
Applied Ontology 18 (2023) 169–206 169
DOI 10.3233/AO-230279
IOS Press

An ontology for maintenance procedure
documentation

Caitlin Woods ∗, Tim French, Melinda Hodkiewicz and Tyler Bikaun
Department of Computer Science and Software Engineering, The University of Western Australia,
Western Australia, Australia
E-mail: caitlin.woods@uwa.edu.au

Abstract. In mining, manufacturing and industrial process industries, maintenance procedures are used as an aid to guide tech-
nicians through complex manual tasks. These procedures are not machine-readable, and cannot support reasoning in digitally
integrated manufacturing systems. Procedure documents contain unstructured text and are stored in a variety of formats. The
aim of this work is to query information held in real industrial maintenance procedures. To achieve this, we develop an ontology
for maintenance procedures using the OWL 2 description language. We leverage classes and object properties from the ISO
15926 Part 14 Upper Ontology and create a domain ontology. The key contribution of this paper is a demonstration of trade-offs
required when modelling an existing engineering artifact, where an abstraction of its contents is given a-priori. We provide an
ontologically rigorous abstraction of notions captured in procedure documentation to a set of classes, relations and axioms
that allow reasoning over the contents. Validation of the ontology is performed via a series of competency questions based
on queries relevant to technicians, engineers and schedulers in industry. The ontology is applied to real world maintenance
procedures from two industrial organisations.

Keywords: Industrial ontology, maintenance, procedure, Industrial use case

Accepted by: Emilio Sanfilippo

1. Introduction

Engineers in asset-intensive organisations create maintenance procedure documentation to assist tech-
nicians in complex manual tasks such as equipment inspections and servicing. These procedures are
critical in ensuring the safe and effective execution of maintenance work. Kanse et al. (2018) reported
that procedures perceived as logical, at the right technical level, and easy for technicians to read can
increase procedure compliance. However, procedures that are out of date, arduous, or contain unnec-
essary steps can lead to a failure to comply, contributing to workplace accidents. For these reasons,
organisations must be attuned to the content and presentation of maintenance procedure documentation.

Procedures are typically developed using prescribed templates in tools such as Microsoft Word or Ex-
cel. Regardless of the software used to write them, they are generally stored as PDFs. These templates
tend to change over time as organisational processes and policies change. For example, legacy docu-
mentation may not contain a “comments” field for technicians to provide feedback about the quality of
the procedure, whereas new documentation may include this field. Organisations develop new templates
over time and old procedures are rarely updated. Given the diversity in how PDF documents are struc-
tured, it is arduous and costly for an engineer to perform updates across the dataset and it is difficult

*Corresponding author. E-mail: caitlin.woods@uwa.edu.au.

1570-5838 © 2023 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

mailto:caitlin.woods@uwa.edu.au
mailto:caitlin.woods@uwa.edu.au
https://creativecommons.org/licenses/by-nc/4.0/

170 C. Woods et al. / An ontology for maintenance procedure documentation

to extract this information into a machine-readable format. To further complicate matters, maintenance
procedure documents vary in content, structure and style, as engineers write procedure documentation in
different ways. For example one engineer may assume that technicians have a certain level of knowledge
about a task and may not choose to list all tools that are required for a task. A different engineer may
not have made this assumption and may choose to include common tools such as “spanners”. To query
data from procedures that are stored in unstructured formats we must be able to map data to appropri-
ate classes regardless of its representation in the document. In addition, we need to recognise different
levels of detail within the procedure texts, and manage situations when data is absent from a procedure
document.

Industrial organisations are transitioning towards Industry 4.0 (Lee et al., 2015). This means that
they are developing cyber-physical maintenance and production systems. Data, including PDF-based
maintenance procedures, currently collected and stored by organisations, needs to be transformed into
meaningful information to advise these cyber-physical systems (Lee et al., 2015). Therefore, organisa-
tions will require “formal” (i.e. machine-readable) processes to store and access procedure information
that is both “explicit” (i.e. understood the same way by individuals and software systems) and “shared”
(i.e. used consistently between teams and software systems).

Ontologies, “a formal, explicit specification of a shared conceptualization of concepts within a do-
main” (Studer et al., 1998), can satisfy this requirement. The benefit of supplementing data with an
ontology is threefold. First, ontologies are a controlled vocabulary used to define specific concepts that
are consistent within and, perhaps, across organisations. Second, being “formal, and explicit”, ontologies
improve data interoperability and reduce data governance overheads. Finally, ontologies are “machine-
interpretable”. They capture the semantics of data and can infer new information using sophisticated
logical reasoning techniques (Sirin et al., 2007; Glimm et al., 2014).

The challenge addressed in this paper is the application of ontologies to query data contained in pro-
cedure documentation, at an appropriate level of abstraction. We first discuss how procedure documents
are currently used in industry (Section 2) and then examine relevant past works (Section 3). Conform-
ing to suggestions by Ferrario and Grüninger (Ferrario and Grüninger, 2020), we provide ontological
choices (Section 4) and implementation details (Section 5) for an ontology for maintenance procedure
documentation (OMPD). This discussion includes the conformance of OMPD to the ISO 15926 Part 14
upper ontology (International Organization for Standardization, 2019). Our evaluation of OMPD (Sec-
tion 6) includes executing SPARQL queries that answer each of the presented competency questions
and mapping data from two diverse organisations to the procedure ontology. We finish the paper with a
concept-level comparison of our ontology against three similar ontologies, a discussion of abstractions
presented in this ontology, and considerations for the applied ontology community (Section 7). Finally,
we and discuss suggestions for future work (Section 8).

2. Background

Maintenance procedures are instructions for technicians that describe how to perform a maintenance
activity. Figures 1 and 2 show two procedure documents from the same continuous manufacturing (pro-
cess) plant. The document shown in Fig. 1 describes a mechanical inspection procedure for a pump. The
procedure contains metadata (i.e. reference documentation and documentation change history) as well
as a series of tasks. Each task has a step number, job description, limits, required actions to complete the
job and a blank box to fill in any corrective actions that the technician performs if these limits are not
met. Tasks 2 and 3 in the procedure are represented using both and images and text.

C. Woods et al. / An ontology for maintenance procedure documentation 171

Fig. 1. A two-month maintenance procedure from a Process Plant (identifying information omitted for proprietary reasons).

The procedure shown in Fig. 2 is more complex. This procedure has similar metadata fields at the start
of the document, but has three different “work execution” tables that describe the task. The first table
gives two tasks that should be performed iteratively for each of the equipment items listed in the second
table. Finally, there is a “work completion” table to be completed once all of the equipment items have
been inspected. Notice that in this procedure, multiple actions have been assigned the same task number,
and there are multiple limits that link to those actions. Furthermore, the table titles are non-uniform with
the second table containing the “equipment” and “comments fields”.

There are generally three different job roles that involve work with maintenance procedure documen-
tation. Engineers are responsible for creating and updating procedure documents. Schedulers determine
when a procedure will be executed, based on their organisation’s maintenance strategy, production goals
and resource constraints. Finally, Technicians use procedure documents as an aid to guide them in their
work. For each of these perspectives, we provide competency questions that test the ontology.

2.1. Engineer’s perspective

Maintenance engineers create procedure documentation based on a maintenance strategy for a specific
item of equipment. To identify a suitable maintenance strategy, engineers perform risk-management
processes such as Reliability Centered Maintenance (RCM) (Moubray, 2001). RCM is a process to

172 C. Woods et al. / An ontology for maintenance procedure documentation

Fig. 2. A one week maintenance procedure from a Process Plant (identifying information omitted for proprietary reasons).

identify which maintenance strategy is appropriate given the consequence of functional failure and the
failure behaviour. The aim is to maintain function of the assets and manage risks of functional failure(s).
Maintenance procedures are then developed for routine and repetitive maintenance activities associated
with preventative and predictive maintenance strategies (Hodkiewicz et al., 2021b). These procedures
describe how the work should be done.

Engineers who create maintenance procedures typically adopt pre-existing templates implemented
by their team or organisation, usually in PDF format. If no suitable template exists, they may create
their own. Upon completion, the procedure is uploaded into a Computerised Maintenance Management
System (CMMS) ready to be used by maintenance schedulers. Given that the documents are stored as
PDFs (or a similar format), cascading changes throughout procedures, such as updating regulatory or
resourcing requirements, is a time-consuming exercise for engineers.

Competency questions asked by an engineer are as follows:

• There has been a change in the regulations and an existing permit needs to be modified. Which
procedures use this permit and can I update the relevant procedures?

• I would like to know which procedures describe an end of life event for my equipment. Which of
my procedures contain a “replacement” task (i.e. the replacement of tyres on a truck)?

C. Woods et al. / An ontology for maintenance procedure documentation 173

Fig. 3. An illustrative example of the maintenance work management process.

• Does my inspection procedure check all the failure modes outlined in the Failure Modes and Effects
Analysis (FMEA) that was used in my RCM?

2.2. Scheduler’s perspective

Maintenance schedulers decide when maintenance work is to be executed. Consider the analogy of
maintenance work management as a tank system, shown in Fig. 3. Maintenance work orders are gener-
ated from both failure events and maintenance strategies. These work orders go into a backlog, depicted
by the tank in Fig. 3. Schedulers determine which tasks from that backlog can be completed based on
the availability of resources and the criticality of the work. To do this, schedulers need to know which
resources are required to perform the task. Resources include qualified personnel, spare parts, tools and
materials. This information is contained in maintenance procedures. However, when these procedures
are in non-digital formats, it is difficult for schedulers to determine if the work being scheduled matches
the available resources.

Competency questions asked by a scheduler are as follows:

• What resources do I require to execute the procedures used in maintenance work orders on next
week’s maintenance plan?

2.3. The technician’s perspective

Technicians are the end users of procedure documentation. When technicians receive a work order, it
typically has a maintenance procedure attached in the CMMS. The technician must open this procedure,
print it and take it to their work location to use and annotate as they work. Once finished, they must scan
the procedure and upload it back into the CMMS. This process is cumbersome for technicians. In a set of
interviews that we performed with maintenance technicians in 2020 (Woods et al., 2021b), participants
described situations where they could not find up-to-date procedures in the system and had to copy and
re-copy information on to a paper-based procedure “three times” to complete their task. Participants
also identified several benefits of having procedures presented in a digital format including the ability
to view information in different presentation formats (Woods et al., 2021b). Digital representations of
procedures provide much flexibility when presenting procedures to technicians. For example, we can
explore adaptation of information that is presented to technicians based on their domain expertise. This
is a core motivation for our team’s exploration of the work presented in this paper.

174 C. Woods et al. / An ontology for maintenance procedure documentation

Competency questions asked by a technicians are as follows:

• What tools, materials and permits do I require to execute a procedure?
• What steps need to be performed to execute my procedure?
• Given that I am up to task x, what task needs to be performed next?
• Does my assigned procedure have any safety hazards that I need to be aware of?
• What corrective action does my procedure suggest on observation of a failure mode in my inspec-

tion?

3. Past works

Since a procedure in maintenance can be viewed as a business process, it is relevant to describe
this work and its relation to OMPD. In 2001, the graphical modelling language, UML, introduced a
“business process” extension for business modelling (Sinogas et al., 2001). This allowed UML modellers
to capture the relationships between processes, the goals of those processes and the resources that are
used and consumed by those processes. In 2004, the Business Process Modelling Notation (BPMN)
was developed (White, 2004). BPMN further captures the events and gateways that are likely to effect
the sequence of a process. Both of these modelling languages are used widely today. However, being
graphical languages, their primary objective is to give a human-readable representation of a process
rather than supporting computational queries over a set of processes (as required by the competency
questions given in Section 2).

In contrast, the Process Specification Language (PSL) (Gruninger and Menzel, 2003) was developed
with a specific focus on supporting interoperability between software applications in the manufacturing
domain. PSL is an upper ontology designed to represent the relationship between activities and their
occurrences. Since our aim is to model procedure information that is currently stored in documentation,
activity occurrences are out of OMPD’s scope (discussed in Section 4.3). Instead, we have decided to
use ISO 15926 Part 14 as an upper ontology. Our reasons for this are discussed in Section 4.1.

Maintenance procedure documentation shares many similarities with other types of procedure docu-
ments such as recipes used for cooking. Both maintenance procedure documentation and recipes contain
a set of task descriptions and a list of resources (i.e. ingredients in recipes) that are required for the task.
However, ontologies built for recipes tend to be too specific to meet the industrial needs of maintenance
engineers, schedulers and technicians. For example (Hitzler and Krisnadhi, 2018) does not focus on the
steps involved in the recipe. Rather this ontology describes the type of food produced and the nutritional
information of the food contained in a recipe. Ribero et. al’s (Ribeiro et al., 2006) ontology does raise
interesting ideas about tasks in a recipe being either ordered and optional. However, the ontology con-
tains classes such as food and the ontology uses reasoning to classify recipes based on characteristics
such as spiciness. Recipe ontologies are a nice working abstraction of procedures in general. However,
the reasoning examples presented in these ontologies focus on classification of recipes into categories
that cannot be directly adapted to industrial maintenance procedures.

A closer domain to our industrial domain is the surgical domain. Similar to maintenance procedures,
surgical processes involve tasks, actors and tools. An initiative called OntoSPM collaborative action is
a combined effort from the surgical community to create ontological process models for their domain
(Gibaud et al., 2018). The group has produced an ontology, OntoSPM, that is aligned to BFO and was last
updated in 2019 (OntoSPM Collaborative Action, 2019). This ontology has some relevant concepts such
as procedure stages, phases and steps. However, no assertions have been made about how steps, phases

C. Woods et al. / An ontology for maintenance procedure documentation 175

and stages of a surgical procedure relate to one another. OntoSPM also contains concepts that are irrele-
vant to the maintenance domain such as body part, performing surgery and duration of surgical process.
Finally, the ontology requires information that is not commonly contained in industrial procedure doc-
umentation. For example, the ontology describes atomic human actions including language_acts such
as ordering and manipulating actions by a human such as grabbing, giving and releasing objects. This
initiative demonstrates interest in ontological procedure representation from other domains. However,
similar to recipes for cooking, current state of the art models cannot be directly applied to industrial
maintenance procedures.

Few works propose ontologies for procedure documentation in an industrial setting. In 2008, NASA
developed the Procedure Representation Language (PRL), an XML schema to be used in training and
spaceflight operations (Kortenkamp et al., 2008). PRL was created to support adjustable autonomy for
procedure execution where some parts can be completed by humans and other parts by computers. This
representation language is machine-interpretable and generic enough to be shared across organisations.
However, it has a strong focus on task execution and cannot be directly adapted to our competency ques-
tions. In 2010, Nemeth et al. presented a procedure ontology to be used for diagnosis of process systems
(Németh et al., 2010). This ontology, however, relies heavily on data properties for storing values and
does not conform with an upper ontology. This problem also present in a technical documentation on-
tology presented by Koukias and Kiritsis (2015) and an ontological analysis of manufacturing processes
by Nagy et al. (2021). This makes it difficult to re-use these ontologies and to integrate the ontology
with existing ontologies (Katsumi and Grüninger, 2016). It is worth mentioning that the ontology for
manufacturing process models (Nagy et al., 2021) demonstrates successful development of an ontol-
ogy using the data-centric perspective and use cases. However, the rigid relationships between concepts,
such as “Station workstationHasResource Resource”, means it has limited applicability to our work (as
maintenance technicians rarely have a work station). In Section 7, we perform a further concept-level
comparison between OMPD, and the ontologies described in Kortenkamp et al. (2008), Németh et al.
(2010) and Koukias and Kiritsis (2015).

We have identified three gaps that are the research contribution of OMPD

• Goal 1: The ontology should be generic so that many industrial organisations can apply the proce-
dure ontology to their data.

• Goal 2: The ontology should model information currently stored in procedure documentation in
industry so that organisations can use the ontology with no new data requirements.

• Goal 3: The ontology should answer competency questions (given in Section 2) that support main-
tenance technicians, engineers and schedulers when creating or using procedure documentation in
their work.

4. Ontological choices

The goals (Goal 1, Goal 2, and Goal 3) outlined in the previous section guide the overarching onto-
logical choices discussed in this section. Further concept-level and axiom-level choices are discussed
in Section 5. In this section, we highlight the trade-offs involved in meeting ontological best practices
while designing a solution that our users will accept and use in practice.

176 C. Woods et al. / An ontology for maintenance procedure documentation

4.1. Ontological choice 1: Which foundational ontology?

Upper ontologies including BFO (Arp et al., 2015), DOLCE (Masolo et al., 2003), PSL (Gruninger
and Menzel, 2003) and ISO 15926 Part 14 (International Organization for Standardization, 2019) are
core artefacts in top-down ontology development. Top-down ontology development starts with generic
concepts that are common across many applications. This is different from bottom-up ontology develop-
ment which has been criticized for being difficult to modify and integrate with other ontologies (Batres
et al., 2007), a view supported by Souza et al. (2013) in their systematic review.

We have chosen to align this work to the ISO CD/TR 15926 Part 14 upper ontology (International Or-
ganization for Standardization, 2019). CD stands for “community draft” and TR stands for “technical re-
port” (we refer to the ontology as ISO 15926 Part 14 for brevity). Its development is driven by the POSC
Caesar Association (PCA) and drafts have already been made available online (ISO/TC184/SC4/WG3,
2020).

ISO 15926 Part 14 draws on elements of BFO and the ISO15926 data model. While ISO15926 Part 2
is a well-established data model (Batres et al., 2007), its lack of support for semantic reasoning has
attracted criticism (Jordan et al., 2014). ISO 15926 Part 14’s development is driven by the need to use
the expressive power of the OWL-2 Standard for reasoning that is not possible with the ISO 15926-2/4
work (ISO/TC184/SC4/WG3, 2020; Kiritsis, 2013).

The intention is that ISO15926 Part 14 is an industrial upper ontology, mapped to ISO15926 Part 2 and
BFO. BFO is currently used in industrial community ontology efforts such as the Industrial Ontologies
Foundry (Karray et al., 2021) so this mapping is important to ensure widespread use of OMPD in the
industrial ontology community. ISO15926 Part 14 borrows many principles and relationships from BFO
while adopting nomenclature from ISO 15926 Part 2. This is language that is familiar to industrial
users and, in particular, users of the existing ISO 15926 standard. For example, ISO15926 uses the
term Activity, rather than BFO’s Occurrent. Regardless, BFO and ISO15926 Part 14 bear many
similarities such as the use of the term Disposition, that is inspired by the BFO concept of the same
name (International Organization for Standardization, 2019).

We have decided to align with this upper ontology to adhere with current community practices for
industrial ontologies. ISO15926 Part 14 is getting increasing attention in industry for commercial appli-
cations. For example, ISO 15926 Part 14 is used for Aibel’s Material Master Data project (Skjæveland
et al., 2018). To make ISO 15926 Part 14 further accessible for industry professionals, ontology tem-
plates have been developed based on terms described by Klüwer et al. (2008). Examples of these can
be found in Skjæveland et al. (2019) and Forssell et al. (2017). While ISO15926 Part 14 is a prominent
effort, it has not been the only effort to convert the ISO 15926 data model into an OWL ontology (Batres
et al., 2007; International Organization for Standardization, 2018a). Work was also done on this by the
nuclear industry by Fiorentini et al. (2013) and more recently by Kwon et al. (2018).

A hierarchical diagram of the classes in ISO15926 Part 14 is provided in Fig. 4. The terms from
ISO15926 Part 14 used in OMPD are Activity, Object, Information Object, Physical
Object, Role, Disposition, Quality and Person. More about how these classes are used
in OMPD is described in Section 5. Conformance to ISO 15926 Part 14 will future-proof OMPD by
supporting ontology re-use (Goal 1) while ensuring that it is accessible to industrial users.

4.2. Ontological choice 2: Specificity vs generality

It is well known that ontology engineers must make trade-offs between specificity and generality (Hit-
zler and Krisnadhi, 2018). If OMPD was designed to be general it would model only the concepts that are

C. Woods et al. / An ontology for maintenance procedure documentation 177

Fig. 4. Taxonomy of classes in ISO/CD TR 15946-14.

common across all procedure documentation (including cooking recipes, IKEA assembly instructions,
etc). While ontologies of this nature are important, it does not help us to answer more specific compe-
tency questions that are important to engineers, schedulers and technicians. PSL (Gruninger and Menzel,
2003) is a good example of an ontology that has generalised to this extreme and has been very successful
as a cross-domain tool. Instead, OMPD provides coverage of maintenance-procedure documentation.
For example, concepts such as Hazard and Permit are important for maintenance procedures, but
may not be necessary in everyday household procedures. The goals of OMPD are twofold. First, to be
generic enough to support legacy maintenance procedure documentation from non-uniform data sources
and across organisations (Goal 1). Second, to be specific enough to support engineers, schedulers and
schedulers using real-world industrial data (Goal 3).

4.3. Ontological choice 3: Scope and modularisation

OMPD has two modules. These are the Static Procedure Ontology (SPO) and the Corrective Mainte-
nance Task Ontology (CMTO). In designing the SPO, we recognised that maintenance procedure doc-
umentation that is currently used in practice is non-temporal (or “static”). For instance, if a document
specifies that a tool is required for a procedure, the document does not know (or care) that the tool
is available for use at a given time. While live resource modelling is a useful concept it is not within

178 C. Woods et al. / An ontology for maintenance procedure documentation

the scope of OMPD. This choice was made so that OMPD can be used by organisations with no addi-
tional data requirements (Goal 2). While some organisations do store equipment availability and asset
health information in a live feed or a digital twin (Tao et al., 2018), this is not yet a widespread prac-
tice. Therefore, future work can import SPO and add temporal concepts when industry data is avail-
able.

The second module is the CMTO. CMTO captures limits and corrective actions. These two concepts
are sometimes (but not always) found in maintenance procedure documentation. Limits are assigned to
observation tasks that inform maintenance technicians of the state or range of measurements that an asset
should be within to pass an inspection. Corrective actions are conditional tasks that are to be performed
if an asset is outside its limits. We have chosen to separate these concepts into a second module for two
reasons. First, if an organisation does not capture corrective actions in their procedure documentation,
they can just use SPO (Goal 1). Second, as we will discuss in Section 5.2 this module can integrate with
other processes core to maintenance management such as RCM. The separation of this second module
makes this integration easier for end-users of OMPD.

5. Implementation

This section includes descriptions of our concepts and axiom-level ontological choices made in the
design of OMPD. An OWL instantiation of OMPD can be found in the following GitHub repository:
https://github.com/uwasystemhealth/Paper_Archive_Procedure_Ontology. Note that the ontologies in
this repository use the namespace, www.example.org, as a placeholder. Uploading this ontology to a
public repository under a production-ready namespace is a focus of future work.

5.1. Concepts in SPO

This section contains implementation decisions underpinning the concepts and axioms in SPO, the
core module of OMPD.

5.1.1. Documentation and processes
In OMPD, a Maintenance Procedure Document is modelled as an Information Ob-

ject in ISO 15926 Part 14. An Information Object is remodelled from the ISO 15926 Part 2
concept Class of Information Object. In ISO 15926 Part 14, an Information Object
is described as an Object such as a newspaper, or a paper document (POSC Caesar Association, 2022).
In industry, maintenance procedures are often PDF documents but can also be software artefacts (where
they may exist as a collection of database records). To further complicate matters, the same procedure
can be copied into different physical locations (i.e. word document, PDF, database). For this reason,
BFO models Information Content Entities (entities that are about something) as a Gener-
ically Dependant Continuant and the authors argue that there should be a separate entity, the
Information Bearing Entity being the physical object that “bears” the information (Smith
et al., 2013). In OMPD, however, we have made our classification based on the function of the main-
tenance procedure. In this domain, a Maintenance Procedure Document is a representation of
a procedure that can be read, conformed to, and versioned. We do not intend to model the form of the
original artifact (i.e. the PDF document), because we hope that, in the future, companies will cease to use
paper-driven processes, in favour of digital procedure management processes (with procedures aligned
to OMPD). If such a future becomes a reality, we will not have heterogeneous information bearers to

https://github.com/uwasystemhealth/Paper_Archive_Procedure_Ontology
http://www.example.org

C. Woods et al. / An ontology for maintenance procedure documentation 179

model. In this case, the class Information Object is sufficient for our purposes and we do not
separate the information “bearer” from the information itself. This use of the Information Object
class is also consistent with our use of ISO15926 Part 14 in previous works. For example, in our Fail-
ure Modes and Effects Analysis ontology (Hodkiewicz et al., 2021a). Further, to maintain generality in
OMPD (Goal 1), we have not modelled the document’s metadata (i.e. author). Instead users of OMPD
can create an application-level ontology to capture this information.
Maintenance Procedure Documents are about one or more Maintenance Proce-

dure Processes. ISO 15926 Part 14 offers two sub-properties of isAbout. These are, repre-
sents and quantifiesQuality but neither seem to capture the relationship between a Mainte-
nance Procedure Document and a Maintenance Procedure Process. This process is an
activity that consists of a set of steps (or Maintenance Tasks). A Maintenance Procedure
Process should not have other Maintenance Procedure Processes as parts. In industry,
a Maintenance Procedure Process is a fundamental unit in an organisation and these have
rules attached to them. For example, maintenance technicians perform a single Maintenance Pro-
cedure Process at a time. Additionally, a procedure is recorded as a single event as a maintenance
work order. From an organisational perspective, procedures are Merelogically indivisible. Mainte-
nance Tasks are thus required to further break down the procedure into parts that a technician can
read and understand.

We organise Maintenance Procedure Processes and Maintenance Tasks under a
super-class called Maintenance Process. The concept of a Maintenance Process covers
a wider range of maintenance activities. Maintenance is defined as “the actions intended to retain an
item in, or restore it to, a state in which it can perform a required function” (IEC, 2016). We can use
Maintenance Process to capture these actions (or collection of actions). We have not chosen to
model the complexities behind “state” and “required functions” in OMPD, as this information is not
currently stored in procedure documentation. We perform deeper analysis of these concepts in our prior
work (Woods et al., 2021a). Regardless, to understand the difference between a Maintenance Pro-
cess and a Maintenance Procedure Process or a Maintenance Task, we draw from
the analysis in Jarrar and Ceusters (2017). While a Maintenance Procedure Process is telic
(i.e. tending towards a goal that is described in a procedure), a Maintenance Process does not
need to be. For example, a Maintenance Planning Process is a Maintenance Process
that involves planning work that is to be executed on a particular item. A Maintenance Planning
Process is an ongoing process, existing throughout the life-cycle of the equipment, and not tending
towards some goal or end-state.
Maintenance Tasks are described with a Maintenance Task Description. This is typi-

cally a natural language text description (i.e. “unscrew bolt”). In the procedure shown in Fig. 1, these nat-
ural language descriptions are coupled with multimedia descriptions (in this case they are schematic di-
agrams). These descriptions can take many other forms including videos, computer-readable scripts (for
automated equipment), 3D models and animations (for augmented reality). How organisations choose
to represent the steps in their procedures can evolve as technology advances and organisational pro-
cesses change. Therefore, similar to Maintenance Procedure Documents, we have not chosen
to explicitly model the representation format of a Maintenance Task Description. Users of
this ontology can use data properties, or an application-level ontology to model this information. In the
evaluation in Section 6.2, we model a real-world procedure that uses both a text description and an image
description to describe the same task. Using the Maintenance Task Description concept, we

180 C. Woods et al. / An ontology for maintenance procedure documentation

can model both of these descriptions and use hasText and hasImageUrl data properties to capture
their original format.

Another consideration for this ontology is how to manage procedure histories and versioning (i.e.
when technical writers update procedures over time). In the current model, if a Maintenance Task
described in a procedure document changes, no record is kept of the previous procedure. While this
is reflective of current practice in industry (where a document is given a new version number and the
previous document in overwritten), problems emerge if an organisation chooses to extend this model
and model executions of maintenance tasks. In OMPD, we achieve versioning through a document
identifier and a version annotation property. When a procedure is updated, a new Mainte-
nance Procedure Document should be created with the same document identifier and an up-
dated version number. Since this document now describes a different procedure to its previous version
(whether that be due to a change of resources or activities), a new Maintenance Procedure Pro-
cess must be created, with updated links to Maintenance Tasks and Resources. Since OMPD
maintains a static perspective, we do not model the time period in which each procedure is the “active”
procedure. However, this could be easily added in temporal extensions of OMPD.

The axioms for the classes introduced in this section are shown in Fig. 5 and Table 1. Classes in
Table 1 have been presented in the form PREFIX: Class Name where the prefix is the ontology that
the class comes from (ISO for ISO 15926 Part 14 and OMPD for the OMPD ontology). Natural language
descriptions for the entities are given in their Aristotelian form (Arp et al., 2015) and formal axioms are
given in Description Logic.

Fig. 5. Visual representation of documentation and processes in OMPD.

Table 1

Axioms for Maintenance Procedure Document, Maintenance Process Maintenance Procedure Pro-
cess and Maintenance Task Description

Concept Natural Language Description Description Logic Axiomatisation in OMPD
Maintenance

Procedure
Document

An ISO: Information object that is
about some OMPD: Maintenance
procedure process

MaintenanceProcedureDocument ≡ InformationObject∧
(∃isAbout.MaintenanceProcedureProcess)

Maintenance
Process

An ISO: Activity, intended to repair or
restore an item to a state in which it can
perform its required function

MaintenanceProcess � Activity

Maintenance
Procedure
Process

An OMPD: Maintenance process that
is representedBy some OMPD:
Maintenance procedure document
and hasActivityPart some OMPD:
Maintenance task

MaintenanceProcedureProcess ≡ MaintenanceProcess∧
(∃representedIn.MaintenanceProcedureDocument)
∧(∃hasActivityPart.MaintenanceTask)

Maintenance
Task De-
scription

An ISO: Information object that is
about some OMPD: Maintenance Task

MaintenanceTaskDescription ≡ InformationObject∧
(∃isAbout.MaintenanceTask)

C. Woods et al. / An ontology for maintenance procedure documentation 181

Notice that this table does not contain an axiomatisation for Maintenance Task. In Sections 5.1.2,
5.1.3, 5.1.4 and 5.1.5 we will explore the ontological choices made when modelling Maintenance
Task entities. Axioms for Maintenance Task is given in Fig. 9 and Table 2.

5.1.2. Tasks in context
A Maintenance Procedure Process has a set of steps, or Maintenance Task entities.

A key ontological question is whether (or not) a task should be considered as an entity independent of
the procedure that it is performed in. For example, if a pump overhaul procedure and a pump impeller
replacement procedure on a particular pump both contain the task “replace impeller”, then is this task
the “same” in both procedures?

The benefit of decoupling a Maintenance Task from its context in a procedure is twofold. First,
if a task in a procedure changes (e.g. it has new resource requirements), data-owners can easily deter-
mine which procedures contain the same task and change them accordingly. Second, this representation
allows data-owners to check if a maintenance technician has completed similar tasks before (perhaps in
a different procedure). This use case can help in developing adaptive work instructions for technicians,
based on their experience in a particular task. Adaptive work instructions is one of the key motivations
of our research group’s enquiry into this space.

We considered two different ways to achieve this decoupling in OMPD. The first is to create a new
concept called Task in Context that has a relationship to a Maintenance Procedure Doc-
ument and the other instances of Task in Context described in the document. In this representa-
tion, Task In Context is different to a Maintenance Task individual (that is related to some
Maintenance Task Description). This approach treats tasks as identical, so a task may ap-
pear in several procedures. We call this the “identity” approach. An alternative approach is to introduce
an object property called locallyEquivalentTo. Data-owners can specify whether a Mainte-
nance Task is locally equivalent to another task from a different procedure. This approach supposes
that non-identical tasks appear in procedures. We call this the “local equivalence” approach.

Both approaches have pros and cons. The identity approach is pictured in Fig. 6. In this approach,
sub-tasks must retain context so Maintenance Tasks and their corresponding Task In Con-
text entities are interleaved, which creates schematic complexity. When a procedure involves sub-
tasks (i.e. a task hierarchy with a depth greater than one), the local equivalence approach, pictured in
Fig. 7, seems simpler and more intuitive. Our rational for choosing the local equivalence approach is
that, when considering a single procedure in isolation, the schema is simpler. Procedures are treated as
stand alone activities in practice and an engineer is likely to consider a single maintenance procedure in
isolation. Note that the two approaches are similar in the information that they convey. A modeller can
translate the local equivalence approach to the identity representation without losing information from
the procedure.

In OMPD, the object property locallyEquivalentTo is used to realise the local equivalence ap-
proach to task modelling. This object property is not to imply that the objects are, necessarily, identical.
Instead, the object property is used when tasks have the same maintenance description, use the same
resources and realise the same hazards. Data-owners can use this feature of the ontology to improve the
consistency of their maintenance task data. Suppose that an engineer has developed a Maintenance
Task but has under-specified the tools required for that task. If another engineer writes a locally equiv-
alent Maintenance Task with the appropriate tools, the following SWRL rule can infer that both
Maintenance Task entities should have the same tools.

locallyEquivalentTo(?x, ?x2) ∧ Tool(?t) ∧ participantIn(?t, ?x) → participantIn(?t, ?x2)

182 C. Woods et al. / An ontology for maintenance procedure documentation

Fig. 6. Conceptual diagram of “Identity” approach to task modelling.

Fig. 7. Conceptual diagram of “Local equivalence” approach to task modelling.

The same technique can be applied to hazards. For example, if a technician finds a new hazard when
completing a Maintenance Task. A SWRL rule can be applied to infer that all procedures con-
taining locally equivalent Maintenance Task entities will also have that hazard. Note that we have
not made this rule an ontological commitment in OMPD. We feel that some organisations may find this
feature undesirable as incorrect data could be propagated through the ontology. However, we encourage
users of OMPD to use this feature in their application-level implementations.

5.1.3. Considering procedure executions
One of the core goals of OMPD is to be usable by engineers, given the way that they work with proce-

dures and the information that is currently stored in procedure documentation (Goal 2, Section 3). With

C. Woods et al. / An ontology for maintenance procedure documentation 183

this in mind, OMPD contains a minimal set of classes and the tasks represented in the procedure are
modelled as instances of Maintenance Task (a subclass of Maintenance Process). Tasks, as
they are described in the procedure documentation, are modelled at the individual level in OWL. This
way, users of the ontology do not have to update the class schema when a new procedure is added or
a procedure is updated. From an operational perspective, we want engineers using the ontology to be
able to enter their version of activities (instances of activities), not the mechanism to describe activities
(classes of activities). In this way, our ontology is as close to the real world application as possible, with-
out omitting use cases in the future. Our decision to model the Maintenance Task as it is described
in current procedure documentation raises several fundamental ontological questions, which will not be
addressed in depth here. This includes treatment of ‘hypothetical’ entities, objects, and situations as are
commonly referenced in maintenance procedures.

5.1.4. Task sequencing
In OMPD, data-owners can specify the sequence of tasks in a Maintenance Procedure Pro-

cess. OMPD models only the task sequence that is represented in a maintenance procedure document.
Due to the “static” philosophy of OMPD (discussed in Section 4.3), we are not concerned with the
sequence that these tasks occur in practice (i.e. as with activity occurrences in PSL). The industrial
maintenance procedures that we have examined all represent linear task sequences thus we have not
included parallel tasks in OMPD. Furthermore, maintenance procedure processes are designed to be per-
formed by one technician. If tasks are to be performed in parallel, two separate procedures are created
for this. To model task sequences, we used the Sequence design pattern from the Ontology Design Pat-
terns repository (Gangemi, 2010). The implementation of this pattern is very similar to our generic task
hierarchy (discussed in the following section) as we use the transitive property indirectlyBefore
and its intransitive sub-property directlyBefore. We have added these properties as sub-properties
of ISO15926 Part 14’s intransitive before property. Re-using this design pattern means that we can
answer questions such as “what tasks are remaining” and “what task is next”. These competency ques-
tions are very useful for organisations who wish to power a user interface with this ontology. Using this
functionality, technicians (or machines in the case of automated equipment) can “step through” tasks to
see what activities need to be performed.

5.1.5. The generic task hierarchy
In industry, procedures are represented at different levels of detail both within and between organisa-

tions. While one procedure may contain a list of steps (as shown in Figure 8a), another procedure may
have more detailed steps, organised as a hierarchy (Figure 8b). An example of when tasks will need to be
more detailed is for organisations who use automated equipment to do particular tasks. While a human

Fig. 8. Examples of different task hierarchies that can be represented in OMPD.

184 C. Woods et al. / An ontology for maintenance procedure documentation

Fig. 9. Visual representation of maintenance task in OMPD.

reader may simply need to read “fill up the tank” and will know what to do, a robot arm will likely need
to know the exact co-ordinates of the tank that it is filling. The procedure will need to specify the robot’s
motion as it moves its arm from position a to position b and back again. To ensure that both types of
procedures can be represented, OMPD enables data-owners to maintain a generic task hierarchy.

The generic task hierarchy ensures that data-owners can retrieve a full task hierarchy without knowing
how deep the hierarchy is. This functionality is useful because engineers will not need to know how
many levels the tasks need to have when writing the procedure. If the organisation requires it, more
levels of detail can be added later. This is essential for organisations who simply want to digitize their
current procedures today, but intend to create adaptive procedures or manage procedures for automated
equipment in the future.

We implement a generic hierarchy of activities using part-of relations between Maintenance
Tasks. ISO15926 Part 14 contains an intransitive property called activityPartOf. To realise our
generic hierarchy, we require a transitive sub-property of activityPartOf called OMPD:indi-
rectActivityPartOf.

The second object property that we use is OMPD:directActivityPartOf that is a subclass of
OMPD:indirectActivityPartOf and is intransitive. This object property is important so that on-
tology interrogators can re-construct the asset hierarchy and know where a task sits in the task hierarchy.
This allows the task hierarchy to be reconstructed and shown to technicians (perhaps as a digital user
interface). The modelling for Maintenance Task in OMPD is shown in Fig. 9. Table 2 contains the
formal axiomatisation.

5.1.6. The role of resources
Resources are required for procedures to be executed. These include tools, materials, people and

permits. We examined two options for representing resources in OMPD. The first option is depicted in
Fig. 10a. In this representation, Resource is an asserted class that is a subclass of ISO:Object.
Specific resources in maintenance procedures (i.e. Tool and Permit) are then asserted as subclass of
Resource. This means that any individual of type Tool is also of type Resource. This represen-
tation has two issues. Firstly it goes against the ontology best practice, the principle of asserted single
inheritance (Arp et al., 2015). This is because a Permit is both an Information Object and a
Resource whereas a Tool is a Physical Object and a Resource. Secondly, this representa-
tion may introduce problems when inserting individuals into the ontology. If an organisation has a Tool
such as a wrench. If that wrench is never used in a procedure, it is not a resource in OMPD. This would
mean that a new system that stores components that are not resources is required.

To resolve these issues, OMPD implements resources as shown in Fig. 10b. This representation is
in line with how the Industrial Ontologies Foundry represents resources. In this model, Resource is
a defined class. It is defined as the bearer of a Resource Role. Now, if an individual is the bearer

C. Woods et al. / An ontology for maintenance procedure documentation 185

Table 2

Definition for the maintenance task concept in OMPD

Natural Language Description Description Logic Axiomatisation in OMPD
An OMPD: Maintenance process that is:
• a direct activity part of zero or one OMPD:
maintenance procedure process
• an activity part of zero or more OMPD: maintenance
procedure process
• a direct activity part of zero or one OMPD:
maintenance task
• an activity part of zero or more OMPD: maintenance
task
• occurs directly before zero or one OMPD:
maintenance task
• occurs before zero or more OMPD: maintenance
task
• occurs directly after zero or one OMPD:
maintenance task
• occurs after zero or more OMPD: maintenance
task
• is locally equivalent to only OMPD: maintenance
task

MaintenanceTask � MaintenanceProcess
∧(� 1directActivityPartOf .MaintenanceProcedureProcess)
∧(� 1directActivityPartOf .MaintenanceTask)
∧(� 1directlyBefore.MaintenanceTask)
∧(� 1directlyAfter.MaintenanceTask)
∧(∀locallyEquivalentTo.MaintenanceTask)
**indirectActivityPartOf is a transitive
subproperty of activityPartOf, as with
indirectlyBefore and indirectlyAfter.

Fig. 10. Two representations for resources considered in the design of OMPD.

of some Resource Role, then the ontology will automatically classify the object as a Resource
type. This has the added benefit that classes such as Material and Permit can sit in more suitable
positions in the ISO 15926 Part 14 class hierarchy (i.e. Material is a Physical Object and
Permit is an Information Object).

We have decided not to further constrain the definitions of specific resource classes in OMPD as these
constraints would not contribute to the use-case for this ontology. The number of necessary constraints
for these classes may also be different between organisations. For example, in one organisation a Tool
may be an object with an OEM (Original Equipment Manufacturer) ID. In another (perhaps larger)
organisation, this may not be the case. Such constraints should exist in an application-level implemen-
tation of OMPD. Of course, in the future we would like provide necessary and sufficient conditions
for these classes, in a manner that is applicable across organisations. However, this will require further
collaboration with both industry and the industrial ontology community. This is an avenue for future
work. For now, we have provided a primitive class for Tools, Permits, and other resource types that
we encountered in the industrial procedures examined in this work. Data-owners can use these classes
as a mechanism to organise their data, and to enable the competency questions provided in this paper.
Axiomatisations for the Resources that are modelled in OMPD are shown in Table 3.

186 C. Woods et al. / An ontology for maintenance procedure documentation

Table 3

Resources in OMPD

Concept Natural Language Description Description Logic Axiomatisation
Resource An ISO:Object that has some OMPD:

Resource Role
Resource ≡ Object ∧ (∃hasRole.ResourceRole)

Resource Role An ISO:Role that is the role of an
ISO:Object that is required to execute
some ISO:Activity

ResourceRole ≡ Role∧
∀roleOf (Object ∧ ∃requirementOf .Activity)

Component A ISO:Physical Object that may
have some OMPD: Resource role

Component � PhysicalObject

**If hasRole some Resource Role then individuals of
type Component can also be of type Resource

Permit A ISO:Information Object that
may have some OMPD: Resource
role

Permit � InformationObject

**If hasRole some Resource Role then individuals of
type Permit can also be of type Resource

Tool A ISO:Physical Object that may
have some OMPD: Resource role

Tool � PhysicalObject

**If hasRole some Resource Role then individuals of
type Tool can also be of type Resource

Material A ISO:Physical Object that may
have some OMPD: Resource role

Material � PhysicalObject

**If hasRole some Resource Role then individuals of
type Material can also be of type Resource

Qualified Person A ISO:Person that may have some
OMPD: Resource role and has a
Qualification

QualifiedPerson ≡ Person∧
∃hasQuality.Qualification∧
∃requirementOf .Activity

**If hasRole some Resource Role then individuals of
type QualifiedPerson can also be of type Resource

Qualification A ISO:Quality that is borne by zero
or more OMPD: Qualitified
Person

Qualification � Quality

**relationship to qualification is inferred from Qualified
Person axiomatisation

5.1.7. Entities at the procedure level and the task level
Many maintenance procedures in industry describe the Resources that are required for execution

of the procedure, the Maintainable Item that work is performed on, and the Hazards that could
emerge in the procedure’s execution. These entities can be represented at the procedure level or the task
level, depending on both the procedure (i.e. an inspection or a replacement) and the organisation.
Resources are defined in Section 5.1.6, but we are yet to define Hazards and Maintainable

Items. A Hazard is defined in the engineering standard AS IEC 61882:2017 as a “source of potential
harm” (Standards Australia, 2017). This “source” refers to characteristics of a context in which work
is performed (i.e. radiation). ISO15926 Part 14 contains a class called Realizable Entity, mod-
elled after the BFO term of the same name. A Realizeable Entity in BFO is a thing that inheres
in an item (i.e. radiation) or group of items (i.e. electrical hazards), and is realised in some process.
We model a Hazard as a Realizeable Entity that is realized in some Hazard Realiza-
tion Process. We do not say that Hazards are realised in Maintenance Processes because
it is possible to perform a Maintenance Process without realizing the potential hazards that are
described in the procedure. It is also incorrect to say that a Maintenance Process causes a
Hazard, as the hazard can be realised through an external event separate to the maintenance process.

C. Woods et al. / An ontology for maintenance procedure documentation 187

Table 4

Definitions for Hazard and Maintainable Item in OMPD

Concept Natural Language Description Description Logic Axiomatisation
Hazard An ISO:Realizeable Entity that is the

source of potential harm that could be realized in
some OMPD: Hazard Realization
Process

Hazard ≡ RealizeableEntity
∧(∃realizedIn.HazardRealizationProcess)

Hazard Realization
Process

An ISO:Activity that has the potential to
cause harm

HazardRealizationProcess � Activity

Hazard In
Maintenance
Process

An OMPD:Hazard that is realized in some
OMPD:Hazard Realisation Process
that occurs relative to some Maintenance
Process

HazardInMaintenanceProcess ≡ Hazard∧
∧∃realizedIn(HazardRealizationProcess∧
∃occursRelativeTo.MaintenanceProcess)

Maintainable Item An ISO:Physical object that has a role
OMPD:Maintainable item role

MaintainableItem � PhysicalObject
∧(∃hasRole.MaintainableItemRole)

Finally, we do not want to constrain Hazards only to Maintenance Processes as hazards can
cause potential harm in a wide range of work processes. With these considerations in mind, we create a
new class called Hazard In Maintenance Process. This is a Hazard that has some Hazard
Realization Process that occurs Relative To a Maintenance Process. This new
class allows data-owners to query for all hazards that are considered across our maintenance processes.

To define Maintainable Item, we draw from the existing state of the art reference ontology for
maintenance work management, ROMAIN (Karray et al., 2019). ROMAIN models a Maintainable
Item as the bearer of a Maintainable Item Role. Instead of BFO’s bearer of relationship,
we use ISO 15926 Part 14’s has role relationship. In OMPD, Maintainable Items participate
in Maintenance Processes. Definitions for Hazard and Maintainable Item are given in
Table 4.

As per competency questions 1, 4 and 8, data-owners need to query for all Resources, Hazards
and Maintainable Items that are involved in a procedure, regardless of what level these entities
are represented. To implement this in OMPD, we have used the following SWRL rules:

hasDirectActivityPart(?y, ?x) ∧ participantIn(?z, ?x) → participantIn(?z, ?y)

hasDirectActivityPart(?y, ?x) ∧ HazardRealizationProcess(?p)

∧ HazardInMaintenanceProcess(?z)

∧ realizedIn(?z, ?p) ∧ occursRelativeTo(?z, ?x) → occursRelativeTo(?z, ?y)

Note that these SWRL rules can also be represented as OWL property chain if an organisation’s spe-
cific implementation requirements allow. Axiomatisations for Maintainable Item and Hazard
are shown in Table 4. Figure 11 shows a visual representation of the SPO module of OMPD.

5.2. Concepts in CMTO

The second module of OMPD is the CMTO. There are two fields in the procedure shown in Fig. 1 that
have not been captured in the SPO module. These fields are “Limits” and “Corrective Action Taken”.
Limits are often found in maintenance inspection documentation where technicians must check that
equipment is healthy, or its attributes are within a healthy range. For example, in the procedure in Fig. 1,

188 C. Woods et al. / An ontology for maintenance procedure documentation

Fig. 11. The Static Procedure Ontology (SPO) Module.

the technician must “check that suction and discharge points are clear of obstruction” and the limit for
this maintenance task is “obstruction free” (i.e. not plugged or blocked). We have made the observation
that these limits maintenance procedures correspond to functional failures. A functional failure is defined
as the “loss of the ability of an item to perform a required function” (EFNMS, 2017) and the performance
is assessed by qualitative or quantitative observations. According to previous work completed on an
Ontology for Failure Modes and Effects Analysis, a Functional Failure is the result of some
Failure Event and is represented by some Failure Mode Observation, specified in the
RCM process (Hodkiewicz et al., 2021a).
Functional Failures are identified in some Maintenance Task that is specified in the pro-

cedure document (i.e. check for x). If this Functional Failure is identified, then the procedure
generally suggests that a Corrective Maintenance Task should be performed to address the
issue. In the procedure in Fig. 1 this Corrective Maintenance Task is simply an empty box.
The purpose of this empty box is to allow the technician to decide what needs to be done to address the
problem. For example, if a task, “inspect bolts” realises a functional failure, “bolt loose”, then the tech-
nician could write “tightened bolt” in the corrective action field on the PDF. If the fix to the problem is
more complex, then the technician could write “raised work order” and raise the issue in their CMMS so
that a fix to the problem can be scheduled. To capture these types of tasks in OMPD, we have created a
new class that is a subclass of Maintenance Task. This new class is called Corrective Main-
tenance Task and is defined as a Maintenance Task that addresses some Functional
Failure. This task can have a Task Description just like any other Maintenance Task in
OMPD. However, in the case of the procedure in Fig. 1, no Task Description has been prescribed
because the field is blank in the procedure document.

To model the idea that a Failure Event results in a Functional Failure, we create a new
sub-property of before called results in. ISO 15926 has another sub-property of before called
causes but we do not want to use this. In maintenance, there is much complexity to root-cause analysis
for failures. For example, an upstream failure (i.e. failure of a pump) may affect other equipment (i.e. the

C. Woods et al. / An ontology for maintenance procedure documentation 189

Fig. 12. Diagram of the Corrective Maintenance Task Ontology (CMTO).

level of a tank). Therefore, we believe that modelling a failure event as the cause of a functional
failure is confusing for engineers. This is consistent with analysis conducted in prior work (Hodkiewicz
et al., 2020).

In addition, to model the idea that a Corrective Maintenance Task addresses a Func-
tional Failure, we create another new sub-property. The new property, addresses, is a sub-
property of ISO 15926 Part 14’s ends. In this case, there is an intentional relationship between the
corrective maintenance task and the functional failure that is intended to cause a
functional failure to cease. There is another relationship in ISO15925 Part 14 for such intentional rela-
tionships called has interest in. However, in the current latest community draft of the ontology
(ISO/TC184/SC4/WG3, 2020), this relationship has no definition, and its intended use is unclear. Anal-
ysis of the suitability of the has interest in object property is a subject of future work.

The fact that “limits” in industrial maintenance procedures correspond to functional failures is an in-
teresting outcome of this research because two disparate concepts (i.e. procedures and FMEA performed
in RCM) in industry can now be integrated. It is a demonstration of how current data-management prac-
tices have failed industrial organisations. By thinking of concepts ontologically, and by modelling the
data at the same level of abstraction as given in the original engineering artifact, we are able to align two
data sources that appear quite distinct in industry and a perform reasoning across them. Further enquiry
in this space will be the subject of future work.

A diagram of CMTO has been provided in Fig. 12 and axiomatisations for each of the concepts are
provided in Table 5.

6. Evaluation

Evaluation of an ontology includes both verification and validation activities. Ontology verification
is a check of the ontology’s consistency (i.e. does the reasoner produce any errors) and validation is a
demonstration of the ontology’s ability to provide answers to competency questions. Ontology verifica-
tion was performed using the HermiT reasoner (Glimm et al., 2014). HermiT is an OWL-2 DL reasoner
that is built into the Protégé ontology development environment. Readers of this paper can replicate this
verification by opening the ontology provided in Section 5 in Protégé and selecting the HermiT reasoner.

190 C. Woods et al. / An ontology for maintenance procedure documentation

Table 5

Terms and axiomatisations in the corrective maintenance task ontology

Concept Natural Language Description Description Logic Axiomatisation
Functional Failure An ISO: Activity that prevents an item from

performing its required function and is represented
in a OMPD: Failure mode observation.
It has a maintainable item as a participant.

FunctionalFailure � Activity
∧(∃hasParticipant.MaintainableItem)

**relationship to functional failure observation
(represented in) is inferred from the Failure
Mode Observation axiomatisation.**

Failure Mode
Observation

An ISO: Information object that is about
a OMPD: Functional failure

FailureModeObservation ≡ InformationObject
∧(∃isAbout.FunctionalFailure)

Failure Event An ISO: Event that resultsIn a OMPD:
Functional failure

FailureEvent � Event∧
(∃resultsIn.FunctionalFailure)

Corrective
Maintenance
Task

A OMPD: Maintenance task that addresses
a OMPD: Functional failure

CorrectiveMaintenanceTask ≡ MaintenanceTask∧
(∃addresses.FunctionalFailure)

**contextual relationships (i.e. directly before and
directly after are modelled in
MaintenanceTask)

The validation activities performed for this ontology are twofold. First, we demonstrate the ontology’s
ability to execute our provided competency questions using SPARQL (Pérez et al., 2009). Second, we
map two real-world industrial procedure datasets to our ontology to ensure that relevant concepts can be
represented.

6.1. Competency question execution

The competency questions provided in Section 2 have been executed using some test data. We demon-
strate the reasoning capability of the ontology according to each competency question in a series of
SPARQL queries. These queries, and a description of the reasoning that occurs are given in Tables 6, 7
and 8. Note that implementations of OMPD that use the version and documentIdentifier ob-
ject properties to manage procedure histories should include reference to these in the queries to ensure
that only the current/latest version of a procedure document is referenced. We have not included these
checks in the queries in this paper for simplicity and demonstration purposes. The prefixes used for the
queries in this section are as follows:

• prefix spo: http://www.example.org/static-procedure-ontology
• prefix iso: http://rds.posccaesar.org/ontology/lis14/ont/core/1.0/
• prefix cmto: http://www.example.org/corrective-maintenance-task-ontology

6.2. Data-driven validation

6.2.1. Company 1: Continuous manufacturing (process) plant
To determine the suitability of OMPD for real-world maintenance procedures, we first map it to a pro-

cedure from a continuous manufacturing (process) plant. The procedure used in this example is shown in
Fig. 13. The numbers on Fig. 13 show how information from the document maps to the ontology (shown
in Figs 11–14). We use the notation (n) to indicate the part of the procedure that is being discussed
(where n is 1 to 10).

C
.W

oods
etal./A

n
ontology

for
m

aintenance
procedure

docum
entation

191

Table 6

SPARQL queries for technician competency questions

Technician competency questions
Query Explanation
1. What tools, materials and permits do I require to execute a procedure

SELECT ? r e s o u r c e
WHERE {

VALUES ? p r o c e d u r e _ p r o c e s s { spo : p r o c e d u r e _ p r o c e s s _ 0 0 1 }
VALUES ? t y p e { spo : Tool spo : M a t e r i a l spo : P e r m i t }

? r e s o u r c e i s o : p a r t i c i p a n t I n ? p r o c e d u r e _ p r o c e s s ; a ? t y p e
}

The query selects all individuals that are a
participant in procedure_process_001
(or an activity part of this process) and belong
to the class Tool, Material or Permit.
This query uses the SWRL rule described in
Section 5.1.7 to ensure that tools, materials and
permits at all levels of the task hierarchy are
captured.

2. What steps need to be performed to execute my procedure?

SELECT ? m a i n t e n a n c e _ t a s k ? p a r e n t
WHERE {

VALUES ? p r o c e d u r e _ p r o c e s s
{ spo : p r o c e d u r e _ p r o c e s s _ 0 0 1 }

? m a i n t e n a n c e _ t a s k i s o : a c t i v i t y P a r t O f ? p r o c e d u r e _ p r o c e s s .
? m a i n t e n a n c e _ t a s k spo : d i r e c t A c t i v i t y P a r t O f ? p a r e n t .

}

This query selects all tasks that are an activity
part of procedure_process_001. This
query uses the transitive property,
indirectActivityPartOf to ensure that
tasks at all levels of the task hierarchy are
selected. The ?parent of each task is also
selected to retain hierarchical information.
Note that this query returns tasks in no
particular order. The retrieval of ordered tasks
is shown in Competency Question 3.

3. Given that I am up to task x in a procedure, what task needs to be performed next?

SELECT ? n e x t _ m a i n t e n a n c e _ t a s k
WHERE {

VALUES ? c u r r e n t _ m a i n t e n a n c e _ t a s k
{ spo : m a i n t _ t a s k _ i s o l a t e _ c o n v e y o r }
? n e x t _ m a i n t e n a n c e _ t a s k spo : d i r e c t l y A f t e r
? c u r r e n t _ m a i n t e n a n c e _ t a s k .

}

This query gets the task that occurs directly
after maint_task_isolate
_conveyor. Our ontology has been
populated using the directlyBefore
relationship, therefore reasoning has been used
to retrieve the property’s inverse
(directlyAfter). Note that this query
could be rewritten so that reasoning is not
used. However, we have chosen to use
directlyAfter so that the vocabulary in
the query matches the competency question.

192
C

.W
oods

etal./A
n

ontology
for

m
aintenance

procedure
docum

entation

Table 6

(Continued)

Technician competency questions
Query Explanation
4. Does my assigned procedure have any safety hazards that I need to be aware of?

SELECT ? h a z a r d
WHERE {

VALUES ? p r o c e d u r e _ p r o c e s s { spo : p r o c e d u r e _ p r o c e s s _ 0 0 1 }
? h a z a r d _ r e a l i z a t i o n _ p r o c e s s i s o : o c c u r s R e l a t i v e T o ? p r o c e d u r e _ p r o c e s s .
? h a z a r d _ r e a l i z a t i o n _ p r o c e s s i s o : r e a l i z e s ? h a z a r d .
? h a z a r d a spo : Hazard

}

This query selects all hazards that are realized
in a hazard_realisation_process
that occurs relative to
procedure_process _001 or in any of
its sub-processes. This query uses the SWRL
rule defined in Section 5.1.7 to ensure that
hazards realized at any level of the task
hierarchy are captured.

5. What corrective action does my procedure suggest on observation of a failure mode in my inspection?

SELECT ? c o r r e c t i v e _ m a i n t e n a n c e _ t a s k
WHERE {

? c o r r e c t i v e _ m a i n t e n a n c e _ t a s k cmto : a d d r e s s e s cmto : f u n c t i o n a l _ f a i l u r e _ 0 0 1 .
? c o r r e c t i v e _ m a i n t e n a n c e _ t a s k i s o : a c t i v i t y P a r t O f spo : p r o c e d u r e _ p r o c e s s _ 0 0 1 ;

a cmto : C o r r e c t i v e M a i n t e n a n c e T a s k .
}

This query selects all individuals of type
Corrective Maintenance Task that
address a functional_failure_001 and
are an activity part of
procedure_process_001. Since
Corrective Maintenance Task is a
defined class in OMPD, reasoning is required
to select all individuals of this type.

C
.W

oods
etal./A

n
ontology

for
m

aintenance
procedure

docum
entation

193
Table 7

SPARQL queries for engineer competency questions

Engineer competency questions
Query Explanation
6. There has been a change in the regulations and an existing permit needs to be modified. Which procedures use this permit and can I update the relevant
procedures?

DELETE {
spo : p e r m i t _ 0 0 1 ompd : r e q u i r e m e n t O f ? m a i n t e n a n c e _ p r o c e s s .
spo : pe rmi t_001 i s o : ha sRo le spo : r e s o u r c e _ r o l e .

}
INSERT {

spo : p e r m i t _ 0 0 2 ompd : r e q u i r e m e n t O f ? m a i n t e n a n c e _ p r o c e s s .
spo : pe rmi t_002 i s o : ha sRo le spo : r e s o u r c e _ r o l e .

}
WHERE {

spo : p e r m i t _ 0 0 1 ompd : r e q u i r e m e n t O f ? m a i n t e n a n c e _ p r o c e s s .
? m a i n t e n a n c e _ p r o c e s s a spo : M a i n t e n a n c e P r o c e s s

}

This query selects all maintenance
processes where permit_001 is
used in the process and replaces the
permit with permit_002. The query
uses class subsumption so that permits
are replaced regardless of being
represented at the procedure or task
level. This query also assigns a
ResourceRole to permit_002.

7. I would like to know which procedures describe an end of life event for my equipment. Which of my procedures contain a “replacement” task?

SELECT DISTINCT ? p r o c e d u r e _ p r o c e s s ? t a s k ? t e x t _ v a l u e
WHERE {

? t a s k _ d e s c r i p t i o n spo : h a s T e x t V a l u e ? t e x t _ v a l u e .
? t a s k _ d e s c r i p t i o n i s o : i s A b o u t ? t a s k .
? t a s k i s o : a c t i v i t y P a r t O f ? p r o c e d u r e _ p r o c e s s .
? p r o c e d u r e _ p r o c e s s a spo : M a i n t e n a n c e P r o c e d u r e P r o c e s s
FILTER (c o n t a i n s (s t r (? t e x t _ v a l u e) , ’ r e p l a c e ’))

}

This query finds all maintenance task
descriptions that contain the word
“replace” and selects the procedure
processes that these tasks are part of.
This query shows how ontologies can
work alongside natural language
processing techniques to answer
complex queries that are currently not
possible in industry.

194
C

.W
oods

etal./A
n

ontology
for

m
aintenance

procedure
docum

entation

Table 7

(Continued)

Engineer competency questions
Query Explanation
8. Does my inspection procedure check all the failure modes outlined in the Failure Modes and Effects Analysis (FMEA) that was used in my RCM?

SELECT ? f u n c t i o n a l _ f a i l u r e ? m a i n t a i n a b l e _ i t e m
WHERE {

VALUES ? f a i l u r e _ m o d e s _ i n _ f m e a { cmto : NOI } .
VALUES ? m a i n t a i n a b l e _ i t e m { cmto : m a i n t a i n a b l e _ i t e m _ 0 0 1 } .
VALUES ? p r o c e d u r e _ p r o c e s s { cmto : p r o c e d u r e _ p r o c e s s _ 0 0 1 }
? f u n c t i o n a l _ f a i l u r e cmto : a dd re s se dBy ? c o r r e c t i v e _ m a i n t _ t a s k ; a cmto : F u n c t i o n a l F a i l u r e .
? c o r r e c t i v e _ m a i n t _ t a s k i s o : a c t i v i t y P a r t O f ? p r o c e d u r e _ p r o c e s s .
? f a i l u r e _ m o d e i s o : i s A b o u t ? f u n c t i o n a l _ f a i l u r e
FILTER NOT EXISTS {

? f u n c t i o n a l _ f a i l u r e i s o : r e p r e s e n t e d I n ? f a i l u r e _ m o d e s _ i n _ f m e a
}

}

This query takes three inputs, these are
(1) a list of Failure Mode
Observations from a FMEA for a
given maintainable item, (2) a
Maintainable Item, and (3) a
Procedure Process (i.e. an
inspection procedure). The query
selects all functional failures that are
addressed by corrective maintenance
tasks in the procedure process. It will
then filter out all functional failures
that do not have a corresponding entry
in the FMEA (given as input 1).

C
.W

oods
etal./A

n
ontology

for
m

aintenance
procedure

docum
entation

195

Table 8

SPARQL queries for scheduler competency questions

Scheduler competency questions
Query Explanation
9. What resources to I require to execute this week’s procedures?

SELECT ? r e s o u r c e {
VALUES ? p r o c e d u r e _ p r o c e s s { spo : p r o c e d u r e _ p r o c e s s _ 0 0 1 spo : p r o c e d u r e _ p r o c e s s _ 0 0 2 }
? r e s o u r c e i s o : p a r t i c i p a n t I n ? p r o c e d u r e _ p r o c e s s ; a spo : Resource

}

This query is similar to Competency
Question 1. However, an additional reasoning
capability is demonstrated. That is, it selects
individuals of type Resource which is a
defined class in our ontology.
Note that the concept of “this week” is not
captured in this query. This is due to the static
nature of OMPD (explained in Section 4.3).
Instead, we assume that the query writer
knows what procedures need to be executed
“this week” and use this as an input to the
query.

196 C. Woods et al. / An ontology for maintenance procedure documentation

Fig. 13. Numbered procedure used for mapping to OMPD.

Mapping Description: In Fig. 14, we show that the maintenance procedure in Fig. 13 corre-
sponds to one individual of type Maintenance Procedure Document (1). This individual
(procedure_document_2M_ mech_inspection) is about a Maintenance Procedure
Process of the same name. This name has been extracted from the example procedure’s title. The
Maintainable Item to be inspected in the procedure is also described in the title of the docu-
ment (3). For confidentiality reasons, the equipment ID and the model ID of this maintainable item has
been omitted. A placeholder individual of type Maintainable Item (maintainable_item_1)
has been created to capture this information. Already, benefits of OMPD can be realised. Engineers,
schedulers and technicians will no longer need to trawl through PDF documents to find those that have
a specific equipment identifier in their title. Instead, a query can retrieve a maintainable item find all
instances of Maintenance Procedure Process that this maintainable item participates in.

The procedure document also contains two lines describing hazards associated with the procedure’s
execution (5). To map to OMPD, we have transformed the first row into three individuals of type Haz-
ard (i.e. hazard_harm_to_persons_by_electrical_impacts) and included the second
row as a fourth individual. The mapping shown in Fig. 14 displays how these hazards are realised in
the procedure_process_2M_Mech_ inspection individual. This implementation captures the
procedure-level hazard representation implemented by this process plant.

C. Woods et al. / An ontology for maintenance procedure documentation 197

Fig. 14. Hazards and maintainable item mapped from company 1’s procedure.

Fig. 15. Task hierarchy and corrective maintenance tasks mapped from company 1’s procedure.

Another table, named “Work Execution” exists on the first page of the document in Fig. 13. This table
contains Maintenance Tasks. Figure 15 shows how this table maps to OMPD’s generic task hierar-
chy. The generated hierarchy has two levels. Level 0 of the hierarchy contains high-level job descriptions
(6). Level 1 of the task hierarchy contains a finer breakdown of each job description. This information
is given in the “required action” column of the work execution table (8). For each task, the documenta-
tion contains unstructured text and (for steps 1 and 2) images that provide further information about the
task. These values have been assigned to a Task Description individual as shown in Fig. 16. The
content is captured using the hasText and hasImageUrl data properties in OMPD.

Further tasks may (optionally) be required if a “limit” (i.e. “obstruction free”) (7) is not met. In the ex-
ample procedure, there is a column called “corrective action taken” (9) but there are no task descriptions
for these actions. Rather they leave the corrective action up to the technician that sees the issues. For ex-
ample, the technician may see an obstruction in the pump when performing Task 1 and may write “raised

198 C. Woods et al. / An ontology for maintenance procedure documentation

Fig. 16. Task descriptions mapped from Company 1’s procedure.

Fig. 17. Functional failures mapped from Company 1’s procedure.

a subsequent notification” in that field. In OMPD, this field (8) corresponds to a Maintenance Task
that does not have a corresponding Maintenance Task Description in the document. Due to
the “static” philosophy of OMPD, we do not need to model whether or not this task is actually com-
pleted in practice. If necessary, OMPD can be imported into application-level ontologies that captures
this information. Rather, we treat these “empty” tasks as Level 0 tasks that occur directlyAfter the
task described in (6).

The final column to be mapped from the “Work Execution” table is “Limits” (8). We have taken the
antithesis of the text in this column to create two Functional Failure individuals in OMPD. For
example, we changed “Obstruction free” to “Obstruction”. We relate these two Functional Fail-
ures to the their corresponding corrective maintenance task via a addressed by relationship. These
mappings are shown in Fig. 17.

Mapping Limitations: This exercise requires manual extraction of the data from the PDF document
into the ontology. To extract this information automatically, natural language processing will need to
be used to interpret the information. Automatic extraction is under consideration in the maintenance
and technical language processing communities (Wu et al., 2022) but is out of scope for the present
paper. The next company that we examine automatically extracts information from PDF procedures with
sophisticated proprietary software. The extracted procedures are stored in a relational database schema.

6.2.2. Company 2: Procedure curation company
Further evaluation of OMPD is performed using data from a procedure curation company. This com-

pany extracts information from PDF procedures, like those presented in the previous sections, using a
hybrid (automated and manual) approach. The extracted information is stored in their own relational
database schema. They have kindly provided us with access to a development database that contains
thousands of procedures from various companies in their relational format. Since this database is for de-
velopment, not all of these procedures are production-ready. Some procedures are duplicates and some
contain incomplete, null or “test” values. Company 2 differs from Company 1 because they already

C. Woods et al. / An ontology for maintenance procedure documentation 199

Table 9

Summary statistics for Company 2’s procedure data

Statistic Name Statistic Value
Number of procedures 4405
Task hierarchy depth 2
Mean Number of level 0 tasks per procedure 39
Mean Number of level 1 tasks per level 0 Task 3
Max number of level 1 tasks 646

have a digital representation for procedures. Regardless, the reasoning capability of OMPD and the abil-
ity to answer competency questions without custom scripts and complex SQL queries is valuable for
Company 2.

In this section, we describe how we map this data to OMPD using Owlready2 (Lamy, 2017). We
cannot share the complete relational database schema or the data for confidentiality reasons. Instead, we
give an overview of the data and a description of the successes and limitations discovered in mapping
this data to OMPD. Table 9 gives a summary of the data contained in Company 2’s database. We have
counted the number of “level 0” tasks and “level 1” tasks to show the size and complexity of procedures
in the database. How the records in the database are mapped to “level 0” or “level 1” is explained in this
section.

The database contains 5350 “strategy task” records. These records represent activities that need to
be performed, according to a maintenance strategy. Of these activities, 4405 have associated “work
instructions” (i.e. a procedure). For each “work instruction” record, a maintenance procedure
document and corresponding maintenance procedure process individual is created using
an Owlready script. Converting a single “work order” record into these two concepts means that data
owners add data properties to the maintenance procedure document capture metadata from
the “work orders” table (i.e. createdAt, updatedAt). This gives a conceptual separation between the
documentation (i.e. the actual database record in this case), and the process that the record describes,
related to the maintenance procedure process.

Company 2’s database has two tables that represent tasks in a procedure. These tables are:”job oper-
ations”, and “step”. A job operation is a repeatable group of steps. In OMPD, these tables correspond
to a task hierarchy of two levels (where job operations are “level 0” tasks and steps are “level 1” tasks).
On inspection of the text representation of steps in the “step” table, we notice that it is possible to break
these steps into further parts by separating the text on full stops. However, we have kept the hierarchy
at two levels for simplicity. For each row in the “job operations” table and for each row in the “steps”
table, a Maintenance Task was created is Owlready2. In Company 2’s database, job operations are
reused in multiple procedures. However, in OMPD, we have to create a new task for each task/job oper-
ation and indicate that tasks are the same using our locallyEquivalentTo property. Although this
creates extra data and may seem redundant, we describe the reasoning for this in Section 5.1.2.

Similar to Company 1, resources are represented at the procedure level in Company 2’s database.The
resource types in Company 2’s database are tool, spare part (Component in OMPD), permit, skill
(Qualified Agent in OMPD) and personal protective equipment (PPE). PPE is the only resource
that does not have its own class in OMPD. Further work is required to determine if PPE is conceptually
different to a Tool in OMPD. For the purpose of this mapping, records in the PPE table mapped to the
Tool class.

We will explain the mapping of resources from Company 2’s database using a hypothetical scenario.
Assume that we have a procedure that requires two spanners and a welding machine. In the database,

200 C. Woods et al. / An ontology for maintenance procedure documentation

this information exists as two records. One for record “spanner” with a quantity of 2, and one for record
“welding machine” with a quantity of 1. In the database, if any procedure requires two spanners, they
will contain a foreign key relationship to this “spanner” record with a quantity of 2. To map this example
to OMPD, three unique individuals of type Tool are created. In OMPD, these tools are a partici-
pant in the procedure. Note that a Tool is only a Resource in OMPD if it is the hasRole some
Resource Role. For this example, we create two individuals of type Resource Role. These are
spanner role and welding machine role. The two spanners have the spanner role and
the welding machine has a welding machine role. During this mapping, we noticed an interest-
ing benefit of this pattern. We can now query to say, “how many of my procedures use a spanner” (i.e. an
individual that has the spanner role). In this example, we have mapped the required tools for each
procedure, while retaining quantity information.

While Resources in Company 2’s database are represented at the procedure level, Hazards as-
sociated with a procedure are represented at the task level (the second level of the task hierarchy). As
discussed in Section 5.1.7, OMPD can support this. In Owlready2, we iterate through all Hazards from
the database and create a unique individual of type Hazard and Hazard Realization Process.
We then create a occursRelativeTo relationship between the hazard realization process and one or
more MaintenanceTask individuals. As discussed in Section 5.1.7, the ontology can be queried to
check which procedures have which hazards.

On top of Hazards, there are some cases in Company 2’s database where “additional information”
or “advice” is appended to a step. This includes specific information such as torque settings and the
weight of an object. In our mapping, we simply include this information as a Maintenance Task
Description alongside the task’s text description. However, this company may wish to create an
application-level ontology module that can capture this information more thoroughly.

In this exercise, we demonstrated the applicability of OMPD to a different data source than that de-
scribed in Section 6.2.1. While we did see some practical limitations such as the ontology’s inability to
fully capture the “advice” table in Company 2’s database, most of the concepts in Company 2’s database
could be represented. Further work alongside Company 2 will involve an implementation of OMPD on
their development servers and an exploration of the practicalities of OMPD when in-use.

7. Discussion

7.1. Comparison with related ontologies

This section contains a concept-level comparison of OMPD with three related ontologies that were
introduced in Section 3. The purpose of this is to analyse where OMPD sits in relation to these previous
efforts and highlight the material impacts of different ontological choices.

Ontology 1. Procedure Representation Language (Kortenkamp et al., 2008). The Procedure Repre-
sentation Language (PRL) was developed in 2008 by NASA and is defined as an XML schema. PRL
was designed to shift NASA spacecraft operations gradually towards automation. Automation is also a
motivation for the generic task hierarchy in OMPD, thus PRL is a suitable ontology for comparison. As
reasoning capability was not a primary goal of the authors of PRL, we will perform a concept comparison
between the two ontologies.

In PRL, the top-level entity is a Procedure that has a human-readable title, can contain meta-
data such as “author, comments, revisions, etc” and “has as its body one or more steps” (Kortenkamp

C. Woods et al. / An ontology for maintenance procedure documentation 201

et al., 2008). In PRL, there is no separation between the Procedure Document (an information
content entity with an author, revisions, etc) and a Procedure Process (an activity containing
a series of steps). In OMPD, the classes Maintenance Procedure Document (a subclass of
iso:Information Content Entity) and Maintenance Procedure Process (a sub-
class of iso:Activity) capture this separation.

PRL is intended to be useable by both humans and machines. Steps in PRL (called Maintenance
Tasks in OMPD) are not organised in a hierarchical structure. Therefore, human-readable text asso-
ciated with each step can only be represented at one level of detail. Since the steps will need to be at
a level of detail understandable by machines, this human-readable text is likely far too detailed for an
experienced technician. The generic task hierarchy in OMPD combats this issue. Using this feature of
the ontology, data-owners are able to choose the level of granularity required for a specific application.

In PRL, a Block is a set of Instructions that is required to accomplish a step. These blocks
can be “ordered” or “unordered”. This feature provides flexibility in how blocks are executed and is not
currently supported in OMPD. In OMPD, a linear sequential structure is enforced on Maintenance
Tasks (discussed in Section 5.1.4). We recognise that, in the future, as industries move towards auto-
mated machinery, this could be a useful feature of OMPD and should be the subject of future enquiry.
However, this is not a feature of the existent industrial maintenance procedures demonstrated in this
paper. Therefore, asynchronous task execution is currently an unnecessary competency for OMPD.

PRL is a powerful representation language. NASA has put much thought into the information that
needs to be captured for machines and humans to work alongside each other in a semi-automated way.
We design OMPD to meet a different industrial need (described in Sections 2 and 3) and we aim to
represent the static information that is currently stored in maintenance procedure documentation in in-
dustry. However, in the future, as further temporal modules are added to OMPD, much inspiration can
be drawn from PRL.

Ontology 2. A procedure ontology for advanced diagnosis of process systems (Németh et al. (2010)).
Németh et. al’s ontology (Ontology 2) was designed for process plants, the same domain as the proce-
dures in Figs 1 and 2. Ontology 2, however, captures operating, safety and control procedures in these
process plants rather than maintenance procedures. Ontology 2 models the phenomena where functional
failures cause an operating procedure to cease execution. When an equipment failure causes a procedure
to “stop”, Ontology 2 helps data-owners to understand the cause of the failure. To do this, Ontology 2
captures a link between operating procedures and FMEA.

This link to FMEA is significant because we identify a similar link in our design of OMPD (discussed
in Section 5.2). However, unlike operating procedures, maintenance procedures are intended to identify
equipment failures or fix equipment when a failure has already occurred. This is fundamentally different
to Ontology 2 because these equipment failures do not mean that the procedure execution will cease.
For example, when performing an inspection procedure for pumps, a technician could find a leak in the
pump and take the “corrective action” of informing their supervisor. The technician will then continue
the inspection procedure to check for other potential failures.

Ontology 2 relies on relationships such as hasSteps, hasAim and hasComponentOrState.
This is a common consequence of not conforming to an upper ontology and greatly limits the ontology’s
re-usability. These relationships also limit the semantic information stored in the ontology and makes it
difficult for new users to query the ontology. In addition, the Ontology 2 relies heavily on data properties
such as status and action type. If the various action types and status options are represented
as classes or individuals in the ontology instead, it greatly improved the reasoning capability of the
ontology.

202 C. Woods et al. / An ontology for maintenance procedure documentation

Ontology 2 demonstrates the capability of ontologies to integrate disparate industrial data sources.
This integration can lead to new insights that are not currently possible in industry. However, a difference
in perspective means that the applicability of Ontology 2 for our use case is limited. Furthermore, it is
difficult to re-use parts of the ontology as it is not aligned to an upper ontology.

Ontology 3. Rule-based Mechanism to Optimise Asset Management Using Technical Documentation
Ontology (Koukias and Kiritsis, 2015). Koukias and Kiristsis’s ontology (Ontology 3) is designed to
capture industrial technical documentation. The use case for Ontology 3 is to ensure that both humans
and computers have the same understanding of the contents of technical documentation. This use case
is similar to that of PRL (Ontology 1) but Ontology 3 was also designed to support semantic reasoning.
Ontology 3 was chosen for analysis because it contains many concepts that are present in OMPD.

Unlike Ontology 1 and Ontology 2, this Ontology 3 models Resources and Accessories that are
used in the procedure (similar to OMPD). However, it is unclear what separates an Accessory from
a Resource and whether this distinction is necessary for its use case. These classes are also asserted
classes in Ontology 3. As discussed in 6.1.5, this is likely to introduce difficulty when individuals are
added to the ontology.

Similar to Ontology 2, Ontology 3 does not conform to an upper ontology thus relies on many custom
object properties. These include uses_accessory and uses_resource and this makes it hard to
extend or reuse the ontology. Instead, OMPD uses more generic relationships. For example, partic-
ipantIn relationship from ISO 15926 Part 14 links resources to a procedure process.

This problem is further realised in the axiom, Procedure performs_activity Activity.
This implies that the procedure itself performs an activity. In reality some agent will perform that ac-
tivity. This agent may be a person, computer program or piece of automated equipment). In OMPD,
the relationship between a Maintenance Process and a Maintenance Activity is hasAc-
tivityPart from ISO 15926 Part 14. This relationship and its mapping to our upper ontology has
enabled much of the reasoning that we describe in Section 6.1.

Ontology 3 is similar to OMPD because it models some of the same concepts. Capturing resources and
their relationship to technical documentation is especially useful for industrial users. However, narrow
custom relationships that are not aligned to an upper ontology limits its applicability to OMPD’s use
case.

On Task Preconditions and Postconditions. All three examined ontologies have the concept of a Pre-
condition for some (or all) tasks. Ontology 1 and Ontology 2 use preconditions to link tasks together.
Ontology 3 uses has_next_element to do this but has a class called Conditional Branch that
relies on a precondition. In our experience, this information is not stored in existing maintenance proce-
dures used in industry, therefore it has not been included in OMPD. Furthermore, executing a procedure
according to preconditions assumes that the procedure reader has information about the live-on goings
of the maintenance environment. However, if further ontology modules are added to OMPD to cap-
ture additional data on top of what is currently stored in maintenance procedures in industry, the three
ontologies can be used to inform these decisions.

7.2. Contributions for the applied ontology community

The presented ontology contains novelties that stem from our commitment to create a model that
considers the (sometimes conflicting) goals of both industry and academia. We balance rigorous onto-
logical modelling with an understanding of what our users will accept and use in practice. In this section,

C. Woods et al. / An ontology for maintenance procedure documentation 203

we summarise the implications that this modelling perspective had on the outcomes of this work. Our
user-focused perspective creates implications for the ontology’s scope, schematic design and degree of
axiomatisation. Each of these implications contain ontological questions for future consideration in the
applied ontology community.

When determining the scope of OMPD, we consider our design goal of modelling information cur-
rently stored in maintenance procedure documentation in industry. Maintenance procedure documents
are engineering artifacts where the level of abstraction has been given a-priori. The information held in
these documents has been optimised over time, and tested in practice as they are used in these organ-
isations. The information is accessible to engineers, and usable by schedulers and technicians. When
analysing the data contained in these procedures, we uncovered interesting omissions; knowledge that
we might expect these documents to contain from an ontological perspective, and knowledge we may
consider to best practice in a process specification, is missing. For example, no information about task
pre- and post-conditions is included in these documents. This is likely due to their inherent uncertainty.
For instance, if a pump is serviced, a post-condition that we may like to specify is that the pump is
fault-free. In practice this might not be the case (where the pump might be more likely to fail if it has
not been put back together properly after a service). From an ontological perspective, it would be nice
to build a full causal-physical model of an engineer’s mental model surrounding procedures. However,
our analysis has shown us that this information is not accessible to engineers and requiring this infor-
mation for an OMPD implementation would be an enormous barrier to the industrial acceptance of our
model. This design implication (based on our perspective throughout this paper) is a demonstration of a
potential disconnect between ontology engineering processes and real-world use of data.

In Section 5.1.2, we discuss task identity and task local equivalence. We examine whether a Main-
tenance Task should be considered separately from its context within a procedure. We describe
what we call the “identity approach” and the “local equivalence approach”. Both approaches are in-
formationally similar, but have significant impacts on how information is mapped to the ontology, and
how the ontology is used in practice. In OMPD we use the “local equivalence” approach despite the
data-redundancy trade-offs. We show that the “local equivalence” approach reduced the schematic-
complexity of OMPD and matches the mental model of the engineer (where procedures are considered in
isolation). For readers interested in processes and identity, this discussion raises interesting ontological
issues that can be the subject of future work.

Finally, consideration of the end-users impacted the degree of axiomatisation in OMPD. In many
cases, we rely on the assumptions of the foundational ontology and only place constraints where we
deem they are necessary. This had an impact on the assertions that we could make about various concepts.
For example, in Table 3 there are Tools, Permits and Materials. Each of these are described as Objects
that have some ResourceRole. No other axioms are included to further describe what separates a
Tool from a Material. Ontologically, we would like to ensure that these concepts are distinctive
from one another to ensure that classes are not misused. However, the number of necessary constraints
for an item to be considered a Tool or a Material in one organisation is likely different to another
organisation. In one organisation a tool might need an OEM (Original Equipment Manufacturer). This
restriction may be different in another organisation. We cannot make a decision about what separates a
Tool from a Material at a domain-ontology level, because we risk excluding large portions of our user
base. Despite being a domain-level ontology, some of the concepts read more like foundational-level
concepts. This work raises interesting issues about the level of axiomatisation expected at certain levels
of ontological modelling and how these expectations align with the real-world use of the ontology.

204 C. Woods et al. / An ontology for maintenance procedure documentation

8. Conclusion and future work

In this paper, we have introduced a design for OMPD and demonstrated its applicability to real world
industry use cases. OMPD conforms to the ISO 15926 Part 14 upper ontology to ensure that it is generic
and reusable across many industrial organisations. Having a “static” philosophy to guide its design, we
ensure that OMPD models information that is currently stored in procedure documentation in industry.
Finally we have demonstrated competency questions to answer typical queries asked by three core roles
within a maintenance team, technicians, engineers and schedulers.

The broader focus of our research is to find the best ways to design and build user interfaces to be used
by technicians who execute maintenance procedures in their work. One of the key requirements that has
emerged in our analysis is that ontologies should be able to “adapt” to a user’s needs (i.e. domain ex-
pertise). However, from our exploration and first-hand experience, we have discovered that industrial
procedure data is not currently in a state where these types of developments are possible. This ontology
is a step towards representing industrial maintenance procedures in a rigorous, standardised manner. In
future work, we intend to integrate this ontology with an adaptive user interface for maintenance proce-
dures. We can use the ontology’s generic task hierarchy to display tasks at different levels of granularity
to the users with different levels of domain expertise.

Despite our intended use of the ontology, OMPD has been designed such that it can be used by any
organisation that currently manage maintenance procedures, regardless of their technological goals. Fur-
ther avenues for future work include an examination of the temporal aspects of procedures and creating
a OWL-Lite version of the ontology to further support industrial use.

Machine-readable procedures will improve the utility, findability and maintainability of procedures
that are already being used in industry every day. This digital reform of procedures is a positive and
necessary step towards preparing organisations for Industry 4.0 ready maintenance systems.

Acknowledgements

This research is supported by an Australian Government Research Training Program (RTP) Scholar-
ship. The authors would like to acknowledge a mining company for access to industrial maintenance
procedures to assist in the work reported in this paper. The authors would also like to acknowledge the
directors at OnPlan Technologies Pty Ltd for access to industrial data used to inform this paper. Finally,
this work would not have been possible without funding from the BHP Fellowship for Engineering for
Remote Operations – supporting community projects in areas in which BHP operates.

References

Arp, R., Smith, B. & Spear, A.D. (2015). Building Ontologies with Basic Formal Ontology. MIT Press.
Batres, R., West, M., Leal, D., Price, D., Masaki, K., Shimada, Y., Fuchino, T. & Naka, Y. (2007). An upper ontology based on

ISO 15926. Computers & Chemical Engineering, 31(5–6), 519–534. doi:10.1016/j.compchemeng.2006.07.004.
EFNMS (2017). Maintenance – Maintenance Terminology. Standard En 13306, the European Federation of National Mainte-

nance Societies.
Ferrario, R. & Grüninger, M. (2020). Proposed guidelines for publishing ontology papers. Applied Ontology, 15(1), 1–5. doi:10.

3233/AO-200227.
Fiorentini, X., Paviot, T., Fortineau, V., Goblet, J.-L. & Lamouri, S. (2013). Modeling nuclear power plants engineering data

using ISO 15926. In Proceedings of 2013 International Conference on Industrial Engineering and Systems Management
(IESM) (pp. 1–6). IEEE.

https://doi.org/10.1016/j.compchemeng.2006.07.004
https://doi.org/10.3233/AO-200227
https://doi.org/10.3233/AO-200227

C. Woods et al. / An ontology for maintenance procedure documentation 205

Forssell, J.H., Lupp, D.P., Skjæveland, M.G. & Thorstensen, E. (2017). Reasonable macros for ontology construction and
maintenance. In CEUR Workshop Proceedings (Vol. 1879). Technical University of Aachen.

Gangemi, A. (2010). Submissions: Sequence. http://ontologydesignpatterns.org/wiki/Submissions:Sequence.
Gibaud, B., Forestier, G., Feldmann, C., Ferrigno, G., Gonç, P., Haidegger, T., Julliard, C., Katić, D., Kenngott, H., Maier-

Hein, L., et al. (2018). Toward a standard ontology of surgical process models. International journal of computer assisted
radiology and surgery, 13(9), 1397–1408. doi:10.1007/s11548-018-1824-5.

Glimm, B., Horrocks, I., Motik, B., Stoilos, G. & Wang, Z. (2014). HermiT: An OWL 2 reasoner. Journal of Automated
Reasoning, 53(3), 245–269. doi:10.1007/s10817-014-9305-1.

Gruninger, M. & Menzel, C. (2003). In The Process Specification Language (PSL) Theory and Applications. AI Magazine
(Vol. 24, pp. 63–63).

Hitzler, P. & Krisnadhi, A. (2018). A tutorial on modular ontology modeling with ontology design patterns: The cooking recipes
ontology. ArXiv preprint. arXiv:1808.08433.

Hodkiewicz, M., Klüwer, J.W., Woods, C., Smoker, T. & French, T. (2020). Digitalization and reasoning over engineering
textual data stored in spreadsheet tables. IFAC-PapersOnLine, 53(3), 239–244. doi:10.1016/j.ifacol.2020.11.039.

Hodkiewicz, M., Klüwer, J.W., Woods, C., Smoker, T. & Low, E. (2021a). An ontology for reasoning over engineering textual
data stored in FMEA spreadsheet tables. Computers in Industry, 131, 103496. doi:10.1016/j.compind.2021.103496.

Hodkiewicz, M., Lukens, S., Brundage, M.P. & Sexton, T. (2021b). Rethinking maintenance terminology for an industry 4.0
future. International Journal of Prognostics and Health Management, 12(1). doi:10.36001/ijphm.2021.v12i1.2932.

IEC (2016). Dependability Management – Maintenance and Maintenance Support. Standard AS IEC 60300.3.14. Geneva,
Switzerland: International Electrotechnical Commission.

International Organization for Standardization (2018a). ISO/TS 15926-12 Industrial automation systems and integration – In-
tegration of life-cycle data for process plants including oil and gas production facilities – Part 12: Life-cycle integration
ontology represented in Web Ontology Language (OWL). Technical report ISO/TS 15926-12:2018.

International Organization for Standardization (2019). ISO 15926-14: Industrial automation systems and integration – Integra-
tion of life-cycle data for process plants including oil and gas production facilities – Part 14: Data model adopted for OWL
2 Direct Semantics. Community Draft.

ISO/TC184/SC4/WG3 (2020). Industrial automation systems and integration – Integration of life-cycle data for process plants
including oil and gas production facilities – Part 14: Industrial top-level ontology. Working Draft Proposal, https://readi-jip.
org/wp-content/uploads/2020/10/ISO_15926-14_2020-09-READI-Deliverable.pdf.

Jarrar, M. & Ceusters, W. (2017). Classifying processes and basic formal ontology. In Proceedings of the International Confer-
ence on Biomedical Ontology (ICBO 2017).

Jordan, A., Selway, M., Grossmann, G., Mayer, W. & Stumptner, M. (2014). Ontology-based process modelling for design. In
Design Computing and Cognition (DCC’14) (pp. 1–20). Springer.

Kanse, L., Parkes, K., Hodkiewicz, M., Hu, X. & Griffin, M. (2018). Are you sure you want me to follow this? A study of
procedure management, user perceptions and compliance behaviour. Safety Science, 101, 19–32. doi:10.1016/j.ssci.2017.
08.003.

Karray, M., Otte, N., Rai, R., Ameri, F., Kulvatunyou, B., Smith, B., Kiritsis, D., Will, C., Arista, R., et al. (2021). The industrial
ontologies foundry (IOF) perspectives.

Karray, M.H., Ameri, F., Hodkiewicz, M. & Louge, T. (2019). ROMAIN: Towards a BFO compliant reference ontology for
industrial maintenance. Applied Ontology, 14(2), 155–177. doi:10.3233/AO-190208.

Katsumi, M. & Grüninger, M. (2016). What is ontology reuse? In Formal Ontologies in Information Systems FOIS (pp. 9–22).
Kiritsis, D. (2013). Semantic technologies for engineering asset life cycle management. International Journal of Production

Research, 51(23–24), 7345–7371. doi:10.1080/00207543.2012.761364.
Klüwer, J.W., Skjæveland, M.G. & Valen-Sendstad, M. (2008). ISO 15926 templates and the Semantic Web. In Position Paper

for W3C Workshop on Semantic Web in Energy Industries; Part I: Oil and Gas.
Kortenkamp, D., Bonasso, R.P., Schreckenghost, D., Dalal, K.M., Verma, V. & Wang, L. (2008). A procedure representation

language for human spaceflight operations. In Proceedings of the 9th International Symposium on Artificial Intelligence,
Robotics and Automation in Space (i-SAIRAS-08).

Koukias, A. & Kiritsis, D. (2015). Rule-based mechanism to optimize asset management using a technical documentation
ontology. IFAC-PapersOnLine, 48(3), 1001–1006. doi:10.1016/j.ifacol.2015.06.214.

Kwon, S., Kim, B., An, K., Ryu, D., Mun, D. & Han, S. (2018). Standardized exchange of plant equipment and materials data
based on ISO 15926 methodology in nuclear power plants. Annals of Nuclear Energy, 118, 185–198. doi:10.1016/j.anucene.
2018.04.001.

Lamy, J.B. (2017). Owlready: Ontology-oriented programming in Python with automatic classification and high level constructs
for biomedical ontologies. Artificial Intelligence in Medicine, 80, 11–28. doi:10.1016/j.artmed.2017.07.002.

Lee, J., Bagheri, B. & Kao, H.-A. (2015). A cyber-physical systems architecture for Industry 4.0-based manufacturing systems.
Manufacturing letters, 3, 18–23. doi:10.1016/j.mfglet.2014.12.001.

http://ontologydesignpatterns.org/wiki/Submissions:Sequence
https://doi.org/10.1007/s11548-018-1824-5
https://doi.org/10.1007/s10817-014-9305-1
http://arxiv.org/abs/arXiv:1808.08433
https://doi.org/10.1016/j.ifacol.2020.11.039
https://doi.org/10.1016/j.compind.2021.103496
https://doi.org/10.36001/ijphm.2021.v12i1.2932
https://readi-jip.org/wp-content/uploads/2020/10/ISO_15926-14_2020-09-READI-Deliverable.pdf
https://readi-jip.org/wp-content/uploads/2020/10/ISO_15926-14_2020-09-READI-Deliverable.pdf
https://doi.org/10.1016/j.ssci.2017.08.003
https://doi.org/10.1016/j.ssci.2017.08.003
https://doi.org/10.3233/AO-190208
https://doi.org/10.1080/00207543.2012.761364
https://doi.org/10.1016/j.ifacol.2015.06.214
https://doi.org/10.1016/j.anucene.2018.04.001
https://doi.org/10.1016/j.anucene.2018.04.001
https://doi.org/10.1016/j.artmed.2017.07.002
https://doi.org/10.1016/j.mfglet.2014.12.001

206 C. Woods et al. / An ontology for maintenance procedure documentation

Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A. & Schneider, L. (2003). The WonderWeb Library of Founda-
tional Ontologies and the DOLCE Ontology. WonderWeb Deliverable D18, Final Report vr. 1.0.

Moubray, J. (2001). Reliability-Centered Maintenance. Industrial Press Inc.
Nagy, L., Ruppert, T. & Abonyi, J. (2021). Ontology-Based Analysis of Manufacturing Processes: Lessons Learned from the

Case Study of Wire Harness Production. Complexity, 2021.
Németh, E., Hangos, K.M. & Lakner, R. (2010). A procedure ontology for advanced diagnosis of process systems. Journal of

Intelligent & Fuzzy Systems, 21(1, 2), 19–31. doi:10.3233/IFS-2010-0432.
OntoSPM Collaborative Action (2019). Ontologies for Representing Surgical Procedure Models. https://ontospm.univ-rennes1.

fr/doku.php?id=ontology.
Pérez, J., Arenas, M. & Gutierrez, C. (2009). Semantics and complexity of SPARQL. ACM Transactions on Database Systems

(TODS), 34(3), 1–45. doi:10.1145/1567274.1567278.
POSC Caesar Association (2022). PCA Reference Data and Services. https://rds.posccaesar.org/ontology/lis14/ont/core/.
Ribeiro, R., Batista, F., Pardal, J.P., Mamede, N.J. & Pinto, H.S. (2006). Cooking an ontology. In International Conference on

Artificial Intelligence: Methodology, Systems, and Applications (pp. 213–221). Springer.
Sinogas, P., Vasconcelos, A., Caetano, A., Neves, J., Mendes, R. & Tribolet, J.M. (2001). Business processes extensions to

UML profile for business modeling. In ICEIS (Vol. 2, pp. 673–678).
Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A. & Katz, Y. (2007). Pellet: A practical OWL-DL reasoner. Journal of Web

Semantics, 5(2), 51–53. doi:10.1016/j.websem.2007.03.004.
Skjæveland, M.G., Forssell, H., Klüwer, J.W., Lupp, D., Thorstensen, E. & Waaler, A. (2019). Pattern-based ontology design

and instantiation with Reasonable Ontology Templates. A Higher-Level View of Ontological Modeling, 69.
Skjæveland, M.G., Gjerver, A., Hansen, C.M., Klüwer, J.W., Strand, M.R., Waaler, A. & Øverli, P. (2018). Semantic material

master data management at aibel. In International Semantic Web Conference (P&D/Industry/BlueSky).
Smith, B., Malyuta, T., Rudnicki, R., Mandrick, W., Salmen, D., Morosoff, P., Duff, D.K., Schoening, J. & Parent, K. (2013).

IAO-Intel: An ontology of information artifacts in the intelligence domain.
Souza, É.F., Falbo, R.A. & Vijaykumar, N. (2013). Ontologies in software testing: A systematic literature review. In VI Seminar

on Ontology Research in Brazil (p. 71).
Standards Australia (2017). AS IEC 61882:2017 Hazard and Operability Studies (HAZOP Studies) – Application Guide. Stan-

dard AS IEC 61882:2017. Standards Australias, Sydney, Australia.
Studer, R., Benjamins, V.R. & Fensel, D. (1998). Knowledge engineering: Principles and methods. Data & Knowledge Engi-

neering, 25(1–2), 161–197. doi:10.1016/S0169-023X(97)00056-6.
Tao, F., Zhang, H., Liu, A. & Nee, A.Y. (2018). Digital twin in industry: State-of-the-art. IEEE Transactions on Industrial

Informatics, 15(4), 2405–2415. doi:10.1109/TII.2018.2873186.
White, S.A. (2004). Introduction to BPMN. IBM Cooperation (Vol. 2).
Woods, C., Griffin, M.A., French, T. & Hodkiewicz, M. (2021b). Using job characteristics to inform interface design for

industrial maintenance procedures. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(pp. 1–10).

Woods, C., Selway, M., Hodkiewicz, M., Ameri, F., Stumptner, M. & Sobel, W. (2021a). On the notion of maintenance state for
industrial assets. In CEUR Workshop Proceedings (Vol. 2969). Rheinisch-Westfaelische Technische Hochschule Aachen*
Lehrstuhl Informatik V.

Wu, H., French, T., Liu, W. & Hodkiewicz, M. (2022). Automatic semantic knowledge extraction from electronic forms. In Pro-
ceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability. arXiv:1748006X221098272.

https://doi.org/10.3233/IFS-2010-0432
https://ontospm.univ-rennes1.fr/doku.php?id=ontology
https://ontospm.univ-rennes1.fr/doku.php?id=ontology
https://doi.org/10.1145/1567274.1567278
https://rds.posccaesar.org/ontology/lis14/ont/core/
https://doi.org/10.1016/j.websem.2007.03.004
https://doi.org/10.1016/S0169-023X(97)00056-6
https://doi.org/10.1109/TII.2018.2873186
http://arxiv.org/abs/arXiv:1748006X221098272

	Introduction
	Background
	Engineer's perspective
	Scheduler's perspective
	The technician's perspective

	Past works
	Ontological choices
	Ontological choice 1: Which foundational ontology?
	Ontological choice 2: Specificity vs generality
	Ontological choice 3: Scope and modularisation

	Implementation
	Concepts in SPO
	Documentation and processes
	Tasks in context
	Considering procedure executions
	Task sequencing
	The generic task hierarchy
	The role of resources
	Entities at the procedure level and the task level

	Concepts in CMTO

	Evaluation
	Competency question execution
	Data-driven validation
	Company 1: Continuous manufacturing (process) plant
	Company 2: Procedure curation company

	Discussion
	Comparison with related ontologies
	Contributions for the applied ontology community

	Conclusion and future work
	Acknowledgements
	References

