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ABSTRACT 

From the concept exploration for a weapon system to 
training simulators, from hardware-in-the-loop simulators 
to mission planning tools, trajectory simulations are used 
throughout the life cycle of a weapon system. A trajectory 
simulation can be defined as a computational tool to calcu-
late the flight path and flight parameters of munitions. 
There is a wide span of trajectory simulations differing 
widely with respect to their performance and fidelity char-
acteristics, from simple point-mass simulations to six-
seven degrees of freedom hardware-in-the-loop missile 
simulations. From our observations, it is a common prac-
tice in the industry that developments of these simulations 
are carried out as isolated projects although they rely on 
the same body of knowledge. We envision an ontology that 
will capture the common knowledge in trajectory simula-
tion domain and make domain knowledge available for re-
use. Trajectory Simulation Ontology, dubbed TSONT, is 
being developed to realize this vision.  

1 INTRODUCTION 

We present a formal ontology developed for trajectory 
simulations, called Trajectory Simulation Ontology 
(TSONT). The aim of this work is the construction of a re-
use infrastructure to be used in the development of a vari-
ety of trajectory simulations. The ontology is regarded as 
the domain model component of the reuse infrastructure. It 
is being developed to be a reusable knowledge library on 
trajectory simulations. 

Trajectory simulation, in the present context, means 
computing the flight path and other parameters, such as 
orientation, and angular rates of the munition from the start 
to the end of its motion (U.S. Department of Defense 
1995). Trajectory simulation deals with mathematical 
models of the behavior of munition and its subsystems dur-
ing its operation. The equations of motion determine the 
acceleration, velocity and position of the munition result-
ing from forces and moments due to gravity, thrust and 
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aerodynamics. The guidance and control models account 
for subsystems such as the control system. 

Trajectory simulations are widely used throughout the 
product lifecycle of weapon systems. The objective is to 
improve the understanding of various aspects of the 
weapon system for a variety of tasks, such as specifying 
munition performance requirements, designing munitions, 
optimizing the design parameters, assessing munition per-
formance, teaching users the correct use of weapon system, 
and fire control. 

Early ontology development in technical domains was 
carried out in mid 90’s; consider, for example OLMECO 
(mechatronic design components) and KACTUS (technical 
domain ontologies). Ontologies were regarded as reusable 
knowledge libraries (Benjamin et al. 1996) (Borst and Ak-
kermans 1997) (Borst et al.1995) (Schreiber, Wielinga and 
Jansweijer 1995).  The term is borrowed form philosophy, 
where it means the systematic exploration of existence. 
First, Neches defined ontology as the basic terms and rela-
tions comprising the vocabulary of a topic area as well as 
the rules for combining terms and relations to define exten-
sions to the vocabulary. Later, following (Gruber 1993) on-
tology is defined as formal and explicit specification of a 
shared conceptualization. See (Corcho 2003) for a survey 
of ontology definitions as well as methodologies and tools. 

For the trajectory simulation ontology, we use OWL 
(Web Ontology Language) as ontology definition language 
and Protégé as the Ontology Development Environment. 

In the rest of this paper we first discuss the objectives 
of this study. After discussing the basics of ontologies, we 
present our Trajectory Simulation Ontology.  

2 OBJECTIVES 

Each particular trajectory simulation requires a cus-
tomized approach. The level of sophistication of simula-
tions varies greatly depending on the application. These 
levels range from unsophisticated two dimensional models 
to very detailed six-seven degree of freedom models that 
include hardware-in-the-loop and seeker simulations.  
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The requirements of a given trajectory simulation are 
derived from the objectives of the intended user, who 
might be interested in the analysis, development, procure-
ment and operation of some munition. 

We observe, it is common practice to develop trajec-
tory simulations for each and every application again and 
again. Considering the complexity of the modeled systems 
and requirements of the simulation application, the risk of 
failure in such projects is considered to be high. Besides 
the risk of failure, expenditure of intellectual labor to study 
similar problems of the same domain is a waste. Another 
concern is the quality of the products of each development. 
The verification in trajectory simulation project requires a 
great deal of effort due to the demand for experts’ time and 
flight data, which are both expensive. Implementing a sys-
tematic software reuse will help make best use of past suc-
cessful efforts. 

Research on software reuse suggests that the success 
of reuse is related to the use of artifacts in the context of a 
domain, where a domain is defined as the area in which an 
organization does business (Favaro 1995). Knowledge 
about the problem domain is often implicit and informal, 
while reusable information must be represented explicitly 
and formally. The term reuse infrastructure refers to the in-
formation that must be made available to the software de-
veloper, together with auxiliary information needed to lo-
cate and manipulate it. Developing a reuse infrastructure 
for a problem domain is the essence of domain engineer-
ing. Domain engineering comprises three fundamental 
processes: domain analysis, infrastructure specification, 
and infrastructure implementation (Fablo, Guizzardi and 
Duarte 2002). 

Domain analysis is the identification, acquisition and 
evolution of reusable information on a problem domain to 
be reused in software specification and construction 
(Arango 1989). Infrastructure specification is the selection 
and organization of reusable information in the model to fit 
the patterns of reuse in the environment of the user. As a 
result, an architecture for reusable information, such as a 
library of programs, or a database scheme, is specified. The 
infrastructure specification, together with the semantics 
captured by the domain model, is input to the infrastructure 
implementation step, which produces and tests the speci-
fied components. 

The purpose of domain analysis is to construct a 
model of the problem domain. Then the domain model 
should serve as: 

 
• An authoritative resource of reference when am-

biguities arise in the analysis of the problems or 
later during the implementation of reusable com-
ponents. 

• A repository of shared knowledge for learning and 
communication. 
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• A specification of reusable components for the 
developer. 

 
As the information is gathered during domain analysis, 

one faces the problem of representing the knowledge for 
ease of both human understanding and machine readability. 
The latter requires a formal way to represent the knowl-
edge. The contemporary ontology development languages 
all have formal semantics. Thus, the approach adopted in 
this study is the use of ontologies for knowledge represen-
tation. 

In our view the reusable assets that are produced in 
each activity of domain engineering are correlated with the 
abstraction levels of Model Driven Architecture (MDA) of 
Object Management Group (OMG) (Kleppe, Bast and 
Warmer 2003). Ontology is regarded as Computation In-
dependent Model (CIM). The abstract software design pro-
duced in infrastructure specification is regarded as Plat-
form Independent Model (PIM). The detailed software 
designs and reusable libraries developed in infrastructure 
implementation are regarded as Platform Specific Model 
(PSM) and Code. The platform can be a particular simula-
tion environment, such as MATLAB. 

3 ONTOLOGIES AND MORE 

An ontology may take variety of forms, but necessar-
ily it will include a vocabulary of terms and some specifi-
cation of their meaning. This includes definitions and indi-
cation of how concepts are inter-related which collectively 
impose a structure on a domain and constrain possible in-
terpretations of terms (Uschold and King 1995). Knowl-
edge in ontologies is formalized using five kinds of com-
ponents: concepts, relations, functions, axioms and 
instances (Gruber 1993).  

The basic idea behind developing an ontology as the 
domain model of the trajectory simulation domain is first 
to create a common vocabulary that is agreed among peo-
ple working on trajectory simulations. Explication and sys-
tematization are the other goals of this effort. Ontology 
building can also be viewed as the elucidation of the im-
plicit assumptions that hamper the knowledge reuse. It is 
also expected to create a backbone for systematization of 
knowledge on how to build a trajectory simulation. Vo-
cabulary and knowledge systematization has brought us 
more or less standardized terms/concepts. (Mizoguchi 
2001). 

In the last decade ontologies have been used for vari-
ety of engineering applications (Benjamin et al. 1996) 
(Borst and Akkermans 1997) (Borst et al.1995) (Schreiber, 
Wielinga and Jansweijer 1995) (Ciocoiu, Gruninger and 
Nau 2001) (Durak, Mahmutyazicioglu and Oguztuzun 
2005) (Avci, Kayir and Oguztuzun 2005). We aim to use 
the ontology as a basis for specifying the requirements for 
trajectory simulation applications. The benefits of this ap-
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proach include documentation, maintenance, reliability, 
knowledge reuse and also interoperability of the developed 
applications (Falbo, Guizzardi and Duarte 2002). 

Among many ontology languages proposed since early 
attempts of ontology development, OWL-Web Ontology 
Languge is selected in this study as the working language 
(Antoniou and Van Harmelen 2004). 

One ontology development methodology suggests af-
ter defining the scope of the ontology and considering the 
possible reuse opportunities of other ontologies, one should 
enumerate basic terms in the domain. Then after defining 
the classes and class hierarchy, one should define proper-
ties of the classes and the facets of these properties. At the 
last step one can create the instances of the classes (indi-
viduals). The process is typically executed in an iterative 
manner (Noy and McGuinnes 2001). We applied roughly  
the same sequence. In each iteration we extended the scope 
of the ontology. Between iterations, prototype trajectory 
simulations are built depending on the ontology to validate 
the structure and peer reviews are handled with domain 
experts before expanding the ontology. 

There are mathematical models in the domain that ac-
count for some kind of behavior or some law. Capturing 
these models in a systematic way and representing them as 
an integrated part of the ontology is an important concern. 
At this juncture, the DAVE-ML effort of NASA for the 
benefit of flight modeling and simulation community, has 
been leveraged (Jackson et al. 2004). 

DAVE-ML (Dynamic Aerospace Vehicle Exchange 
Markup Language) is a proposed standard method for the 
interchange of aerospace dynamic models. It is aimed to 
provide a programming language independent representa-
tion of aerodynamics, mass/inertia, propulsion and guid-
ance, navigation and control laws of a vehicle. DAVE-ML, 
which is XML-based, relies on MathML as a means to de-
scribe mathematical relations. MathML is an XML-based 
language for describing mathematics for machine to ma-
chine communication. We take advantage of DAVE-ML to 
incorporate mathematical models into the ontology. (An 
example is presented in section 4.2.) Simulation code gen-
eration from DAVE-ML models is possible.  

 

4 TRAJECTORY SIMULATION ONTOLOGY 

4.1 Top Level Entities of TSONT 

The top level entities of TSONT are Trajectory Simu-
lation Attribute, Trajectory Simulation Class, Trajectory 
Simulation Function, Trajectory Simulation Object, Trajec-
tory Simulation Quantity, Trajectory Simulation Record 
and Trajectory Simulation Sequence, as shown in Figure 1. 
 

116
 
 

Figure 1: TSONT Top Level Entities 
 
The top level entities of TSONT are matched with 

those of SUMO (Suggested Upper Merged Ontology). By 
reusing SUMO, we promote interoperability with other 
domain ontologies. SUMO is an upper level ontology pro-
posed by the Standard Upper Ontology Working Group, an 
IEEE-sanctioned working group of collaborators from the 
fields of engineering, philosophy, and information science. 
The SUMO provides definitions for general-purpose terms 
and acts as a foundation for more specific domain ontolo-
gies (Niles and Pease 2001). 

Trajectory Simulation Attribute can be regarded as the 
subclass of SUMO Attribute, which is defined as qualities 
in trajectory simulation domain which we can or prefer not 
to reify into subclasses of an object. Similarly, Trajectory 
Simulation Class is regarded as a subclass of SUMO Class 
and Trajectory Simulation Function as a subclass of 
SUMO Function. Trajectory Simulation Object, again a 
subclass of SUMO Object, corresponds roughly to the 
class of ordinary physical objects in Trajectory Simulation 
domain. Trajectory Simulation Quantity is defined as any 
specification of how many or how much of something in 
Trajectory Simulation domain; it is a subclass of SUMO 
Quantity. 

Trajectory Simulation Record and Trajectory Simula-
tion Sequence are Trajectory Simulation Composite Data 
types that can be used for developing trajectory simulation 
codes. Although these data types are well established in 
programming, we refer to Vienna Development Method 
Specification Language (VDM-SL), an ISO Standard mod-
eling language, for the sake of definiteness (Fitzgerald and 
Larsen 1998). 

Fig. 2 presents an excerpt from TSONT to show how 
these top level entities are inherited down to concepts of 
trajectory simulation domain. Trajectory Simulation can be 
a Scalar Quantity or a Vectoral Quantity. Acceleration 
Vector, Angular Acceleration Vector, Angular Velocity 
Vector, Force Vector, Moment Vector, Orientation Vector, 
Position Vector and Velocity Vector are all types of Vec-
toral Quantity. Aerodynamic Force, Gravitational Force 
and Thrust Force are all derived from the Force Vector. 
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Figure 2: Excerpt from TSONT 

4.2 Structure of TSONT 

The structure of TSONT is devised to render concept 
to implementation mapping amenable to reuse by trajec-
tory simulation developers.  

Trajectory simulations,  which can be composed of 
multiple phases, are to be executed to calculate the trajec-
tories of munitions launched from a weapon. This fact is 
reflected in TSONT as depicted in Figure 3. Simulation is 
modeled as a sub entity of Trajectory Simulation Class. 
Simulation is defined by hasMunition, hasPhase, hasTra-
jectory, hasWeapon and servesComputeTrajectory proper-
ties. These properties formalize the definition of the trajec-
tory simulation. 

Trajectory simulation phases are defined as the seg-
ments of a munition flight whose simulation can be per-
formed by using a set of models solved by a numeric 
solver. For example, computing the trajectory during boost 
phase and after motor is off, which is called free flight, re-
quire a particular sets of models. 

Figure 4 lists the models that are used to simulate the 
flight of a munition as they are represented in TSONT. 
These models are used to solve different behaviors in dif-
ferent phases of simulation. Trajectory phases are general-
ized into three classes as shown in Figure 5. The first level 
Phase is nothing but the phase definition of unguided free 
flight of a munition. It uses aerodynamics model (to com-
pute aerodynamic forces and in some cases moments), dy-
namics model (to compute accelerations), earth model, en-
vironment model and gravity model. Propelled Phase 
represents the segment of trajectory that starts with propul-
1163
sion of a munition from a gun by a charge. So this phase 
has a propellant model in addition. Guided Phase stands as 
a class for guided munition trajectory phases. To simulate a 
guided phase of a munition one will need autopilot model, 
Canard Actuation System (CAS) model, guidance model 
and sensor model in addition to first level Phase models. A 
Thrusted Phase is where the thruster is active, so it adds a 
thruster model to the set. Some phases of flight might pos-
sess hybrid characteristics. In a trajectory phase both guid-
ance and thruster might be active, for instance, in an air-to-
air missile simulation. Such a phase is derived both from 
guided phase and thrusted phase. 

 

 
 

Figure 3: Simulation Definition in TSONT 
 

 
 

Figure 4: Trajectory Simulation Models in TSONT 
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Among Trajectory Simulation Models, the Aerody-
namics model will be discussed in detail to present our ap-
proach to the development of TSONT. Aerodynamics 
models are the mathematical models we use to compute the 
aerodynamic force and moments at any time along the tra-
jectory. 

 

 
 

Figure 5: Phase Hierarchy in TSONT 
 
Aerodynamics Model in trajectory simulation can be 

classified as point mass aerodynamics model or rigid body 
aerodynamics model. In the hierarchy depicted in Figure 6, 
body fixed six DOF aerodynamics model is used to com-
pute the aerodynamic forces and moments. 

 

 
 

Figure 6: Aerodynamics Model Hierarchy in TSONT 
 

Figure 7 shows the representation of Body Fixed Six 
DOF Aerodynamics Model in TSONT. This representation 
formalizes the functions offered by the model, namely, 
Compute Aerodynamic Forces and Compute Aerodynamic 
Moments.hy in TSONT. 

Functions are regarded as services offered by classes 
in TSONT. A function either carries out some computation 
using its inputs and producing outputs, or supplies re-
quested parameters. To illustrate how functions are defined 
in the ontology, one of the functions of Body Fixed Six 
DOF Aerodynamics Model, which is Compute Six DOF 
Aerodynamic Forces with respect to Body Fixed Coordi-
nate System, will be discussed. 
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Figure 7: Definition of Body Fixed Six Aerodynamics 
Model in TSONT 

 
The computation of body fixed aerodynamic forces in 

a six DOF trajectory simulation can be expressed as in 
Equation (1). 
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where Fax , Fay and Faz are the aerodynamic forces in body 
fixed axes, x, y and z respectively. Qd is the free stream dy-
namic pressure, A is the reference area of the munition, and 
Cx, Cy, and Cz are the aerodynamic coefficients in the re-
spective directions (Mahmutyazicioglu 1994). This func-
tion is defined in the ontology as presented in Figure 8. 

The inAerodynamicsRecord, inAtmosphereRecord, 
inBallisticRecord and inDynamicModelState properties 
with outAerodynamicForce property formalizes the input 
output mapping of function. Implementation property re-
fers to the DAVE-ML file that documents the mathemati-
cal mapping of inputs and outputs of the function, given 
Equation (1), in a human and machine readable form. The 
Equation (1) is expressed in DAVE-ML as: 

 
<variableDef 
 name=" Body Fixed Aerodynamic Force" 
 varID="FA" units="N" > 
   <description> 
   Three dimensional body fixed aerodynamic 
   force in N. It is a vector (FAX,FAY,FAZ) 
   in first, second and third axes respect- 
   tively.    
  </description> 
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  <calculation> 
    <math> 
      <apply> 
        <eq/> 
        <list> 
          <ci>Fax</ci> 
          <ci>Fay</ci> 
          <ci>Faz</ci> 
        </list> 
        ...                     
      </apply> 
    </math>      
  </calculation> 
  <isOutput/>  
</variableDef> 
 
 

 
 

Figure 8: Definition of Compute Six DOF Aerodynamic 
Forces wrt Body Coordinate System in TSONT 

 

Cx, Cy, and Cz the aerodynamic coefficients of a muni-
tion, are parameters of a trajectory simulation. The entities 
derived from Trajectory Simulation Object are physical ob-
jects which are the subjects of the simulation study. The 
physical objects are represented in the simulation by their 
parameters. For example, the munition whose trajectory is 
to be computed is defined in simulations by its Aerody-
namics and Ballistics parameters as given in Figure 9.  

Aerodynamics is one of the parameters used in trajec-
tory simulation, listed below in Figure 10. Parameter 
classes serve functions to provide the required data to 
model classes, which are responsible for the generation of 
behavior. In this manner, Six DOF Aerodynamics serves 
Compute Six DOF Aerodynamics function, which is used 
1165
to retrieve Aerodynamics Record. Aerodynamic Record, in 
turn, is required to compute the Aerodynamic Forces,  as 
presented in Figure 8. 

 
 

 
 

Figure 9: Definition of Munition in TSONT 
 
 

 
 

Figure 10: Trajectory Simulation Parameters in TSONT 
 
All the records that are defined in the ontology are de-

rived from Trajectory Simulation Record, presented in the 
previous section. NACA Six DOF Aerodynamics Record, 
a convention to represent Six DOF Aerodynamics, is an 
example of a Trajectory Simulation Record. Cx, Cy, and Cz 
are the components of NACA Six DOF Aerodynamics Re-
cord; refer to  Figure 11 for its definition in TSONT. 
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Figure 11: NACA Six DOF Aerodynamics Record in 
TSONT 

4.3 Individuals of TSONT 

While the OWL classes of the ontology provide meta-level 
information, the specific requirements of each particular 
simulation can be added to the ontology as individuals. The 
domain structure captured by classes and constraints repre-
sented by the conditions of the classes will constrain the 
relations among these individuals. A collection of indi-
viduals is sometimes termed as the knowledge base.  

 

 
 

Figure 12: GIGRS Aerodynamic Model Instance in 
TSONT 

 
Consider, for example, the trajectory simulation for a 

certain INS guided surface to surface rocket concept, des-
ignated GIGRS (Generic Inertial Guided Rocket Simula-
116
tion). The TSONT user defines an instance of the Body 
Fixed Six DOF Aerodynamics Model, called GIGRS 
Aerodynamics Model, as shown in Figure 12. Then, 
TSONT specifies the coordinate system of the model and 
the functions that the GIGRS Aerodynamic Model should 
serve. This demonstrates the use of TSONT as a specifica-
tion for a trajectory simulation. 

5 CONCLUSION AND FUTURE WORK 

TSONT construction effort is an attempt to capture the 
knowledge in the trajectory simulation domain. By match-
ing the top level entities in the ontology with the entities of 
the widely accepted upper level ontology SUMO, future 
opportunities to interoperate with other domain ontologies 
are facilitated. Composite data types that are used in trajec-
tory simulations are grouped depending on a well estab-
lished software specification language, VDM-SL, in order 
to make these definitions clear and implementation lan-
guage and platform independent. The top down structure 
starting from the basic concepts of  trajectory simulation, 
goes through phases of simulation, the models that deter-
mine the behavior throughout these phases, the functions 
that capture the input-output relations and the DAVE-ML, 
which is incorporated into ontology to capture the mathe-
matical definitions. DAVE-ML portions of the ontology 
provide guidance on how to structure a trajectory simula-
tion and how to implement the mathematical relations. 

TSONT is being developed based on the experience 
gained in the past trajectory simulation development pro-
jects of Modeling and Simulation Division of TUBITAK-
SAGE.  TSONT will be used in the upcoming projects as a 
simulation conceptual model as well as a domain model. 
Designs of  numerous trajectory simulation projects will be 
based on the structure captured in TSONT. This will vali-
date the capability of the TSONT in knowledge and design 
reuse. 
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