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In nowadays industry 4.0 and changeable manufacturing context, designers and manufacturing engineers struggle to determine
appropriate quick, accurate (with flawless quality), and cost-effective processes to design highly customized products to meet
customer requirements. To determine manufacturing processes, the matching between product features, material characteristics,
and process capabilities needs to be optimized. Finding such an optimized matching is usually referred to as manufacturing
process selection (MPS), which is not an easy task because of the infinite combinations of product features, numerous material
characteristics, and various manufacturing processes. Although problems associated with MPS have received considerable at-
tention, semantic web technologies are still underexplored and their potential is still uncovered. Almost no previous study has
considered combining case-based reasoning (CBR) with ontologies, a famous and powerful semantic web enabler, to achieve MPS.
In this study, we developed a decision support system (DSS) for MPS based on ontology-enabled CBR. By applying automatic
reasoning and similarity retrieving on an industrial case study, we show that ontologies enable process selection by determining
competitive matching between product features, material characteristics, and process capabilities and by endorsing effective
case retrieval.

1. Introduction

In the era of the fourth industrial revolution (I4.0) [1] and
amongst the changeable manufacturing [2], product design
and development have to cope with tough challenges, such
as mass customization, improved quality, reduced costs,
and short lead times. To meet customer requirements,
designers have to develop new designs or have to reen-
gineer existing ones, rapidly, effectively, and efficiently [3].
Unfortunately, the materials and processes that shaped
previous designs are either obsolete, not necessarily well
suited, or no longer competitive enough to adapt existing
designs or form new ones. &erefore, manufacturing
material and process selection and/or adaptation need to
be considered to bridge the gap between customer re-
quirements, design specifications, material characteristics,
and process capabilities [4]. Since a high percentage of
production cost is determined at a design stage, material

and processes need to be selected and adapted in a manner
to keep design and development costs under control [5].
&erefore, decision support systems (DSS) are required to
assist designers with material and process selection and
adaptation [6].

Empowered by recent discoveries and new technolo-
gies, material engineering has contributed to the creation
of new materials and composites. Material selection has
gained immense attention recently, and numerous pow-
erful digital tools have been developed to facilitate it [7].
For example, the MatWeb [8] library contains more than
120,000 types of materials, including metals, plastics, ce-
ramics, and composites. Indeed, manufacturing process
engineering has evolved to accommodate new materials.
Ashby et al. [9] estimated that more than 1000 processes
exist to shape materials. However, as we will explain in
Section 2, developing DSS to assist manufacturing process
selection (MPS) has not gained sufficient attention in
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recent studies. In fact, process selection is more complex
and difficult than material selection for the following
reasons [10]:

(i) Processes do not share the same characteristics. For
example, the characteristics of welding processes are
different from those of casting processes. Further-
more, standards such as the European EN ISO 4063
or the reference codes of the American Welding
Society provide different characteristics for different
categories of welding processes.

(ii) Each type of manufacturing process is restricted to
certain materials. For example, casting processes are
only suitable for metals and cannot be used with
plastics.

(iii) &e number of product features and attributes that
should be considered in process selection is more
important than in material selection.

(iv) Transferring product shape features to process
characteristics can be a very complex task.

In small and medium enterprises and for product de-
signs of small-to-medium complexity [11], the experience
and expertise of designers and manufacturing engineers
can be sufficient and reliable to determine the processes
that can shape particular product designs. However, with
the increasing complexity of customer requirements, ma-
terial variety, product designs, and process capabilities, on
the one hand, and due to the aging, retirement, and un-
availability of manufacturing experts [12], on the other
hand, the management of manufacturing and manu-
facturability knowledge is becoming increasingly difficult
and challenging.

Since the early 1990s, artificial intelligence (AI) has
been considered to assist or relieve human experts from
dealing with some kinds of manufacturing design/engi-
neering tasks. Several tools such as expert systems and case-
based reasoning (CBR) systems have been developed to
assist manufacturing engineering experts, especially for
process selection [13]. However, such systems usually rely
exclusively on either rules or cases to capture only part of
the required manufacturing knowledge. Although they
provide reasoning and inferencing capabilities, they usually
fail to capture the underlying structure of manufacturing
knowledge (e.g., relations, extensions, and specializations)
[14]. Ontologies and the semantic web have recently
emerged as technologies for knowledge representation [15].
&ese technologies tend to be adopted in the
manufacturing domain to deal with and facilitate knowl-
edge capture, structure, sharing, reasoning, and reuse [16].
However, semantic web technologies are still underex-
plored, and tools are still underdeveloped to match product
features and material characteristics with process capa-
bilities and to capture expert MPS knowledge. As it will be
shown and assessed through a detailed literature review in
Section 2, few studies have considered CBR, and almost
none have considered combining CBR with ontologies to
achieve MPS.

With respect to this gap, in this study, we developed an
ontology-enabled CBR DSS for MPS. We aim to combine
ontologies with CBR to achieve MPS through reasoning and
inferencing based on rules for completely new product
designs and similarity retrieval with existing previously
stored design cases whenever a case base of designs is
available. &erefore, the remainder of the study is organized
as follows. Section 2 reviews related works about MPS.
Section 3 introduces the suggested DSS architecture. Section
4 presents the conceptual model and details the description
of the underlying ontology model along with knowledge
instances and rules used to enable inferencing. Section 5
illustrates cases representation and product similarity cal-
culations along with the retrieval algorithm. Section 6
elaborates a case study to show the usage and potential of the
proposed system. Section 7 draws some conclusions and
highlights some possible future works.

2. Related Works

MPS deals with the automatic allocation of manufacturing
resources to achieve optimized matching between part
features, material characteristics, and process capabilities
based on input information including part geometry (geo-
metric features and part dimensions) and constraints
(quality, mechanical, and economical) [17]. For subtractive
manufacturing, the process can be selected via a geometric
analysis of features and then by matching these features with
the appropriate machining processes [18]. For additive
manufacturing, process selection can be done based on
material choice, part size, and build quality [6]. &is vari-
ation in the criteria for process selection makes it difficult to
create generic allocators [17]. &erefore, several different
MPS approaches exist:

(i) Multicriteria decision-making approaches (MCDM)
rank available candidate processes based on a set of
weighted criteria. Such approaches were suggested
in [6, 19, 20].

(ii) Systematic approaches develop step-by-step pro-
cedures to facilitate the selection of materials and/or
processes. A review of such approaches can be
found in [9].

(iii) Analytical methods, such as those based on cost
estimation, help designers evaluate and select the
best capable processes [21].

(iv) Optimization-based approaches develop algorithms
to determine processes based on the optimization of
one or multiple criteria. Such approaches can be
found in [22, 23].

It is worth noting that the applicability of these ap-
proaches is usually limited to a set of particular processes,
and these approaches suffer from genericity shortcomings.
For example, the approach by Kek and Vinodh [19] is
dedicated only to injection molding and laser sintering,
while the approach by D’Ans and Degrez [22] is confined to
surface treatment technology processes. &erefore, more
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generic approaches are needed, and knowledge-based ap-
proaches can contribute to this end.

2.1. Knowledge-Based MPS. &e matching between design
specifications, material characteristics, and process capa-
bilities needs to be preceded by the knowledge of several
types of attributes, some of which can be expressed as
numbers, like density or thermal conductivity; some are
Boolean, such as the ability to be recycled; some, like re-
sistance to corrosion, can be expressed only as a ranking
(poor, adequate, and good, for instance); and some can only
be captured in text and images [9]. &e best suitable process
for a particular combination of the work material and shape
feature is generally selected by a domain expert on the basis
of various factors, such as workpiece material, shape feature
to be generated, material removal rate, surface finish, surface
damage, corner radii, tolerance, cost, safety, and power
requirements [24]. Process selection involves knowledge not
only about the capabilities of individual resources and global
processes but in some cases also about inabilities and
shortcomings of resources and processes or about risks
associated with the use of some technologies instead of
others. Knowledge about strengths, weaknesses, history of
use, and future potential of already made process selection
decisions can also be of valuable help and support.

&us, manufacturing engineers must have a vast and in-
depth knowledge about the characteristics and capabilities of
different available processes. Unfortunately, most of the
manufacturing engineers lack exhaustive domain knowl-
edge, and availability of experts is also sometimes con-
strained [24]. &erefore, several AI tools have been
developed to assist manufacturing engineering experts with
product design, material and process selection, and process
planning tasks [13]. However, such systems usually rely on
either rules or (in the exclusive sense) cases to capture only
part of the required manufacturing knowledge. Although
these methods provide reasoning and inferencing capabil-
ities, they usually fail to capture the underlying structure of
manufacturing knowledge (e.g., relations, extensions, and
specializations) [14]. &is more exhaustive knowledge
capture is better achieved by recent emerging semantic web
technologies [25].

2.2. Semantic Web Technologies for MPS. According to
Ramos [16], an ontology is a method for knowledge rep-
resentation that enables reasoning on asserted knowledge to
infer new knowledge. Semantic web technologies are con-
sidered a way to design ontologies available for networks of
computers. Ontologies are an enabler of knowledge-based
systems that allow the following [26, 27]:

(i) Structuring knowledge about a specific domain
based on taxonomies and class (also called concept)
hierarchies

(ii) Defining a standardized and common vocabulary
for users and software

(iii) Instantiating data, facts, and knowledge elements
through class/concept instances, also called individuals

(iv) Capturing complex relations between knowledge
elements through properties, restrictions (also
called class/concept membership criteria), and rules

(v) Reasoning about facts and inferring new ones,
particularly through automatic classification

Manufacturing engineering involves research related to
the ontology of CAD [28] and some ontologies of
manufacturing [29, 30]. Urwin and Young [31] introduced
an ontology to capture machining knowledge to facilitate the
design of complex products in aerospace manufacturing. An
ontology that focuses on supporting the interoperability
between manufacturing enterprises is suggested by Palmer
et al. [25]. El Kadiri and Kiritsis [27] reviewed the use of
ontologies for product lifecycle management. Sanfilippo and
Borgo [32] presented a state of the art of the feature-based
product modeling approach and proposed a high-level
ontology-based perspective to harmonize the feature defi-
nitions. Later, Sanfilippo [33] suggested a modular onto-
logical architecture and a general framework where features
are contextualized within a larger system for product
knowledge representation.

A few studies have considered ontologies to primarily help
with the material selection task and its relation to, interactions
with, and influence on process selection [14]. In the particular
case of the process selection task, some effort has been
dedicated to structure the knowledge on materials and pro-
cesses [34]. Some ontology-based approaches have been de-
veloped for specific processes, such as additive manufacturing
[35], and therefore suffer from genericity considerations.
Some studies have developed semantic approaches to the
automatic recognition of machining features [18].

As stated and thoroughly discussed by Ramos [16] and
Sanfilippo et al. [36], to date, generally accepted manufacturing
ontologies are lacking; there is no standard ontology for
materials, products, resources, processes, or manufacturing
systems. Moreover, ontology languages have different levels of
expressivity, making careful process of evaluation for each use
case necessary [37].

Although here we do not claim to address all shortfalls
raised by Ramos [16] and Sanfilippo et al. [36], we develop an
ontology that is compatible with existing ones and that
primarily focuses on recommending manufacturing pro-
cesses for candidate product features and material charac-
teristics under consideration. &e suggested ontology-based
system contributes to bridging the gap between product
engineering, material engineering, and process engineering.

2.3. CBR for MPS. CBR is an AI paradigm that brings to-
gether reasoning and machine-learning techniques to solve
problems based on past experiences, called cases [38]. One of
the greatest assets of CBR is its eagerness to continuous
learning. Main et al. [39] provided a step-by-step tutorial on
development of a CBR system. Richter and Weber [40]
detailed the methods, techniques, and tools used to design a
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CBR system. Bergmann et al. [41] and Biswas et al. (2014)
provided an overview of CBR applications in various do-
mains, including engineering, medicine, law, and economy.

With respect to MPS, some researchers have developed
CBR approaches to select manufacturing process equipment
[43, 44]. &ese studies considered a specific type of process
and tried to select the best equipment to improve the output
of the process. CBR approaches have also been suggested for
process parameter identification, selection, and set up
[45–47]. Xia and Rao [48] suggested a CBR approach to help
in operating the manufacturing process. In these studies, the
process type is already known in advance. Boral and
Chakraborty [24] developed a CBR approach for MPS. &is
approach is specific to nontraditional machining processes
and therefore suffers from genericity considerations.

To the best of our knowledge, no study has combined
ontologies with CBR to achieve MPS. In the following text,
we show that such hybridization is appealing because it
combines ontology and CBR features, as shown in Table 1.

3. System Architecture

&e architecture of the suggested DSS is depicted in Figure 1
in terms of components (ontology and graphical user in-
terface (GUI)), functions (specify, search, and select pro-
cesses based on similarity, select processes based on rules,
adapt processes and store cases), and interactions with
decision makers (DMs).

&e DSS is designed to achieve the following main
functions:

(i) Specify product features and attributes. when a new
product is under consideration for process selec-
tion, a new instance is created in the ontology to
specify its features and attributes (cf. Section 6.1).
&is information will be used to recommend pro-
cesses based on matching the product features and
attributes to predefined process capabilities using
rules and cases.

(ii) Search for similar product(s). at this step, the on-
tology is searched for product(s) that share simi-
larities with the new design under consideration.
A similarity algorithm evaluates the proximity be-
tween designs in terms of common features and
close attribute scores (cf. Section 5).

(iii) Select processes based on similarity. to manufacture
the new product under consideration, DMs are
given the possibility to select those processes that
were used to manufacture similar products stored as
cases in the ontology.

(iv) Select processes based on rules. in case the similarity
algorithm does not find any similar products stored
in the ontology, automatic reasoning and infer-
encing recommend process(es) based on SWRL
rules (cf. Section 4.4). To manufacture the new
product under consideration, the DM is given the
possibility to select the most convenient processes
from the set of recommended ones.

(v) Adapt selected processes. DM can then adapt the
recommended processes (i.e., add, remove, and
change).

(vi) Adapt selected processes. finally, the case (a new
product under consideration and the selected/
adapted processes) is stored in the ontology to
enable the future similarity-based retrieval.

4. Ontology Design

&e suggested ontology is compatible with the existing
reference manufacturing system ontologies, such as ontol-
ogies in [29, 30, 49, 50]. Protégé [51] is used as the con-
struction tool. &e process selection knowledge involves
three main concepts: manufacturing process concept, en-
gineering material concept, and engineering product con-
cept. &is selection knowledge is structured and represented
in a unified modeling language (UML) class diagram, as
shown in Figure 2.

4.1. Manufacturing Processes. Manufacturing processes in-
volve science and technology by which a material is given
its final shape, satisfying the necessary structure and
properties of its intended use [52]. Formation of the desired
shape is a major part of processing, which could be a
simple, one-step operation or a combination of various
processes, depending on the part design and material
specification. &e MfgProcess class captures the knowledge
about manufacturing processes in terms of taxonomy and
the capabilities of the manufacturing processes.

4.1.1. Taxonomy ofManufacturing Processes. &eMfgProcess
class is specialized/extended into as many subclasses as
required to span the range of the existing manufacturing
processes. For instance, the suggest taxonomy is compatible
with the one by Swift and Booker [52]:

(i) &e Casting subclass captures knowledge about
casting processes (i.e., sand casting, die casting, and
investment casting), where a molten metal is
poured in a mold cavity to give the desired shape

(ii) &e Molding subclass captures knowledge about
molding processes (i.e., plastic and composite
processing, powder metallurgy, and foaming),
where a liquid or pliable raw material is shaped in a
mold

(iii) &e Forming subclass captures knowledge about the
forming processes (i.e., forging, sheet metal, and
extrusion), which make use of suitable stresses
(compression, tension, shear, or combination of
stresses) to cause plastic deformation

(iv) &e Machining subclass captures knowledge about
both traditional (i.e., milling, turning, and drilling)
and nontraditional (i.e., electrical discharge machin-
ing, electrochemical machining, electron beam ma-
chining, laser beam machining, chemical machining,
ultrasonic machining, and abrasive jet machining)
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Table 1: Appealing features of ontology and CBR combination.

Features CBR Ontology Ontology-enabled CBR

Complex representation of knowledge through the
concepts and relations of object-oriented modeling
and design (classes, instances, relations, properties
and attributes, and inheritance)

✓ ✓

Knowledge representation of past experiences and
outcomes

✓ ✓
Inferencing and reasoning based on similarity ✓ ✓
Inferencing, reasoning, and automatic classification
based on restrictions and rules

✓ ✓

New product Specify Search

Reasoner

Ontology

GUI GUIDecision maker

Store

Select processes
based on rules

Select processes
based on similarity

3 Similar
products?

No

Yes

Adapt
processes

Similarity
algorithm

Product features
and attributes

Figure 1: Architecture of the suggested DSS for MPS.
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Figure 2: Process selection knowledge model.
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machining processes, where a piece of material is cut
into a desired final shape and size by a controlled
material removal process

(v) &e Joining subclass captures knowledge about
joining processes (i.e., assembly, welding, screwing,
and press fitting), where two or more parts are
connected at their contacting surfaces

(vi) &e RapidMfg subclass captures knowledge about
rapid manufacturing processes (i.e., 3D printing,
selective laser sintering, and lamination), where a
solid object is manufactured by sequential delivery of
energy and or material to the specified point in space

(vii) &e OtherProcesses subclass captures knowledge
about other function processes, such as lapping,
morticing, and blasting

Notably, the MfgProcess class can be extended with other
new classes to accommodate advances in manufacturing
science.

4.1.2. Capabilities of Manufacturing Processes. Each
manufacturing process has different capabilities in terms of
product features and attributes it can realize.

(i) Product features are related to structural properties
of product shape, such as depression, uniform wall,
axis of rotation, and regular cross section. Shape
generation capabilities describe the requirements of
product features a process can meet.

(ii) Product attributes are related to dimensioning
properties of product design, such as size, thickness,
weight, tolerance, and surface finish. Range capa-
bilities describe the product attribute requirements a
process can meet.

Consequently, MPS is based on matching product features
and attributes to shape generation and range capabilities.

(1) Shape Generation Capabilities. &ese describe the re-
quirements of product structural properties (i.e., a form of
product or its external and internal boundaries or surfaces)
that can be met by a process. &is study relies on the same
description as Boothroyd et al. [5] to structure these ca-
pabilities, which involves the following.

(i) Depression in a single direction: it is the ability to
form a groove or recess in the surface of the part in
a single direction of tooling motion. An example of
the tooling motion direction is the direction of
mold opening in injection molding and the di-
rection of the extruded product in an extrusion
process. &is capability is described in the ontology
using hasDepressSingleDirec data property.

(ii) Depression in a double direction: it is the ability to
form a groove or recess in the surface of the part in
a double direction of the tooling motion. &is
capability can be described in the ontology using
the hasDepressDoubleDirec data property.

(iii) Uniform wall: it refers to the thickness of part
walls. Any nonuniformity arising from the
natural tendency of the process, such as material
stretching or buildup behind projections in
centrifugal processes, is ignored, and the wall is
still considered uniform. &is capability is de-
scribed in the ontology using hasUniWall data
property.

(iv) Uniform cross section: it refers to parts where any
cross sections normal to the axis of a part are
identical, excluding a draft (slight taper) in the
axial direction for die or mold release. &is ca-
pability is described in the ontology using a
hasUniSect data property.

(v) Axis of rotation: it refers to parts whose shapes can
be generated by rotation around a single axis. &is
capability is described in the ontology using the
hasAxisRot data property.

(vi) Regular cross section: cross sections normal to the
axis of the part contain a regular pattern (i.e., a
splined shaft or hexagonal pattern). Changes in
shape that maintain a regular pattern are per-
missible (i.e., a splined shaft with a hexagonal
head). &is capability is described in the ontology
using the hasRegXSec data property.

(vii) Captured cavity: it is the ability to form cavities
with reentrant surfaces (i.e., a bottle). &is capa-
bility is described in the ontology using the has-
CaptCav data property.

(viii) Enclosed: it refers to parts that are hollow and
completely enclosed. &is capability is described in
the ontology using the hasEnclosed data property.

(xi) Draft-free surface: it refers to production of
constant cross sections in the direction of the
tooling motion. Many processes can approach
this capability when less than ideal draft al-
lowances are specified, but this designation is
reserved for processes where this capability is a
basic characteristic and no draft can be obtained
without cost penalty. &is capability is described
in the ontology using the hasNoDraft data
property.

(2) Range Capabilities. &ese describe which requirements of
product dimensioning properties a process can meet.

(i) Tolerance: it refers to the permissible limit(s) of
variation in a physical dimension of a product in
millimeters. &is capability is described in the on-
tology using the hasTolerance data property and can
be measured using hasToleranceUnit in mm.

(ii) Surface finish: it refers to the measurement of the
surface texture or topography in millimeters. &is
capability is described in the ontology using the
hasSurfaceFinish data property. &e measurement
unit is described using the hasSurfaceFinishUnit
property and is measured in mm.

6 Advances in Materials Science and Engineering



(iii) Part weight: it refers to the measurement of product
weight in kilograms. &is capability is described in
the ontology using the hasPartWeight data property.
&e measurement unit is described using the has-
WeightUnit property and is measured in kg.

(vi) Max (and min) wall thickness: it refers to the
measurement of the maximum (and minimum) wall
thickness in millimeters. &is capability is described
in the ontology using the hasMaxWall7ickness
(and hasMinWall7ickness) data property. &e
measurement unit is described using the has-
7icknessUnit property and is measured in mm.

(v) Material capability: it refers to the ability of the
manufacturing process to shape a set of materials so
that each engineering material can be shaped by a
set of processes. &is capability is described in the
ontology using the hasMfgProcess object property.

(vi) Required quantity: it refers to the economic lot size
(minimum number of pieces) to be produced using a
process. In practice, each manufacturing process is
recommended to produce a range of quantities be-
cause of cost considerations. For example, sand
casting and die casting processes have the capability
to manufacture the same product, but the selection
between the two processes is based on the quantity of
production. On account of the mold and equipment
costs, sand casting is costly for low quantities, while
die casting is costly for high quantities. &erefore, the
required quantity has to be considered as a range
capability. &is capability is described in the ontology
using the hasReqQuantity data property. &e mea-
surement unit is described using the hasQuanti-
tyUnit property and is measured in Pcs.

Figure 3 shows the definition of these capabilities in the
suggested ontology.

(3) Example. In an ontology-based semantic representation,
an instance (individual) is a specific realization of an on-
tology class. Knowledge of each manufacturing process,
engineering material, and product is captured as instances.
To capture realistic knowledge about the capabilities of a set
of manufacturing processes, the ontology is instantiated with
data obtained from the CustomPart [53] library. For ex-
ample, Casting class is a pool of manufacturing process
instances such as SandCasting, DieCasting, and Invest-
mentCasting. To define the SandCasting instance, the shape
generation and range capabilities are defined, as shown in
Table 2.

4.2. Engineering Materials. Knowledge about materials is
captured in the EngMaterial class and classified into two
subclasses: knowledge about material types is stored in the
MatTypes subclass, while that related to the manufactur-
ability is stored in the MatProcessCapability subclass.

(i) In the MatTypes subclass, knowledge regarding en-
gineering materials is classified based on the atomic

bonding force of the particular material and can be
divided into three classes: MetalsMat, PolymericMat,
and CeramicsMat. Additionally, materials can be
combined to create a forth class CompositesMat (cf.
Figure 4(a)).

(ii) In the MatProcessCapability subclass, knowledge
regarding engineering materials is classified into
subclasses based on the capability of the manufacturing
processes to shape these materials (cf. Figure 4(b)). For
example, SandCastingMat class includes materials that
can be shaped using sand casting processes, which are
mostly metals such as aluminum, copper, lead, mag-
nesium, tin, and zinc [53].

4.3. Engineering Products. Knowledge about products to be
engineered is captured in the EngProduct class. &e product
can be a single part or a constituent of a product. Eng-
Product class is classified into subclasses based on the
application of the product, such as ApplianceProducts,
PumpProducts, AutomobileProducts, and EngineProducts
(cf. Figure 4(c)). Knowledge of engineering products is
defined using the features and attributes of the product (cf.
Figure 3). Product-related knowledge is provided by ex-
perts and increases gradually as the ontology is used to
select processes.

4.4. Rules and Inference. &e hierarchal classification of
process selection knowledge alone is not sufficient to capture
causal relationships. Semantic web rule language (SWRL) is
an effective method to represent causal relations and has
been widely applied in knowledge systems [37]. SWRL rules
need to be considered to enable deductive reasoning and
knowledge retrieval. In this work, SWRL rules are used to
define manufacturing processes and engineering products to
match product features and attributes with process char-
acteristics and capabilities.

SWRL rules are expressed in the following form: ante-
cedents⟶ consequence. Antecedent and consequence
parts can be expressed as the conjunctive formula of atoms
a1
∧ a2
∧, . . . , ∧ an and b1

∧ b2
∧ , . . . , ∧ bm, respectively. Atom

ai and bj (1≤ i≤ n, 1≤ j≤m) can be in either of the forms
C(?x) or P(?x, ?y), in which if x is an instance of class C, then
C(?x) holds; if x is related to y by property P, then P(?x, ?y)
holds. To explain usage of SWRL rules, the definition of the
SandCasting instance is explained in “Example” in Section
4.1.2. &e SWRL rule shown in Table 3 defines the shape
generating capability and range capability of the sand casting
process shown in Table 2. &is rule means that if any en-
gineering product satisfies this antecedent (shape generating
capability and range capability), the sand-casting process
will be recommended to shape this product.

Rule completeness is verified for parts that are known in
advance. Five types of local industries are visited (auto-
mobile spare parts, pumps, engines, appliance, and electric
parts), and hundreds of engineering products/parts are
selected. &e selected products are diversified as much as
possible to cover a wide range of manufacturing process
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types. Rules and inferencing are crucial to match product
features and attributes to process characteristics and capa-
bilities, especially in case the product is new and no similar
product is stored in the ontology, and to build the ontology
knowledge and enable case-based selection of processes
based on product similarity retrieval when there are similar
product(s) stored in the ontology.

5. CBR

CBR comprises a few core parts: case representation, case
retrieval, similarity measures, and case adaptation. In the
suggested approach, the adaptation is carried out by the DM

(Section 3). �e remaining parts of the developed CBR are
described in this section.

5.1. Case Representation. Two main types of case repre-
sentations exist to capture the case knowledge: traditional
and semantic methods. Traditional case representations are
simple methods such as feature vector frame-based, object-
oriented, textual, hierarchal, and predicate-based methods.
Semantic methods such as ontologies and semantic rules
are known as knowledge-intensive methods, which are
more intelligent ways, and in addition to case represen-
tation, can enhance the whole CBR process including re-
trieval, storage, and adaptation. El-Sappagh and Elmogy
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Figure 3: Definition of the manufacturing process class.

Table 2: Shape generation and range capabilities of the sand casting process.

Shape generation capabilities Range of capabilities

Features Capability Attributes Range Unit

Depression in a single direction Y Tolerance >0.381 mm
Depression in a double direction Y Surface finish >0.003175 mm
Uniform wall Y_ Part weight (0.0907, 450,000) kg
Uniform cross section Y Max wall thickness <1016 mm
Axis of rotation Y Min wall thickness >3.175 mm
Regular cross section Y Required quantity (11,000) Pcs
Captured cavity Y Material capability

Aluminium, copper, lead, magnesium, metals, tin,
zinc

Enclosed N
Draft-free surface N

Y: process is capable of producing parts with this characteristic; N: process is not capable of producing parts with this characteristic;M: parts produced with
this process must have this characteristic; Y_: parts using this process are easier to form with this characteristic.

8 Advances in Materials Science and Engineering



[54] investigated the effectiveness of the two representation
methods and found that semantic representation over-
weighs the traditional methods, which are considered to be
knowledge-poor representations. &ey do not describe
constrains and relations between cases features. However,
such methods can be used for simple cases with relatively
few features. &is study developed a semantic represen-
tation for the knowledge related to product features that
determine the selection of manufacturing processes. &e
suggested ontology (cf. Section 4) is used as a formal
platform to represent the cases.

Cases of MPS comprise the new product as the problem
and the manufacturing process as a solution. &e structure of
the case is shown in Table 4. &e case contains features of the
product and manufacturing process that determine the ca-
pability of the manufacturing processes to shape the product.
&e case contents are product shape features and attributes
and process-related capabilities (cf. Section 4.1.2). Each case

stored in the ontology has a product linked to one
manufacturing process by the hasMfgProcess object property
(cf. Figure 3). Many products can be manufactured by
the same manufacturing process, a fact on which the retrieval
process is built. &e algorithm retrieves any stored product(s)
similar to the new product to investigate the possibility of
using the same process used to manufacture the former to
manufacture the latter. A representation of a new product is
captured when a new product or change in the design of an
existing product is introduced, while a representation of the
new manufacturing process occurs less frequently when a new
process is invented to accommodate the rapid changes of
products and the synthesis of new materials.

5.2.ProductSimilarity. &e objective of similarity evaluation
and product retrieval is to search the ontology for product(s)
that are similar to a new product under consideration and to

(a) (b) (c)

Figure 4: Taxonomy of (a) materials, (b) capabilities, and (c) manufacturing processes.

Table 3: SWRL rule for the defining sand casting process.

Antecedent Consequence

EngProduct(?x) ∧ hasMaterial(?x, ?y) ∧ SandCastingMat(?y) ∧ hasDepressSingleDirec(?x, ?DSValue) ∧

swrlb: startsWith(?DSValue, “Y”) ∧ hasDepressDoubleDirec(?x, ?DDValue) ∧ swrlb:startsWith(?DDValue,
“Y”) ∧ hasUniWall (?x, ?UWValue) ∧ swrlb:startsWith (?UWValue, “Y”) ∧ hasUniSect(?x, ?USValue) ∧

swrlb:startsWith(?USValue, “Y”) ∧ hasAxisRot(?x, ?ARValue) ∧ swrlb:startsWith(?ARValue, “Y”) ∧

hasRegXSec(?x, ?RXSValue) ∧ swrlb:startsWith(?RXSValue, “Y”) ∧ hasCaptCav(?x, ?CCValue) ∧ swrlb:
startsWith(?CCValue, “Y”) ∧ hasEnclosed(?x, ?EnValue) ∧ swrlb:startsWith(?EnValue, “N”) ∧ hasNoDraft(?
x, ?NDValue) ∧ swrlb:startsWith(?NDValue, “N”) ∧ hasPartWeight(?x, ?PWvalue) ∧ swrlb:greater&an(?
PWvalue, 0.0907) ∧ swrlb:less&an(?PWvalue, 450000) ∧ hasUnit(?x, ?PWUnValue) ∧Unitkg(?
PWUnValue) ∧ hasMinWall&ickness(?x, ?MWTValue) ∧ swrlb:greater&an(?MWTValue, 3.175) ∧

hasMaxWall&ickness(?x, ?MxWTValue) ∧ swrlb:less&an(?MxWTValue, 1016) ∧ has&icknessUnit(?x, ?
&UnValue) ∧UnitMm(?&UnValue)∧ hasTolerance(?x, ?TValue) ∧ swrlb:greater&an(?TValue, 0.381) ∧

hasToleranceUnit(?x, ?TUnValue) ∧UnitMm(?TUnValue) ∧ hasSurfaceFinish(?x, ?SFValue) ∧ swrlb:
greater&an(?SFValue, 0.003175) ∧ hasSurfaceFinishUnit(?x, ?SFUnValue) ∧UnitMm(?SFUnValue) ∧

hasReqQuantity(?x, ?RQNumber) ∧ swrlb:greater&an(?RQNumber, 1) ∧ swrlb:less&an(?RQNumber,
1000)hasQuantityUnit(?x, ?QUnValue) ∧UnitPcs(?QUnValue)

SameAs(SandCasting, ?x)
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sort them from the most similar to the least similar. Simi-
larity measures quantify the degree of resemblance between
a new product and existing products and play a very im-
portant role in ontology retrieval. In previous studies, nu-
merous similarity measures have been proposed, including
numeric, syntactic, and semantic evaluations [55, 56].

Existing semantic similarity measures, such as those
developed by Akmal et al. [55], Lin [57], and Palmer [58], are
based on data and object properties of the products, focusing
mainly on properties inherited from the upper classes. Such
measures are not effective for MPS, where similarity based
on the inherited properties of two products does not mean
they can be manufactured using the same process. For ex-
ample, a metal base and a handle of an electric kettle inherit
the same properties of the electric kettle. However, they are
manufactured using two different processes. &e metal base
is manufactured by the sheet metal forming processes, while
the handle is manufactured by injection molding.

Some approaches, such as the one used by Fradi et al.
[59], identify similar products based on shape features.
Coding approaches such as Optiz, KK-3, MICCLASS, and
DCLASS focus on selecting a set of products to form a group
technology, in which similar parts are manufactured in one
location using a set of machines named a manufacturing cell.
Such approaches are not pertinent for MPS because they
neglect most of the nine shape features listed in “Shape
Generation Capabilities” in Section 4.1.2, which are critical
for determination of processes capabilities.

To retrieve similar products, a similarity measure should
be designed based on product shape features and attributes,
which determine the capability of the manufacturing pro-
cess(es) (cf. Section 4.1.2). In this approach, a new semantic
similarity retrieval method is designed to measure the
mutual product shape features and attributes by calculating
the value of object and data properties in the ontology, which
quantify these connections. So the developed measure fo-
cused only on these objects and data properties and not on
all inherited properties such as the existing semantic simi-
larity measures. Designing the similarity measure depends
on problem characteristics and the measuring scale (nom-
inal, interval, or ratio) of these characteristics. Product shape
features and attributes are measured in two different scales.
For these reasons, two similarity methods are developed for
convenience for the two-measurement scales. In the fol-
lowing text, the two similarity measures and their weighting
methods are explained.

5.2.1. Weight of Product Features and Attributes.
Assigning weights to criteria is a difficult task, especially
for DMs who are not familiar with the intricacies

or subtleties of MCDM techniques. Simos [60, 61] pro-
posed a technique based on a pack of cards that allow any
DM (not necessarily familiarized with MCDM) to think
about and express the way in which the DM wishes to
prioritize the different criteria. &is procedure also aims
to communicate to MCDM specialists the information
needed to assign a numerical value to the weights. &e
original SIMOS procedure was later revised to overcome
some of its limitations [62] and robustness issues [63].
&e revised SIMOS procedure is used to assign weights to
the product features and attributes separately. To avoid
bias, three experts from three different industries are
involved individually in the revised SIMOS procedure.
&us, the average weight is considered for similarity
calculation.

Table 5 shows the result for product features weight
(WFi). &e three experts agreed that the enclosed and draft-
free surfaces are the two most important features for de-
termining the manufacturing process. Although they have
different views regarding the importance of depression in
the double and single directions, there is, to some extent, a
consensus on the other four shape features.

&e same process is repeated for eliciting the weight of
product attributes (WAi). Table 6 shows this result. By far,
tolerance is the dominant attribute for processes selection.
&e three SIMOS applications for the three experts
assigned more than 30% of weight for this attribute. Both
max wall thickness and min wall thickness are assigned
around 40% of the weight combined. &e remaining 30% is
divided between the other three attributes: around half for
surface finish and half for both part weight and part
quantity.

5.2.2. Similarity of Product Features. &e nine product
features listed in the first column of Table 2 are considered to
calculate product feature similarity (FSim(x, y)) as a per-
centage. As product features are measured in a nominal scale
(i.e., only one value among the set {Y, N, M, and Y_} is
assigned to each feature, as illustrated in Table 2), de-
termining an exact match between each feature value for two
different products to be compared is possible. First, the value
of similarity (Sim(xi, yi)) of two products x and y is cal-
culated for each feature i, i � 1, . . . , 9, using the following
equation [56]:

Sim xi, yi(  � 1, xi � yi,

0, xi ≠yi,
 (1)

where xi is the value of feature i for product x. Next, the
following equation is developed to calculate FSim(x, y):

Table 4: An overview of case representation.

Case part Content Update frequency

Problem description New product
Product shape features (i) Introduction of the new product

Product attributes (ii) Design change for the existing product

Solution Manufacturing process
Shape generation capabilities

(i) Invention of new process
Range capabilities
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FSim(x, y) �
9
i�1WFi × Sim xi, yi( 

9
× 100. (2)

5.2.3. Similarity of Product Attributes. Six product attributes
are used to calculate the similarity score between products
x and y, namely, tolerance, surface finish, part weight, re-
quired quantity, and maximum and minimum wall thick-
ness. As the attributes are measured as a ratio, the similarity
can be calculated as a percentage. &e similarity percentage
(ASim) of attribute j between two products x and y can be
calculated as follows:

ASim xj, yj  � min xj, yj 
max xj, yj  × 100, (3)

where xj is the value of attribute j of product x and
j � 1, . . . , 6. &e two values of attributes xj and yj should be
measured with the same measurement scale explained in
“Range Capabilities” in Section 4.1.2. &en, the similarity score
(Score(x, y)) of the six attributes is calculated as follows:

SScore(x, y) �
6
j�1WAi × ASim xj, yj 

6
. (4)

As a result, the feature and attribute similarity per-
centages can be used for product retrieval, as will be
explained in the following section.

5.3. Product Retrieval. A semantic retrieval algorithm is
developed to fetch through existing products stored in the
ontology and list the products that are similar to the new
product under consideration. In the beginning, to calculate
an overall product similarity percentage, the average value of

similarity product features and attributes is used to retrieve
products from the ontology. Unexpectedly, in some cases,
the similarity algorithm results in products manufactured by
a process that are not capable to shape the new product. Such
misleading results, in majority of the cases, are caused by the
high similarity of product attributes and low similarity of
features. Almost, all products with high similarity values of
shape features can be manufactured with the same process or
at least by the same family of processes. For example, sand
casting, die casting, and gravity casting are from the casting
process family, which can shape the same product features
with some differences in product attributes such as surface
finish and tolerance.

To overcome this issue, a threshold feature is designed,
according to which the stored product(s) should have some
common features with the new product to be selected. &e
threshold is a value of the FSim(x, y) score, which represents
a cutoff value of similarity shape features out of one that
product should have to be selected. One hundred products are
selected to run the experiment for seven percentage values.
Table 7 shows the result of the experiments and how many
irrelevant product processes are retrieved corresponding to
threshold values. &e experiment begins with an FSim(x, y)
value of 0.3, where less than 0.3 feature similarity usually

Table 5: Product feature weight.

Product features Expert #1 Expert #2 Expert #3 Average (WFi)

Regular cross section 0.046 0.059 0.046 0.05
Axis of rotation 0.046 0.059 0.046 0.05
Uniform cross section 0.072 0.073 0.063 0.07
Uniform wall 0.072 0.073 0.08 0.07
Depression in a double direction 0.097 0.133 0.12 0.12
Depression in a single direction 0.097 0.088 0.127 0.11
Draft-free surface 0.174 0.162 0.159 0.16
Enclosed 0.198 0.176 0.174 0.18
Captured cavity 0.198 0.176 0.176 0.19WFi � 1

Table 6: Product attributes weight.

Product attributes Expert #1 Expert #2 Expert #3 Average (WAi)

Required quantity 0.113 0.074 0.045 0.05
Part weight 0.134 0.074 0.073 0.09
Surface finish 0.175 0.148 0.153 0.15
Maximum wall thickness 0.195 0.185 0.18 0.18
Minimum wall thickness 0.195 0.185 0.207 0.19
Tolerance 0.3 0.334 0.341 0.32WFi � 1

Table 7: &reshold of product features similarity.

FSim(x, y) Number of irrelevant processes %

0.3 28 28
0.4 18 18
0.5 13 13
0.6 4 4
0.7 2 2
0.8 1 1
0.9 0 0
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retrieves misleading products. In addition, finding 0.7 or
more feature similarity between two products is very rare,
unless the two products are identical with different sizes.
From Table 7, it can be seen that as the value of FSim(x, y)
increases, the number of retrieved irrelevant product pro-
cesses decreased sharply. With a 0.6 value, the algorithm
retrieved only 4% of cases with irrelevant product processes.
&ese products are listed in the bottom of the overall simi-
larity product list. In such cases, the DM can find the ap-
propriate process from products ranked on the top of the list,
so the value of 0.6 is selected to be the threshold.

Figure 5 shows the flow chart of the retrieval algorithm.
&e algorithm works according to the following steps
(Algorithm 1).

6. Case Study

&e objective of process selection is to select the most
suitable processes from a set of available processes to shape a
given product to meet design requirements and material
specifications. To use the suggested DSS, first, the new
product has to be defined in the ontology. Section 6.1
demonstrates this definition. Next, the DSS selects processes
according to two possible paths:

(i) In case the part under consideration is new and
cannot be compared to any part stored in the

ontology, the DSS will start the reasoner and run the
sematic rules in the Protégé to match product fea-
tures and attributes to some predefined process
capabilities and copy the recommended process(es)
from the classified ontology result to the GUI screen.
Section 6.2 illustrates this usage.

(ii) In case similarities with existing parts are found, the
DSS will retrieve similar product(s) stored in the
ontology and select processes based on previous
decisions made for these products. Section 6.3 illus-
trates this usage.

&e result of the first step is stored in the ontology to
build the knowledge that enables the second step.

To demonstrate the capability of the suggested ontology to
select manufacturing processes, let us consider Figure 6,
which shows the 3D CAD model for a cylinder head of a
gasoline engine. &e required quantity of this part is 2000 Pcs.

6.1. Defining Product Features and Attributes. Features and
attributes of the product are shown in Table 8. Features are
defined according to the description made in “Shape
Generation Capabilities” in Section 4.1.2. Tolerance and
surface finish are not critical for parts of ±0.5 mm and less
than 0.01 mm, respectively. Part weight is approximated
from the volume of the product and suggested materials. As

Compare product
features 

Does any product have
similarity features >0.6 with the

new product? 

No

Yes

Start

Calculate similarity
scores 

Order products based on
descending order of similarity

scores

Print the result

Run the reasoner to
recommend manufacturing

process(es)

Figure 5: Flow chart of the retrieval algorithm.
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shown in Figure 6, the maximum and minimum wall
thickness of the part is 5 and 3.3 mm. &ree materials are
recommended for this product: gray cast iron, aluminum
alloy 2014-T6, and stainless steel 430. &e recommendation
of the material is based on transferring product functions to
material properties. &ese properties are used in the Mat-
Web [8] digital tool to recommend the set of materials.

An instance named Product_822 is created in the
EngProduct class to capture the product features and at-
tributes according to data in Table 8. Object and data

properties will be defined, as shown in Figure 7. Object
properties define the recommended materials and the
measurement units (cf. Figure 7(a)). Data properties define
shape features and attribute values (cf. Figure 7(b)).

6.2. SelectingManufacturing Processes Based on Rules. To use
the DSS, the ontology should be open to enable the retrieval and
reasoner to fetch within the stored knowledge for possible case
or recommending processes. Using the same name of the

Figure 6: Case study one on the 3D CAD model.

(i) Start. &e ontology knowledge base is loaded to access product instances.
(ii) Step 1. Compare the features of the new product with those of the stored products and calculate product feature similarity

percentage FSim(x, y) according to equation (2).
(iii) Step 2. Select the products that have a minimum threshold of shape features equal to 0.6 of the FSim(x, y) score. Two cases may

occur.
(iv) No product has an FSim(x, y)> 0.6. In this case, the algorithm runs the reasoner to recommend the capable process.
(v) Step 2.1. Run the reasoner to match product features and attributes to predefined process characteristics and capabilities (cf.

Section 6.2) and print the list of capable process(es).
(vi) &ere are product(s) that have FSim(x, y)> 0.6. In this case, the algorithm selects these products to calculate product attribute

similarity.
(vii) Step 2.2. Compare the attributes of the new product to the attributes of the stored products and calculate product attribute

similarity percentage SScore(x, y) according to equation (4).
(viii) Step 2.3. Sort retrieved products in the descending order of SScore(x, y) and print the list of these products.
(ix) End

ALGORITHM 1

Table 8: Product shape features and attributes.

Features Capability Attributes Value Unit

Depression in a single direction Y Tolerance ±0.5 mm
Depression in a double direction Y Surface finish <0.01 mm
Uniform wall N Part weight 1.28 kg
Uniform cross section N Maximum wall thickness 5 mm
Axis of rotation N Minimum wall thickness 3.3 mm
Regular cross section N Required quantity 2000 Pcs
Captured cavity N

Recommended material
Gray cast iron, aluminum alloy 2014-T6,

stainless steel 430
Enclosed N
Draft-free surface Y
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instance (Product_822) created for the cylinder head (cf. Section
6.1), the search is carried out as shown in Figure 8(a). Un-
fortunately, the DSS did not find any similar products stored in
the ontology. Automatically, the DSS runs the SWRL rule for
process selection. A reasoner (also called classifier) is an AI piece
of software used in association with the ontology to infer logical
consequences from a set of asserted facts or axioms. For rea-
soning, Pellet 3.0 is used because it has some required capa-
bilities (such as complex data-type reasoning and support of
SWRL rules) that are not present in other reasoners [64].

Figure 8(b) shows the result of reasoning along with the
result of the retrieval algorithm displayed in red font. &e
reasoner retrieved three manufacturing processes to shape
the product: die casting, gravity permanent casting, and 3D
printing. &e DM has to select one of these three recom-
mended processes. Whatever the DM selects, the selection
will be captured in Product_822 instance as a new case to
enable future case retrieval for similar products.

6.3. Selecting Manufacturing Processes Based on Similarity.
To demonstrate the capability of the suggested DSS to select
manufacturing processes based on similarity with existing
products, let us consider Figure 9, which shows the 3D CAD
model for a casing of the sewage electrosubmersible pump to
be manufactured.

Similar to the definition of the product Product_822 in
Section 6.1, an instance named Product_91 is created in the
EngProduct class to capture the product features and at-
tributes according to the data shown in Table 9.

Figure 10 shows the result of the execution of the re-
trieval algorithm. &e algorithm inferred five products
similar to Product_91. Product_54 is the most similar
with the similarity score percentage SScore(Product_91,
Product_54) � 94%.

Product_162 is the next product in the similarity list with
a similarity score of 58%. Figure 11 shows the 3D CAD

(a) (b)

Figure 7: Definition of the case study in the ontology: (a) object properties; (b) data properties.

(a)

(b)

Figure 8: DSS result for reasoner and rule matching: (a) entering
product name; (b) search result.

Figure 9: Case study two on the 3D CAD model.
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models of Product_162 and Product_54. As depicted in
Figure 11(a), Product_54 is a casing of a drainage electric-
submersible pump.

Now, if the DM clicks on any of the listed products, the
manufacturing processes used to manufacture these prod-
ucts will be visible and the suitability of these processes for
the new part can be decided by the DM. In the case the
processes used to manufacture these products are not
suitable for the new Product_91, the DM has given the
possibility to adapt the solution by recommending processes
that are more suitable to the new product or can use the
reasoner to infer another process(es), as explained in Section
6.2. Whatever the DM selects, the solution will be stored in
the Product_91 instance to enable future similarity retrieval
for similar products.

7. Conclusion and Future Works

In this study, we investigated semantic web technologies to
achieve MPS and developed an interactive DSS for MPS based
on ontology-enabled CBR. We showed that ontologies are an
effective tool for capturing and structuring designer knowledge
about product features, material characteristics, and process
capabilities. By applying two types of automatic retrieval and
reasoning on a case study, namely, rule-based reasoning using
SWRL and similarity retrieval, we showed that ontologies
enable process selection by determining competitive matching
between product features, material characteristics, and process
capabilities and by product similarity retrieval.

&e suggested approach can be extended in a number of
ways. As manufacturing processes require different types of

(a) (b)

Figure 10: DSS result for similar product retrieval: (a) entering product name and search; (b) result.

(a) (b)

Figure 11: 3D CAD model: (a) Product_54; (b) Product_162.

Table 9: Product shape features and attributes.

Features Capability Attributes Value Unit

Depression in a single direction Y Tolerance ±0.3 mm
Depression in a double direction Y Surface finish <0.02 mm
Uniform wall N Part weight 3.42 kg
Uniform cross section N Maximum wall thickness 25 mm
Axis of rotation N Minimum wall thickness 6 mm
Regular cross section N Required quantity 250 Pcs
Captured cavity Y

Recommended material Gray cast iron, 314/316 stainless steelEnclosed Y
Draft-free surface N
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machines, tools, and equipment, the suggested approach can
be extended to aid in selection. In this work, the assignment
of weight for shape features and attributes relied on a group
of DMs; however, the developed similarity algorithm can be
extended by considering fuzzy measures to enhance product
retrieval. Multicriteria decision-making could be considered
to prioritize process selection in case many processes are
available. An ontology plug-in could be designed to capture
3D product shape features and attributes from 3D CAD
models directly. As customer requirements and product
specifications are subject to frequent changes and quick
evolution, capturing the knowledge about change and its
impact on requirements and specifications is worth con-
sidering to prepare design and manufacturing capabilities to
meet such changes.
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