Debugging approach assumes that we are able to access
different revisions of an ontology. Additionally, we assume that a mechanism
for the detection of changes exists. We call the difference between two revisions
the set of changes C. The detection can be realized for example by utilizing
revision control systems like SVN or Git or by manually calculating the difference
between two snapshots of an ontology. Even more sophisticated change detection
approaches are possible, like the one proposed by Goncalves et al. [5] for the
detection of changes in OWL ontologies on a semantic level.

Definition 1 (Changes). Let C = {c1, c2, . . . , cn} be the set of changes ci
provided by a change detection mechanism.

Definition 2 (Revision). Let O1 be the base revision of an ontology and O2 =
O1 ∪C a revision of the ontology, where the set of changes C have been applied.

With respect to a given test one of the revisions has to pass while the other
one has to fail a specific test (Axiom 1).

Definition 3 (Test Function). A function test : O → BOOLEAN deter-
mines for a given ontology whether it passes (TRUE) a specified test procedure
or not (FALSE).

Axiom 1 For a given test function test and the revisions O1 and O2 of the
ontology test(O1) = TRUE and test(O2) = FALSE holds.

2.2 Tests for Ontologies

Test outcome The Delta Debugging approach we propose is not limited to
a certain test procedure as long as it can assert a boolean value as defined in
Definition 3 and Axiom 1. In software engineering the outcome of a test can also
be undefined. Zeller [18] pointed out three reasons why this can happen:



Failure 1 Integration: When a change relies on earlier changes that are not
included in the currently focused change set, the change may not be applied.

Failure 2 Construction: When applying all changes a program may have syn-
tactical or semantical errors which avoids the construction of the program.

Failure 3 Execution: A program can not be executed.

As ontology engineering is basically about adding/removing/changing triples,
these failures can hardly occur—at least on the syntactical level. Incorrect state-
ments can usually not be added to a repository and therefore should not detected
as a valid/applicable change by the change detection mechanism. Additionally
triples do syntactically not depend on other triples and therefore can be added to
and removed from a repository independently. Finally ontologies are not executed
in the way a program is, what relaxes the execution failure. On the semantical
level, however, integration and construction failures are very likely to occur but
they do not result in an undefined test outcome, but a failing test—which is the
desired behavior.

Example tests A test could consider for example the result of a SPARQL
query. A concrete implementation could compare the actual query result with
an explicitly defined (expected) result. Another realization could use SPARQL’s
ASK form.

When dealing with an ontology that makes heavy use of semantics like OWL,
a reasoner like Pellet [13] could be utilized in a test to check whether an ontology
is consistent and/or satisfiable.

A test does not even have to test the ontology itself, as in task-based on-
tology evaluation [8] the outcome of the ontology’s target application could be
considered. Testing with sample queries for semantic search applications is an
example, where a given ontology is expected to provide certain results in an
otherwise unchanged semantic search engine.

Regardless of the actual implementation the definition of test cases should be
a substantial and integral part of the underlying ontology engineering method-
ology. We described the TELESUP project [4] that aims for a methodology and
tool for ontology development in a self-improving manner and emphasizes on the
early formulation of test cases.

2.3 The Delta Debugging Algorithm

We propose a delta debugging algorithm (Algorithm 1) for ontologies that is
basically a divide-and-conquer algorithm recursively tracing down the faulty
parts of an ontology.

The input of the recursive algorithm is the base revision of the ontology O1

that is known to pass the specified test procedure test. Additionally the set of
changes C between this base revision and the failing revision O2 is provided.



Algorithm 1 The delta debugging algorithm for ontologies.

function DeltaDebug(O1, C, test)
if C.length is 1 then

return C
end if
r ← {}
for all ci in Divide(C) do

Ot ← O1 ∪ ci
if test(Ot) is FALSE then

r ← r + DeltaDebug(O1, ci, test)
end if

end for
return r

end function

If the considered change set only contains one change then this is the failure-
inducing change by definition. Otherwise the helper function Divide slices the
set of changes in i new change sets. The function may use heuristics or exploit the
semantics of the ontology to divide the initial change set. In the following each
change set ci proposed by the Divide function is applied to the base revision
O1 of the ontology. If the resulting revision of the ontology Ot does not pass the
specified test procedure, then the change set is recursively examined in order to
find the triple responsible for the failure. As more than one recursive call of the
DeltaDebug algorithm can return a non empty set of failure inducing changes,
the final result may contain more than one triple.

The shown version of the algorithm returns all changes that applied to the
base revision O1 cause the failure. It additionally assumes monotonicity, i.e. a
failure occurs as long as the responsible changes are contained in the change set.
A more sophisticated handling of interferences will be subject of future work.

3 Implementation

3.1 KnowWE

We have implemented the delta debugging algorithm as an extension of the
semantic wiki KnowWE [2]. KnowWE provides the possibility to define and
maintain ontologies together with strong problem-solving knowledge. Ontologies
can be formulated using the RDF(S) or OWL languages. KnowWE provides
different markups for including RDF(S) and OWL: proprietary markups, turtle
syntax, and the Manchester syntax. KnowWE compiles ontologies incrementally,
i.e. only those parts of an ontology get updated that are affected by a specific
change. This is possible as KnowWE’s incremental parsing and compiling mech-
anism is able to keep track of which markup is responsible for the inclusion of a
specific statement. Thus statements can easily be added to or removed from the
repository when a specific markup has been changed.



3.2 Change Detection Mechanism

We use a dedicated change log to keep track of all changes applied to an ontology
in KnowWE. Each time a change is applied to the repository KnowWE’s event
mechanism is used to fire events that inform about the statements that have
been added to and removed from the repository. For every change a log entry is
created. Listing 1.1 shows an example of log entries, that indicate the removal
(line 1) and addition (line 2) of statements at the specified timestamps.

Listing 1.1. Example change log

1 -;1401619927398; si:abraham;rdfs:label;Abraham Simpson
2 +;1401619927401; si:abraham;rdfs:label;Abraham Simson

The change detection mechanism can now be realized by accessing the log file
and asking for the changes between two points in time. The ontology revisions
O1 and O2

3 can be constructed by reverting all changes between a specified
start point and the currently running revision of the ontology (HEAD). The set
of changes C between these two revisions can be extracted directly from the log
file.

3.3 Tests in KnowWE

In order to realize the test function, we have introduced a Java interface called
OntologyDeltaDebuggerTest which requires implementors to realize the method
boolean execute(Collection<Statement> statements).

We have implemented a sample test that checks whether a revision of an
ontology is able to provide specified results for a SPARQL query. We exploit
the already existing possibilities of KnowWE to formulate and execute labeled
SPARQL queries. In the following, we use an exemplary ontology inspired by
the comic characters ”The Simpsons”4.

Listing 1.2. Example for an expected SPARQL result.

1 %% SPARQL
2 SELECT ?s
3 WHERE {
4 ?s rdf:type si:Human;
5 si:gender si:male;
6 rdfs:label ?name .
7 FILTER regex(str(?name), "Simpson ")
8 }
9 @name: maleSimpsons

10 %

12 %% ExpectedSparqlResult
13 |si:abraham
14 |si:homer
15 |si:bart
16 @sparql: maleSimpsons
17 @name: maleSimpsonsExpected
18 %

3 The revision O2 is constructed to check whether Axiom 1 holds.
4 http://en.wikipedia.org/wiki/The Simpsons



Additionally we use KnowWE’s feature to define expected results for a spec-
ified query. This can be done by adding the expected results to a table and
referencing a labeled SPARQL query. For the convenient formulation a special
markup has been introduced. Listing 1.2 shows an example where si:homer and
si:bart are the expected results of the SPARQL query with the label “male-
Simpsons”. In order to access the formulated expected results, the markup also
gets a label (“maleSimpsonsExpected”). The actual test is instantiated using
this label, which allows accessing the expected results as well as the underlying
SPARQL query.

3.4 Ontology Debugger

The Delta Debugger for Ontologies is realized by the markup OntologyDebugger

that allows for the convenient configuration of the debugger. The configuration
is done by specifying the base revision O1 using the start annotation, option-
ally the revision O2 can be specified using the end annotation. If not specified
the current revision of the ontology (HEAD) is considered as O2. Using the
annotation expected the label of the expected SPARQL result is defined.

Listing 1.3. Example for the definition of an Ontology Debugger.

1 %% OntologyDebugger
2 @expected: maleSimpsonsExpected
3 @start: 1401267947599
4 %

The so defined ontology debugger instance is rendered like depicted in Fig-
ure 1. A tool menu allows the execution of the debugger, a progress bar is used
to visualize the running process. The actual implementation of the delta de-
bugging algorithm for ontologies has been realized as LongOperation that is a
feature of KnowWE’s framework architecture, which allows for executing long
operations in background without having the user to wait for the result. When
the long operation has finished, then the failure-inducing changes are returned
and displayed. An error message is rendered instead, if a failure occurs during
the execution of the debugger, e.g. because the test is undefined or Axiom 1 does
not hold for the specified revisions.

Fig. 1. The ontology debugger in KnowWE.



4 Case Study

4.1 The Simpsons Ontology

Fig. 2. An excerpt of the ontology showing the relationships of the Simpson family.

In the following we describe a small case study that illustrates the func-
tionality of the presented ontology debugging extension for KnowWE. Therefore
we use an example ontology that has been developed for tutorial purposes and
covers various facts of the popular comic television series “The Simpsons”. The
ontology contains several classes like Human or Building, as well as properties
like parent or owns. Additionally, some instances of the defined classes are in-
cluded. We do not present the entire ontology but concentrate on some relevant
parts.

Figure 2 shows relationships of the Simpsons family, e.g. that Homer (si:-
homer) is the father (si:father) of Bart (si:bart), Lisa (si:lisa) and Maggie
(si:maggie), who are also marked as siblings (si:sibling). The sibling prop-
erty was initially defined as owl:TransitiveProperty, i.e. a triple that explic-
itly states that Lisa is sibling of Maggie is not necessary. We have also defined
that si:father is a sub-property of si:parent, which has an inverse prop-
erty si:child. Listing 1.4 describes a SPARQL query for all children of Homer
(si:homer) and Marge (si:marge).



Listing 1.4. SPARQL query for the children of Homer and Marge.
1 %% SPARQL
2 SELECT ?kid
3 WHERE {
4 ?kid rdf:type si:Human .
5 si:homer si:child ?kid .
6 si:marge si:child ?kid .
7 }
8 @name: simpsonsKids
9 %

An expert on the Simpson family knows that Bart, Lisa and Maggie are the
expected result of this query. So this knowledge can be defined in KnowWE as
an expected SPARQL result (Listing 1.5), which than can be used as a test case
for the ontology.

Listing 1.5. Expected results of the query for the children of Homer and Marge.
1 %% ExpectedSparqlResult
2 |si:maggie
3 |si:bart
4 |si:lisa
5 @name: simpsonsKidsExpected
6 @sparql: simpsonsKids
7 %

Listing 1.6 is another example containing a SPARQL query for all siblings
of Maggie (si:maggie) and the definition of the expected result (si:bart and
si:lisa).

Listing 1.6. A test case for Maggie’s siblings.
1 %% SPARQL
2 SELECT ?sibling
3 WHERE {
4 BIND (si:maggie as ?kid) .
5 ?kid si:sibling ?sibling .
6 FILTER (?kid != ?sibling) .
7 }
8 @name: maggiesSiblings
9 %

11 %% ExpectedSparqlResult
12 |si:bart
13 |si:lisa
14 @name: maggiesSiblingsExcpected
15 @sparql: maggiesSiblings
16 %

For this case study various changes have been applied to the ontology (see
Listing 1.7) and broke it finally, i.e. the SPARQL results do not return the
expected results: Bart can not be retrieved as sibling of Maggie, and apparently
Homer and Marge do not have any children.

Listing 1.7. Changes applied to the Simpsons ontology.
1 -;1401267947600; si:snowball;rdfs:label;Snowball
2 +;1401267947605; si:santas_little_helper;rdfs:label;Santa ’s little helper@en
3 +;1401267947605; si:snowball;rdfs:label;Snowball II
4 -;1401268045755; si:child;owl:inverseOf;si:parent
5 +;1401283675264; si:sibling;rdf:type;owl:IrreflexiveProperty
6 -;1401283841549; si:relatedWith;rdf:type;owl:ReflexiveProperty
7 +;1401283841552; si:relatedWith;rdf:type;owl:SymmetricProperty
8 -;1401283907308; si:sibling;rdf:type;owl:TransitiveProperty
9 -;1401287487640; si:Powerplant;rdfs:subClassOf;si:Building



In order to find the failure-inducing changes, we have defined two ontology de-
bugger instances that utilize the test cases defined above. Listing 1.8 shows their
definitions. Revision 1401267947599 is the base revision O1 for both instances
as we know that the queries had been working before we started changing the
ontology.

Listing 1.8. Changes applied to the Simpsons ontology.

1 %% OntologyDebugger
2 @expected: simpsonsKidsExpected
3 @start: 1401267947599
4 %

6 %% OntologyDebugger
7 @expected: maggiesSiblingsExcpected
8 @start: 1401267947599
9 %

After manually triggering the debugging process, the ontology debugger in-
stances return the correct results. As depicted in Figure 3 the first ontology
debugger instance identified that removing the statement declaring si:child

as inverse property of si:parent has caused the failure that the children of
Homer and Marge could not be retrieved. The second instance reports that Bart
is not identified as sibling of Maggie because the transitivity (owl:Transitive-
Property) has been removed from the si:sibling property.

Fig. 3. The result of running the ontology debugger.

We ran the case study on an Apple MacBook with 3 GHz Intel Core i7
processor and 8 GB RAM; the example ontology contained 2,518 triples. The
ontology debugger returned each result after about 1.2 seconds on.



4.2 Ontology of an Industrial Information System

The ontology debugger was also utilized to trace down a failure-inducing change
in an ontology for an industrial information system. The ontology comprises
more than 700,000 triples and makes heavy use of OWL2-RL semantics. In this
scenario the debugger returned the correct hint for the failure-inducing change
after 5 minutes. The manual tracing of the error would have costed many times
over the presented automated approach.

5 Conclusion

In this paper we presented an extension for KnowWE that adds support for
ontology debugging by using a divide-and-conquer algorithm to find failure-
inducing changes. Our current implementation is working on the syntactical
level of an ontology and uses a provided test case in combination with a change
detection mechanism and a heuristic for dividing the change set. However, the
design of the algorithm and the software allows for the incorporation of more
sophisticated methods that may consider semantics to leverage the debugging
to a semantic level.

There has already been work on considering semantics for the debugging of
ontologies. Schlobach et al. [10] coined the term pinpointing which means re-
ducing a logically incorrect ontology, s.t. a modeling error could be more easily
detected by a human expert. They also proposed algorithms that use pinpoint-
ing to support the debugging task [11]. Ribeiro et al. [9] proposed the usage of
Belief Revision to identify axioms in OWL ontologies that are responsible for
inconsistencies. Wang et al. [17] proposed a heuristic approach that considers
OWL semantics in order to explain why classes are unsatisfiable. Shchekotykhin
et al. [12] proposed an interactive debugging approach to address the problem
that in OWL ontologies more than one explaination for an error can exist and
additional information is necessary to narrow down the problem. As debugging
OWL ontologies is closely related to the justification of entailments the work in
this field must also be considered. See for example Horridge et al. [6] or Kalyan-
pur et al. [7]. However, Stuckenschmidt [15] questions the practical applicability
of several debugging approaches of OWL ontologies with respect to scalability
and correctness.

While already functional we consider the current implementation of our on-
tology debugging plugin for KnowWE as early work. For the future we plan
several enhancements to the debugger, like the replacement of the change log
by a change detection mechanism that is based on standard wiki functionality
providing direct access to different revisions of an ontology. As mentioned above
we want to improve the handling of interferences, check the monotonicity as-
sumption for different ontology languages and plan to examine the applicability
of OWL debugging approaches. As KnowWE also allows for the definition of
strong problem-solving knowledge the generalization of the debugger to other
knowledge representations will be subject of future work.
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