
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

AN ONTOLOGY FOR TRAJECTORY SIMULATION

Umut Durak

TUBITAK-SAGE
PK.16 Mamak

06261 Ankara, TURKEY

Halit Oguztuzun

Dept. of Computer Engineering
Middle East Technical University

06530 Ankara, TURKEY

S. Kemal Ider

Dept. of Mechanical Engineering
Middle East Technical University

06530 Ankara, TURKEY

ABSTRACT

From the concept exploration for a weapon system to
training simulators, from hardware-in-the-loop simulators
to mission planning tools, trajectory simulations are used
throughout the life cycle of a weapon system. A trajectory
simulation can be defined as a computational tool to calcu-
late the flight path and flight parameters of munitions.
There is a wide span of trajectory simulations differing
widely with respect to their performance and fidelity char-
acteristics, from simple point-mass simulations to six-
seven degrees of freedom hardware-in-the-loop missile
simulations. From our observations, it is a common prac-
tice in the industry that developments of these simulations
are carried out as isolated projects although they rely on
the same body of knowledge. We envision an ontology that
will capture the common knowledge in trajectory simula-
tion domain and make domain knowledge available for re-
use. Trajectory Simulation Ontology, dubbed TSONT, is
being developed to realize this vision.

1 INTRODUCTION

We present a formal ontology developed for trajectory
simulations, called Trajectory Simulation Ontology
(TSONT). The aim of this work is the construction of a re-
use infrastructure to be used in the development of a vari-
ety of trajectory simulations. The ontology is regarded as
the domain model component of the reuse infrastructure. It
is being developed to be a reusable knowledge library on
trajectory simulations.

Trajectory simulation, in the present context, means
computing the flight path and other parameters, such as
orientation, and angular rates of the munition from the start
to the end of its motion (U.S. Department of Defense
1995). Trajectory simulation deals with mathematical
models of the behavior of munition and its subsystems dur-
ing its operation. The equations of motion determine the
acceleration, velocity and position of the munition result-
ing from forces and moments due to gravity, thrust and
1161-4244-0501-7/06/$20.00 ©2006 IEEE
aerodynamics. The guidance and control models account
for subsystems such as the control system.

Trajectory simulations are widely used throughout the
product lifecycle of weapon systems. The objective is to
improve the understanding of various aspects of the
weapon system for a variety of tasks, such as specifying
munition performance requirements, designing munitions,
optimizing the design parameters, assessing munition per-
formance, teaching users the correct use of weapon system,
and fire control.

Early ontology development in technical domains was
carried out in mid 90’s; consider, for example OLMECO
(mechatronic design components) and KACTUS (technical
domain ontologies). Ontologies were regarded as reusable
knowledge libraries (Benjamin et al. 1996) (Borst and Ak-
kermans 1997) (Borst et al.1995) (Schreiber, Wielinga and
Jansweijer 1995). The term is borrowed form philosophy,
where it means the systematic exploration of existence.
First, Neches defined ontology as the basic terms and rela-
tions comprising the vocabulary of a topic area as well as
the rules for combining terms and relations to define exten-
sions to the vocabulary. Later, following (Gruber 1993) on-
tology is defined as formal and explicit specification of a
shared conceptualization. See (Corcho 2003) for a survey
of ontology definitions as well as methodologies and tools.

For the trajectory simulation ontology, we use OWL
(Web Ontology Language) as ontology definition language
and Protégé as the Ontology Development Environment.

In the rest of this paper we first discuss the objectives
of this study. After discussing the basics of ontologies, we
present our Trajectory Simulation Ontology.

2 OBJECTIVES

Each particular trajectory simulation requires a cus-
tomized approach. The level of sophistication of simula-
tions varies greatly depending on the application. These
levels range from unsophisticated two dimensional models
to very detailed six-seven degree of freedom models that
include hardware-in-the-loop and seeker simulations.
0

Durak, Oguztuzun, and Ider

The requirements of a given trajectory simulation are
derived from the objectives of the intended user, who
might be interested in the analysis, development, procure-
ment and operation of some munition.

We observe, it is common practice to develop trajec-
tory simulations for each and every application again and
again. Considering the complexity of the modeled systems
and requirements of the simulation application, the risk of
failure in such projects is considered to be high. Besides
the risk of failure, expenditure of intellectual labor to study
similar problems of the same domain is a waste. Another
concern is the quality of the products of each development.
The verification in trajectory simulation project requires a
great deal of effort due to the demand for experts’ time and
flight data, which are both expensive. Implementing a sys-
tematic software reuse will help make best use of past suc-
cessful efforts.

Research on software reuse suggests that the success
of reuse is related to the use of artifacts in the context of a
domain, where a domain is defined as the area in which an
organization does business (Favaro 1995). Knowledge
about the problem domain is often implicit and informal,
while reusable information must be represented explicitly
and formally. The term reuse infrastructure refers to the in-
formation that must be made available to the software de-
veloper, together with auxiliary information needed to lo-
cate and manipulate it. Developing a reuse infrastructure
for a problem domain is the essence of domain engineer-
ing. Domain engineering comprises three fundamental
processes: domain analysis, infrastructure specification,
and infrastructure implementation (Fablo, Guizzardi and
Duarte 2002).

Domain analysis is the identification, acquisition and
evolution of reusable information on a problem domain to
be reused in software specification and construction
(Arango 1989). Infrastructure specification is the selection
and organization of reusable information in the model to fit
the patterns of reuse in the environment of the user. As a
result, an architecture for reusable information, such as a
library of programs, or a database scheme, is specified. The
infrastructure specification, together with the semantics
captured by the domain model, is input to the infrastructure
implementation step, which produces and tests the speci-
fied components.

The purpose of domain analysis is to construct a
model of the problem domain. Then the domain model
should serve as:

• An authoritative resource of reference when am-

biguities arise in the analysis of the problems or
later during the implementation of reusable com-
ponents.

• A repository of shared knowledge for learning and
communication.
116
• A specification of reusable components for the
developer.

As the information is gathered during domain analysis,

one faces the problem of representing the knowledge for
ease of both human understanding and machine readability.
The latter requires a formal way to represent the knowl-
edge. The contemporary ontology development languages
all have formal semantics. Thus, the approach adopted in
this study is the use of ontologies for knowledge represen-
tation.

In our view the reusable assets that are produced in
each activity of domain engineering are correlated with the
abstraction levels of Model Driven Architecture (MDA) of
Object Management Group (OMG) (Kleppe, Bast and
Warmer 2003). Ontology is regarded as Computation In-
dependent Model (CIM). The abstract software design pro-
duced in infrastructure specification is regarded as Plat-
form Independent Model (PIM). The detailed software
designs and reusable libraries developed in infrastructure
implementation are regarded as Platform Specific Model
(PSM) and Code. The platform can be a particular simula-
tion environment, such as MATLAB.

3 ONTOLOGIES AND MORE

An ontology may take variety of forms, but necessar-
ily it will include a vocabulary of terms and some specifi-
cation of their meaning. This includes definitions and indi-
cation of how concepts are inter-related which collectively
impose a structure on a domain and constrain possible in-
terpretations of terms (Uschold and King 1995). Knowl-
edge in ontologies is formalized using five kinds of com-
ponents: concepts, relations, functions, axioms and
instances (Gruber 1993).

The basic idea behind developing an ontology as the
domain model of the trajectory simulation domain is first
to create a common vocabulary that is agreed among peo-
ple working on trajectory simulations. Explication and sys-
tematization are the other goals of this effort. Ontology
building can also be viewed as the elucidation of the im-
plicit assumptions that hamper the knowledge reuse. It is
also expected to create a backbone for systematization of
knowledge on how to build a trajectory simulation. Vo-
cabulary and knowledge systematization has brought us
more or less standardized terms/concepts. (Mizoguchi
2001).

In the last decade ontologies have been used for vari-
ety of engineering applications (Benjamin et al. 1996)
(Borst and Akkermans 1997) (Borst et al.1995) (Schreiber,
Wielinga and Jansweijer 1995) (Ciocoiu, Gruninger and
Nau 2001) (Durak, Mahmutyazicioglu and Oguztuzun
2005) (Avci, Kayir and Oguztuzun 2005). We aim to use
the ontology as a basis for specifying the requirements for
trajectory simulation applications. The benefits of this ap-
1

Durak, Oguztuzun, and Ider

proach include documentation, maintenance, reliability,
knowledge reuse and also interoperability of the developed
applications (Falbo, Guizzardi and Duarte 2002).

Among many ontology languages proposed since early
attempts of ontology development, OWL-Web Ontology
Languge is selected in this study as the working language
(Antoniou and Van Harmelen 2004).

One ontology development methodology suggests af-
ter defining the scope of the ontology and considering the
possible reuse opportunities of other ontologies, one should
enumerate basic terms in the domain. Then after defining
the classes and class hierarchy, one should define proper-
ties of the classes and the facets of these properties. At the
last step one can create the instances of the classes (indi-
viduals). The process is typically executed in an iterative
manner (Noy and McGuinnes 2001). We applied roughly
the same sequence. In each iteration we extended the scope
of the ontology. Between iterations, prototype trajectory
simulations are built depending on the ontology to validate
the structure and peer reviews are handled with domain
experts before expanding the ontology.

There are mathematical models in the domain that ac-
count for some kind of behavior or some law. Capturing
these models in a systematic way and representing them as
an integrated part of the ontology is an important concern.
At this juncture, the DAVE-ML effort of NASA for the
benefit of flight modeling and simulation community, has
been leveraged (Jackson et al. 2004).

DAVE-ML (Dynamic Aerospace Vehicle Exchange
Markup Language) is a proposed standard method for the
interchange of aerospace dynamic models. It is aimed to
provide a programming language independent representa-
tion of aerodynamics, mass/inertia, propulsion and guid-
ance, navigation and control laws of a vehicle. DAVE-ML,
which is XML-based, relies on MathML as a means to de-
scribe mathematical relations. MathML is an XML-based
language for describing mathematics for machine to ma-
chine communication. We take advantage of DAVE-ML to
incorporate mathematical models into the ontology. (An
example is presented in section 4.2.) Simulation code gen-
eration from DAVE-ML models is possible.

4 TRAJECTORY SIMULATION ONTOLOGY

4.1 Top Level Entities of TSONT

The top level entities of TSONT are Trajectory Simu-
lation Attribute, Trajectory Simulation Class, Trajectory
Simulation Function, Trajectory Simulation Object, Trajec-
tory Simulation Quantity, Trajectory Simulation Record
and Trajectory Simulation Sequence, as shown in Figure 1.

116

Figure 1: TSONT Top Level Entities

The top level entities of TSONT are matched with

those of SUMO (Suggested Upper Merged Ontology). By
reusing SUMO, we promote interoperability with other
domain ontologies. SUMO is an upper level ontology pro-
posed by the Standard Upper Ontology Working Group, an
IEEE-sanctioned working group of collaborators from the
fields of engineering, philosophy, and information science.
The SUMO provides definitions for general-purpose terms
and acts as a foundation for more specific domain ontolo-
gies (Niles and Pease 2001).

Trajectory Simulation Attribute can be regarded as the
subclass of SUMO Attribute, which is defined as qualities
in trajectory simulation domain which we can or prefer not
to reify into subclasses of an object. Similarly, Trajectory
Simulation Class is regarded as a subclass of SUMO Class
and Trajectory Simulation Function as a subclass of
SUMO Function. Trajectory Simulation Object, again a
subclass of SUMO Object, corresponds roughly to the
class of ordinary physical objects in Trajectory Simulation
domain. Trajectory Simulation Quantity is defined as any
specification of how many or how much of something in
Trajectory Simulation domain; it is a subclass of SUMO
Quantity.

Trajectory Simulation Record and Trajectory Simula-
tion Sequence are Trajectory Simulation Composite Data
types that can be used for developing trajectory simulation
codes. Although these data types are well established in
programming, we refer to Vienna Development Method
Specification Language (VDM-SL), an ISO Standard mod-
eling language, for the sake of definiteness (Fitzgerald and
Larsen 1998).

Fig. 2 presents an excerpt from TSONT to show how
these top level entities are inherited down to concepts of
trajectory simulation domain. Trajectory Simulation can be
a Scalar Quantity or a Vectoral Quantity. Acceleration
Vector, Angular Acceleration Vector, Angular Velocity
Vector, Force Vector, Moment Vector, Orientation Vector,
Position Vector and Velocity Vector are all types of Vec-
toral Quantity. Aerodynamic Force, Gravitational Force
and Thrust Force are all derived from the Force Vector.

2

tuzun, and Ider
Durak, Oguz

Figure 2: Excerpt from TSONT

4.2 Structure of TSONT

The structure of TSONT is devised to render concept
to implementation mapping amenable to reuse by trajec-
tory simulation developers.

Trajectory simulations, which can be composed of
multiple phases, are to be executed to calculate the trajec-
tories of munitions launched from a weapon. This fact is
reflected in TSONT as depicted in Figure 3. Simulation is
modeled as a sub entity of Trajectory Simulation Class.
Simulation is defined by hasMunition, hasPhase, hasTra-
jectory, hasWeapon and servesComputeTrajectory proper-
ties. These properties formalize the definition of the trajec-
tory simulation.

Trajectory simulation phases are defined as the seg-
ments of a munition flight whose simulation can be per-
formed by using a set of models solved by a numeric
solver. For example, computing the trajectory during boost
phase and after motor is off, which is called free flight, re-
quire a particular sets of models.

Figure 4 lists the models that are used to simulate the
flight of a munition as they are represented in TSONT.
These models are used to solve different behaviors in dif-
ferent phases of simulation. Trajectory phases are general-
ized into three classes as shown in Figure 5. The first level
Phase is nothing but the phase definition of unguided free
flight of a munition. It uses aerodynamics model (to com-
pute aerodynamic forces and in some cases moments), dy-
namics model (to compute accelerations), earth model, en-
vironment model and gravity model. Propelled Phase
represents the segment of trajectory that starts with propul-
1163
sion of a munition from a gun by a charge. So this phase
has a propellant model in addition. Guided Phase stands as
a class for guided munition trajectory phases. To simulate a
guided phase of a munition one will need autopilot model,
Canard Actuation System (CAS) model, guidance model
and sensor model in addition to first level Phase models. A
Thrusted Phase is where the thruster is active, so it adds a
thruster model to the set. Some phases of flight might pos-
sess hybrid characteristics. In a trajectory phase both guid-
ance and thruster might be active, for instance, in an air-to-
air missile simulation. Such a phase is derived both from
guided phase and thrusted phase.

Figure 3: Simulation Definition in TSONT

Figure 4: Trajectory Simulation Models in TSONT

Durak, Oguztuzun, and Ider

Among Trajectory Simulation Models, the Aerody-
namics model will be discussed in detail to present our ap-
proach to the development of TSONT. Aerodynamics
models are the mathematical models we use to compute the
aerodynamic force and moments at any time along the tra-
jectory.

Figure 5: Phase Hierarchy in TSONT

Aerodynamics Model in trajectory simulation can be

classified as point mass aerodynamics model or rigid body
aerodynamics model. In the hierarchy depicted in Figure 6,
body fixed six DOF aerodynamics model is used to com-
pute the aerodynamic forces and moments.

Figure 6: Aerodynamics Model Hierarchy in TSONT

Figure 7 shows the representation of Body Fixed Six
DOF Aerodynamics Model in TSONT. This representation
formalizes the functions offered by the model, namely,
Compute Aerodynamic Forces and Compute Aerodynamic
Moments.hy in TSONT.

Functions are regarded as services offered by classes
in TSONT. A function either carries out some computation
using its inputs and producing outputs, or supplies re-
quested parameters. To illustrate how functions are defined
in the ontology, one of the functions of Body Fixed Six
DOF Aerodynamics Model, which is Compute Six DOF
Aerodynamic Forces with respect to Body Fixed Coordi-
nate System, will be discussed.

11

Figure 7: Definition of Body Fixed Six Aerodynamics
Model in TSONT

The computation of body fixed aerodynamic forces in

a six DOF trajectory simulation can be expressed as in
Equation (1).

,
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅⋅=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

z

y

x

d

az

ay

ax

C
C
C

AQ
F
F
F

 (1)

where Fax , Fay and Faz are the aerodynamic forces in body
fixed axes, x, y and z respectively. Qd is the free stream dy-
namic pressure, A is the reference area of the munition, and
Cx, Cy, and Cz are the aerodynamic coefficients in the re-
spective directions (Mahmutyazicioglu 1994). This func-
tion is defined in the ontology as presented in Figure 8.

The inAerodynamicsRecord, inAtmosphereRecord,
inBallisticRecord and inDynamicModelState properties
with outAerodynamicForce property formalizes the input
output mapping of function. Implementation property re-
fers to the DAVE-ML file that documents the mathemati-
cal mapping of inputs and outputs of the function, given
Equation (1), in a human and machine readable form. The
Equation (1) is expressed in DAVE-ML as:

<variableDef
 name=" Body Fixed Aerodynamic Force"
 varID="FA" units="N" >
 <description>
 Three dimensional body fixed aerodynamic
 force in N. It is a vector (FAX,FAY,FAZ)
 in first, second and third axes respect-
 tively.
 </description>

64

Durak, Oguztuzun, and Ider

 <calculation>
 <math>
 <apply>
 <eq/>
 <list>
 <ci>Fax</ci>
 <ci>Fay</ci>
 <ci>Faz</ci>
 </list>
 ...
 </apply>
 </math>
 </calculation>
 <isOutput/>
</variableDef>

Figure 8: Definition of Compute Six DOF Aerodynamic
Forces wrt Body Coordinate System in TSONT

Cx, Cy, and Cz the aerodynamic coefficients of a muni-
tion, are parameters of a trajectory simulation. The entities
derived from Trajectory Simulation Object are physical ob-
jects which are the subjects of the simulation study. The
physical objects are represented in the simulation by their
parameters. For example, the munition whose trajectory is
to be computed is defined in simulations by its Aerody-
namics and Ballistics parameters as given in Figure 9.

Aerodynamics is one of the parameters used in trajec-
tory simulation, listed below in Figure 10. Parameter
classes serve functions to provide the required data to
model classes, which are responsible for the generation of
behavior. In this manner, Six DOF Aerodynamics serves
Compute Six DOF Aerodynamics function, which is used
1165
to retrieve Aerodynamics Record. Aerodynamic Record, in
turn, is required to compute the Aerodynamic Forces, as
presented in Figure 8.

Figure 9: Definition of Munition in TSONT

Figure 10: Trajectory Simulation Parameters in TSONT

All the records that are defined in the ontology are de-

rived from Trajectory Simulation Record, presented in the
previous section. NACA Six DOF Aerodynamics Record,
a convention to represent Six DOF Aerodynamics, is an
example of a Trajectory Simulation Record. Cx, Cy, and Cz
are the components of NACA Six DOF Aerodynamics Re-
cord; refer to Figure 11 for its definition in TSONT.

Durak, Oguztuzun, and Ider

Figure 11: NACA Six DOF Aerodynamics Record in
TSONT

4.3 Individuals of TSONT

While the OWL classes of the ontology provide meta-level
information, the specific requirements of each particular
simulation can be added to the ontology as individuals. The
domain structure captured by classes and constraints repre-
sented by the conditions of the classes will constrain the
relations among these individuals. A collection of indi-
viduals is sometimes termed as the knowledge base.

Figure 12: GIGRS Aerodynamic Model Instance in
TSONT

Consider, for example, the trajectory simulation for a

certain INS guided surface to surface rocket concept, des-
ignated GIGRS (Generic Inertial Guided Rocket Simula-
116
tion). The TSONT user defines an instance of the Body
Fixed Six DOF Aerodynamics Model, called GIGRS
Aerodynamics Model, as shown in Figure 12. Then,
TSONT specifies the coordinate system of the model and
the functions that the GIGRS Aerodynamic Model should
serve. This demonstrates the use of TSONT as a specifica-
tion for a trajectory simulation.

5 CONCLUSION AND FUTURE WORK

TSONT construction effort is an attempt to capture the
knowledge in the trajectory simulation domain. By match-
ing the top level entities in the ontology with the entities of
the widely accepted upper level ontology SUMO, future
opportunities to interoperate with other domain ontologies
are facilitated. Composite data types that are used in trajec-
tory simulations are grouped depending on a well estab-
lished software specification language, VDM-SL, in order
to make these definitions clear and implementation lan-
guage and platform independent. The top down structure
starting from the basic concepts of trajectory simulation,
goes through phases of simulation, the models that deter-
mine the behavior throughout these phases, the functions
that capture the input-output relations and the DAVE-ML,
which is incorporated into ontology to capture the mathe-
matical definitions. DAVE-ML portions of the ontology
provide guidance on how to structure a trajectory simula-
tion and how to implement the mathematical relations.

TSONT is being developed based on the experience
gained in the past trajectory simulation development pro-
jects of Modeling and Simulation Division of TUBITAK-
SAGE. TSONT will be used in the upcoming projects as a
simulation conceptual model as well as a domain model.
Designs of numerous trajectory simulation projects will be
based on the structure captured in TSONT. This will vali-
date the capability of the TSONT in knowledge and design
reuse.

ACKNOWLEDGMENTS

This work is supported by Defense Industries Research and
Development Institute of Scientific and Technological Re-
search Council of Turkey (TUBITAK-SAGE).

REFERENCES

Antoniou, G. and F. Van Harmelen. 2004. Web Ontology
Language: OWL. Handbook on Ontologies, Interna-
tional Handbooks on Information Systems, Springer.

Arango, G. 1989. Domain Analysis: From Art to Engineer-
ing Discipline. In Proceedings of 5th International
Workshop on Software Specification and Design,
Pittsburgh, PA.
6

Durak, Oguztuzun, and Ider

Avci, U., S. Kayir, and H. Oguztuzun. 2005. An OWL on-

tology for shell trajectories. Journal of Defense Sci-
ences, vol. 4, no. 1, 123-140.

Benjamin, J., P. Borst, J. M. Akkermans, and B. J. Wiel-
inga. 1996. Ontology Construction for Technical Do-
mains, In Proceedings of the 9th European Knowledge
Acquisition Workshop on Advances in Knowledge Ac-
quisition, 98-114.

Borst, P., J. Akkermans, A. Pos, and J. Top. 1995. The
PhysSys ontology for physical systems. In B. Bre-
deweg, editor, Working Papers of the Ninth Interna-
tional Workshop on Qualitative Reasoning QR'95, 11-
21. University of Amsterdam.

Borst, W. N., J. M. Akkermans. 1997. Engineering On-
tologies. International Journal of Human-Computer
Studies, 46 (2/3):365-406.

Ciocoiu, M., M. Gruninger, and D. S. Nau. 2001. Ontolo-
gies for Integrating Engineering Applications. Journal
of Computing and Information Science in Engineering,
(1) 1, 12-22

Corcho,O., M. F. Lopez, and A. G. Perez. 2003. Method-
ologies, Tools and Languages for Building Ontologies.
Where is Their Meeting Point? Data & Knowledge
Engineering, Vol 46, 41-64.

Durak, U., G. Mahmutyazicioglu, and H. Oguztuzun. 2005.
Domain Analysis for Reusable Trajectory Simulation.
Euro SIW’05, 303-312, Toulouse, France.

Falbo, R.A., G. Guizzardi, and K. C. Duarte. 2002. An On-
tological Approach to Domain Engineering. Interna-
tional Conference on Software Engineering and
Knowledge Engineering, Ischia, Italy.

Favaro, J. 1995. Technical Report on Reuse. European
Software Institute.

Fitzgerald, J., and P. G. Larsen. 1998. Modelling systems:
practical tools and techniques in software develop-
ment. Cambridge University Press.

Gruber, T.R. 1993. A Translational Approach to Portable
Ontology Specifications. Knowledge Acquisition, Vol.
5, Number 2.

Jackson, E., B. Hildreth, B. York, and W. Cleveland.
2004. Evaluation of a Candidate Flight Dynamics
Model Simulation Standard Exchange Format. AIAA
Modeling and Simulation Technologies Conference
and Exhibit, Providence, Rhode Island.

Kleppe, A., W. Bast, and J. B. Warmer. 2003. MDA Ex-
plained, the Model Driven Architecture: The Model
Driven Architecture: Practice and Promise.2nd Ed.
Boston:Addison-Wesley.

Mahmutyazıcıoglu, G. 1994. Dynamics and Control Simu-
lation of an Inertially Guided Missile. Masters Thesis,
Department of Mechanical Engineering, Middle East
Technical University, Turkey.

Mizoguchi, R. 2001. Ontological Engineering: Foundations
of the Next Generation Knowledge Processing. Web
Intelligence 2001, Maebashi City, Japan.
1167
Niles, I., and A. Pease. 2001. Towards a Standard Upper
Ontology. In Proceedings of the 2nd International
Conference on Formal Ontology in Information Sys-
tems (FOIS-2001), Chris Welty and Barry Smith, eds,
Ogunquit, Maine.

Noy, N.F. and D. L. McGuinnes. 2001. Ontology Devel-
opment 101: A Guide to Creating Your First Ontol-
ogy. Technical Report SMI-2001-0880, School of
Medical Informatics, Stanford University, USA.

Schreiber, G., B. Wielinga, and W. Jansweijer. 1995. The
KACTUS View on the 'O' Word. In Proceedings of
IJCAI95 Workshop on Basic Ontological Issues in
Knowledge Sharing. Montreal, Canada.

U.S. Department of Defense. 1995. Missile Flight Simula-
tion, Part One Surface-to-Air Missiles. MIL-HDBK
1211.

Uschold, M., M. King. 1995. Towards a Methodology for
Building Ontologies. In Workshop on Basic Ontologi-
cal Issues in Knowledge Sharing, held in conjunction
with IJCAI-95, Montreal, Canada.

AUTHOR BIOGRAPHIES

UMUT DURAK is a Senior Researcher in Defense Indus-
tries Research and Development Institute of Scientific and
Technological Research Council of Turkey (TUBITAK-
SAGE). He has been involved in modeling and simulation
of weapon systems. He obtained his BS and MS from Me-
chanical Engineering Department of Middle East Technical
University (METU), Ankara, Turkey. He is currently a
Ph.D. student in the same department. His e-mail address is
<umut.durak@sage.tubitak.gov.tr>.

HALIT OGUZTUZUN is an associate professor in the
Department of Computer Engineering at the Middle East
Technical University (METU), Ankara, Turkey. He ob-
tained his BS and MS degrees from METU in 1982 and
1984, and PhD from University of Iowa, Iowa City, IA,
USA in 1991. His current research interests include dis-
tributed simulation and model-driven engineering. His e-
mail address is <oguztuzn@ceng.metu.edu.tr>.

S. KEMAL İDER is a professor in the Mechanical Engi-
neering Department at the Middle East Technical Univer-
sity (METU), Ankara, Turkey. He obtained his BS and MS
degrees in Mechanical Engineering from METU, both in
1976. He received MS degree in Economics in 1979 and
PhD degree in Mechanical Engineering in 1988 from the
University of Illinois at Chicago. His research interests in-
clude multibody dynamics and control of flexible sys-
tems. His e-mail address is <kider@metu.edu.tr>.

mailto:umut.durak@sage.tubitak.gov.tr
mailto:oguztuzn@ceng.metu.edu.tr
mailto:kider@metu.edu.tr
mailto:kider@metu.edu.tr
mailto:kider@metu.edu.tr

