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Abstract

Background: The number of genome-wide association studies (GWAS) is growing rapidly leading

to the discovery and replication of many new disease loci. Combining results from multiple GWAS

datasets may potentially strengthen previous conclusions and suggest new disease loci, pathways

or pleiotropic genes. However, no database or centralized resource currently exists that contains

anywhere near the full scope of GWAS results.

Methods: We collected available results from 118 GWAS articles into a database of 56,411

significant SNP-phenotype associations and accompanying information, making this database freely

available here. In doing so, we met and describe here a number of challenges to creating an open

access database of GWAS results. Through preliminary analyses and characterization of available

GWAS, we demonstrate the potential to gain new insights by querying a database across GWAS.

Results: Using a genomic bin-based density analysis to search for highly associated regions of the

genome, positive control loci (e.g., MHC loci) were detected with high sensitivity. Likewise, an

analysis of highly repeated SNPs across GWAS identified replicated loci (e.g., APOE, LPL). At the

same time we identified novel, highly suggestive loci for a variety of traits that did not meet genome-

wide significant thresholds in prior analyses, in some cases with strong support from the primary

medical genetics literature (SLC16A7, CSMD1, OAS1), suggesting these genes merit further study.

Additional adjustment for linkage disequilibrium within most regions with a high density of GWAS

associations did not materially alter our findings. Having a centralized database with standardized

gene annotation also allowed us to examine the representation of functional gene categories (gene

ontologies) containing one or more associations among top GWAS results. Genes relating to cell

adhesion functions were highly over-represented among significant associations (p < 4.6 × 10-14), a

finding which was not perturbed by a sensitivity analysis.

Conclusion: We provide access to a full gene-annotated GWAS database which could be used for

further querying, analyses or integration with other genomic information. We make a number of

general observations. Of reported associated SNPs, 40% lie within the boundaries of a RefSeq gene

and 68% are within 60 kb of one, indicating a bias toward gene-centricity in the findings. We found

considerable heterogeneity in information available from GWAS suggesting the wider community

could benefit from standardization and centralization of results reporting.
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Background
The number of genome-wide association studies (GWAS)
is growing nearly exponentially, heralding an era of
unprecedented discovery. Numerous novel genetic loci
underlying disease susceptibility have been discovered
using the unbiased GWAS approach, and many of these
associations hold up to rigorous standards for replication
[1]. Journal editors and scientists are increasingly calling
for full disclosure of aggregate research results to accom-
pany publication of GWAS in the form of published
appendices or public websites. Under the recently imple-
mented National Institutes of Health data-sharing policy
http://grants.nih.gov/grants/guide/notice-files/NOT-OD-
07-088.html, powerful opportunities now exist for the
conduct of research using GWAS datasets due to the avail-
ability of increasing numbers of participant-level datasets.
Analytic and computational approaches that further
probe the results of individual studies or combine results
from multiple GWAS datasets may strengthen previous
conclusions, suggest novel loci or pathways [2], contrib-
ute to more calibrated effect estimates, suggest pleiotropy,
refine the localization of association signals, or highlight
likely functional variants [3]. A key variable for the capac-
ity to conduct such analyses is the extent of access to full
versus selective results as well as the nature and relative
standardization of the information content.

While a centralized GWAS database, dbGAP, exists at
NCBI, inclusion of data and results is voluntary and many
GWAS have chosen not to participate, choosing instead
not to release results, or to release results at a journal or
independent web site [4]. A review of GWAS associations
by the NHGRI has been published that grouped associa-
tions in specific disease categories [5], and a companion
data table does provide a centralized resource for access-
ing some top GWAS results, but at the time of this submis-
sion was limited to 334 SNPs with minimal annotation
(see http://www.genome.gov/26525384/). The overall
objective of this study was to create an open access, cen-
tralized database of significant published GWAS results,
and to provide basic informatics standardization of these
results in the format of the current genome build with
updated gene annotations. We furthermore sought to
characterize and analyze this initial GWAS database to
assess data availability, data quality and annotations
across all phenotypes, and to identify key genomic charac-
teristics of GWAS associations and opportunities and
obstacles to further analysis of this potentially vast genetic
data space. With this objective, we collected and analyzed
GWAS results compiled from a series of 118 GWAS studies
published through March 1, 2008, all of which tested trait
associations with > 50,000 markers, identifying genomic
characteristics of associated loci in GWAS, facilitating new
analyses and highlighting limitations in available data
sources (study characteristics of the GWAS included are

detailed [see Additional file 1]). Our initial analyses sug-
gest novel candidate regions may be identified for further
biological validation and that straightforward density
analyses of associations across GWAS may be an effective
way of highlighting candidate loci for further targeted
analysis. Recent independent analyses have replicated
genetic associations for loci suggested by our analysis (see
Discussion). However, we also found reporting inconsist-
encies across GWAS and gaps in current reporting, sug-
gesting substantial barriers to future analyses. To
encourage further scientific cross-study exploration of
published GWAS, we make our database fully available as
an online supplement [see Additional file 2].

Methods
Collection of GWAS results in a single database

One-hundred-eighteen GWAS articles published before
March 1, 2008 and their associated supplemental infor-
mation was collected. The articles were identified through
Pubmed searches (GWAS, GWA, WGAS, WGA, genome-
wide, genomewide, whole genome, all terms +association or
+scan), scanning the citations within each article and
through direct searches of journal websites where GWAS
were previously published. For citation information for
all included articles and data sources [see Additional file
3]. All GWAS tested > 50,000 SNPs. When available via
open web access, additional GWAS data was collected
except if the additional data required an application proc-
ess. Some papers included results for scans of multiple
phenotypes or population groups. Thus, results included
here reflect partial aggregate data from more than 400
individual genotype-phenotype GWAS datasets.

For each article, we scanned all available text, tables, fig-
ures and accessible supplemental data to extract the most
statistically significant phenotype association described in
the article per SNP, meeting the following minimum cri-
teria: 1) the SNP had an identifiable ID or verifiable
genomic position, 2) a statistical p-value for association
was reported, 3) the p-value was less than or equal to
0.001 (allowing for rounding) if the association was from
a raw, unadjusted scan, 4) the p-value was less than or
equal to 0.05 if the association was derived from replica-
tion, fine mapping or re-sequencing efforts, or if it was
identified as belonging to a locus or region that was spe-
cifically identified as an a priori candidate by the authors.
In many cases due to the large amount of available data or
the non-uniform data format, a custom Perl program was
written to facilitate the processing of the associations. We
did not collect full disclosure association results for scans
with density < 200,000 SNPs, even though these full dis-
closure association results were available in some cases.
The primary reason for this analytic decision was that the
wide availability of many trait results for lower density
scans would result in an extremely large meta-dataset

http://grants.nih.gov/grants/guide/notice-files/NOT-OD-07-088.html
http://grants.nih.gov/grants/guide/notice-files/NOT-OD-07-088.html
http://www.genome.gov/26525384/
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biased toward lower density genotyping results which
have less power to detect true associations. Likewise, the
discovery scan p-value threshold was set to p < 0.001 to
create a set of significant GWAS results of manageable size
in which the representation of significant results from
studies that released limited results would not be dwarfed
by results from studies that released most, or all, results.
Information specific to each GWAS and to each SNP-phe-
notype meeting our criteria was collected in a single table
[see Additional file 2]. This table represents a large, open
access database of GWAS results (also presented as a
Microsoft Access database [see Additional file 4]). For an
extended description of each data field and how they were
derived [see Additional file 3]. Genome-wide plots of all
included associations are shown in Figure 1, and for those
associations above the threshold of 5 × 10-8 in Figure 2.

We independently verified the quality of the extracted
GWAS results database in a blinded fashion. Three inde-
pendent reviewers extracted information from the same 2
GWAS articles in parallel to ensure they applied our inclu-
sion criteria in the same manner. Twelve of the 118 GWAS
articles were randomly selected. These articles were
assigned 4 each to 3 reviewers. Each reviewer independ-
ently generated information from the GWAS article
according to the guidelines above and then compared
their results to the original extracted results.

Incorporation of current genomic annotations

Information from the GWAS papers spanned at least 3
human genome Builds and 12 dbSNP builds, resulting in
SNP positions and SNPids that have shifted in some cases.
Additionally, some papers gave only genome coordinates
without SNPids or supplied only commercial chip IDs.
Thus, in order to maximize the analysis of available GWAS
results in the current genome build context and retrieve
current SNP annotation it was necessary to apply multiple
strategies to update SNP coordinates and SNPids. For
some markers old genome coordinates were translated
into current coordinates using the UCSC Genome
Browser LiftOver conversion tool in order to discover
missing SNPids. When only commercial chip IDs were
given these were translated into rsIDs using the most
appropriate annotation files from the corresponding com-
pany. For some associations we were unable to establish
SNP identification based on the information provided in
the original report. Although this was only the case for a
handful of associations, it does suggest more vigilance is
required by journals in order to standardize the reporting
of genetic variants (e.g., SNP identifiers and precise
genome coordinates).

To facilitate retrieval of current SNP annotation informa-
tion we wrote a Perl program, GRASP (Genome-wide
Retrieval of Annotation for SNPs Program, available upon
request). Current coordinates were retrieved from the

Genome-wide plots of available GWAS results for all associations P = 0.0001Figure 1
Genome-wide plots of available GWAS results for all associations P = 0.0001.
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dbSNP table "b128_SNPChrPosOnRef_36_2". Alias SNP
IDs were retrieved from the "RsMerge128Arch" table and
used to find current coordinates when necessary. SNPs
that mapped to multiple genome locations were noted
and further gene annotation was not included for these.
The GRASP program integrated UCSC human genome
browser annotation tracks for RefSeq genes and UCSC
Known genes, yielding standardized annotations for over-
lapping and nearby genes for all GWAS SNP associations
[see Additional file 2].

Characterization and analysis of a GWAS results database

The main GWAS database contains 56,411 unique SNP-
phenotype entries [see Additional file 2]. The database
represents results from a heterogeneous set of studies with
varied amounts and types of data available. Thus, we did
not attempt to conduct formal statistical meta-analyses.
Rather, our primary aim was to use this database to make
observations that either strengthen prior associations or
highlight them in a new way (e.g., in relation to addi-

tional phenotypes), or are suggestive of regions for future
investigations. Using Perl programs, we: 1) enumerated
and ranked repeated occurrences of individual SNPs
across GWAS studies, 2) split the genome into 100 kb bins
and counted SNP-phenotype associations within each
bin, and 3) determined the average pairwise LD within
each 100 kb bin based on the HapMap CEU data (release
#23a). After standardizing the gene annotations for all
associations, we applied High-Throughput GOminer
analysis software to search for gene ontologies that are sta-
tistically over-represented among significant GWAS asso-
ciations [6]. For this approach SNP associations directly
within genes nominated those genes as positively associ-
ated with a given trait or set of traits. GOminer tests for the
over-enrichment of gene ontologies in large gene sets,
using an FDR approach based on repeated random sam-
pling to account for multiple testing [6]. To test the sensi-
tivity of the gene ontology findings to the inclusion of
specific data we ran further analyses without the WTCCC
and DGI results, and within specific disease subsets ([see

Genome-wide plots of available GWAS results for all associations 5 × 10-8  P  1 × 10-4Figure 2
Genome-wide plots of available GWAS results for all associations 5 × 10-8  P  1 × 10-4.
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Additional file 3] for a more detailed description of the
approach and the disease subsets).

Results
Marked heterogeneity in completeness and annotation of 

reported GWAS results

Full disclosure genotype-phenotype association results
were publicly available for every SNP tested for only a
minority of the GWAS scans. In 45% (n = 53) of GWAS
articles, fewer than 40 SNP-specific association results
were made publicly available, and in many studies results
for very few loci and SNPs were disclosed (25 studies
reported results for 10 or fewer SNPs). In thirty-one
(26%) articles, the authors disclosed the complete set of
associations, and in the remaining articles (n = 34), they
disclosed only a moderate number of top-ranked associa-
tions (defined as  40 associations for  4 distinct loci).
There was also substantial heterogeneity in the format and
type of results data available from GWAS studies. In many
studies, information regarding SNP strand, alleles and
direction of effect, sample sizes passing quality control for
individual SNPs, and genetic model were unavailable,
thus precluding or limiting the conduct of formal meta-
analyses. Despite the heterogeneity and limited data avail-
ability, we extracted a minimal redundancy database of
56,411 statistically significant SNP-phenotype associa-
tions across all studies by use of custom computer pro-
gramming to facilitate further analysis. Briefly, the criteria
for inclusion was the most significant mention per SNP
per study, and only included SNPs with unadjusted
genome-wide p-values for association  1 × 10-3, or which
were significant in replication or further analysis at p =
0.05. (A full description of criteria for inclusion is found
in the Methods, for full results [see Additional file 2]). We
validated the completeness and accuracy of the extracted
SNP database by a re-extraction of a random selection of
10% of the studies conducted by a panel of three review-
ers. We found no detectable errors in regards to the total
number and identity of SNPs that were included in the
final dataset.

Informatics challenges arising from currently reported 

GWAS results

Currently available GWAS results span 3 builds of the
human genome (34–36) and at least 12 builds of dbSNP
(118–129). Since SNPids are being modified and merged
over time, and the relative positions of SNPs often shift
between human genome builds, there are substantial
informatics challenges to GWAS meta-data accumulation,
analysis and viewing. Using current dbSNP information,
including mapping of alias SNPids, we migrated all
reported SNPs from GWAS associations in Additional file
2 into the current framework of human genome Build
36.2 positions. Relying on these positions, we then re-
annotated all associations with protein-coding gene infor-

mation (see Methods) and compared current annotations
with those originally described in GWAS results reports.
In contrast to the original annotations from the GWAS
articles and datasets, in which 23.3% of associated SNPs
were reported to be in or near genes ([see Additional file
2], column V), when we applied standardized annotation
we found 40.0% of associated SNPs are within the tran-
script boundaries of a RefSeq gene, indicating a relative
under-estimation of the proximity to genes of loci in ini-
tial GWAS reports. Furthermore, from our database, we
found that most top GWAS associations are relatively
gene-centric, with 65.7% of the associated SNPs located
either in or within 60 kb of a RefSeq gene (Figure 3). Sig-
nificantly associated SNPs showed a trend toward being
more gene-centric than all SNPs present on the arrays used
in most studies (seen in the contrast between Figure 3 and
Figure 4). We compared studies that employed either
Affymetrix only or Illumina only arrays and we found lit-
tle difference in the proportion of associated SNPs located
within genes (Figure 3, Affymetrix: 39.5%, Illumina:
40.8%). When we considered associated SNPs in or near
(within 60 kb) a RefSeq gene, there were a modestly
increased proportion of gene centric associations within
"Illumina only" studies (Figure 3, Affymetrix: 64.7%, Illu-
mina: 70.6%).

First analysis of a cross-GWAS results database reveals 

SNPs associated with two or more diverse phenotypes

Using our standardized GWAS results database [see Addi-
tional file 2], we conducted a density analysis to find the
densest regions of association in the genome, using 100
kb bins across the genome and including all SNP associa-
tions regardless of the magnitude of statistical signals. To
account for LD, which could confound our analysis by
inflating the density of associations in regions of high LD,
we ran a parallel analysis where we adjusted for the aver-
age pairwise LD (r2) in the same regions for the HapMap
CEU samples. Both analyses identified many previous
strongly replicated loci within regions of the genome
showing the highest density of previous associations
(Table 1). In Figure 1, we provide a view of GWAS associ-
ations across a diverse set of phenotypes, including many
regions of the genome where SNP associations exceed the
common genome-wide significance threshold (P < 5 × 10-

8), clearly highlighting both the density and magnitude of
association signals at many replicated loci. Figure 2 shows
a restricted view of GWAS results from 5 × 10-8  P  1 ×
10-4, making apparent a number of clusters that approach
the genome-wide significant threshold (P < 5 × 10-8).
Across the genome, the 99th percentile cutpoint based on
density of associations included bins with 13 or more
GWAS associations within less than or equal to 100 kb.
The MHC class II loci contained the densest bins. There
are numerous phenotypes associated with the MHC loci,
consistent with significant pleiotropy of this region, but
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Cumulative percent of GWAS association SNPs falling within specified distances from a protein-coding RefSeq geneFigure 3
Cumulative percent of GWAS association SNPs falling within specified distances from a protein-coding RefSeq 
gene. SNP frequency by distance is plotted for significant GWAS associations from studies that employed only Illumina of only 
Affymetrix platforms (in 10 kb bins).

Cumulative percent of arrayed SNPs falling within specified distances from a protein-coding RefSeq geneFigure 4
Cumulative percent of arrayed SNPs falling within specified distances from a protein-coding RefSeq gene. SNP 
frequency by distance is plotted for arrayed SNPs on Affymetrix or Illumina arrays (in 10 kb bins). The gene-centric arrays from 
each company are not displayed since relatively few studies analyzed here have published results based on these arrays. The 
Illumina Hap240, Hap300 and Hap650 are omitted because they show a highly similar pattern to the Hap550 array.
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Table 1: Densest regions of GWAS associations in the human genome based on analysis of 100 kb bins.

Chr Position GWAS assoc. in bin Density rank LD adj. rank Min. p value Gene(s) Phenotype(s) in 
decreasing order of 

occurrence

6 32405288–32497626 177 1 1 5.47E-111 C6orf10, BTNL2 RA (65), Type I (50), MS 
(26), Type II (17), 
combined WTCCC cases 
(10), CAD (8), 
Alzheimer's (1)

6 32703038–32798923 107 3 2 1.12E-307 HLA-DQA1, HLA-
DQB1

Type I (47), RA (30), MS 
(14), combined WTCCC 
cases (7), Celiac disease 
(3), SLE (2), Crohn's 
disease (1), AAT levels 
(1), Type II (1), 
Alzheimer's (1)

6 32806435–32896489 116 2 3 4.86E-79 HLA-DQA1, HLA-
DQB1, HLA-DOB

Type I (59), RA (25), MS 
(21), combined WTCCC 
cases (9), Early onset 
obesity (1), 2 hr glucose 
tolerance test (1)

2 60502647–60591731 77 5 4 6.70E-35 BCL11A HbF (75), Type II (1), 
Hypertension (1)

2 60415435–60494833 87 4 5 2.50E-12 downstream from 
BCL11A

HbF (75), Type II (7), 
CAD (1), Abdominal 
aortic calcification (1), 
combined WTCCC cases 
(1), Bipolar (1), 
Parkinson's (1)

1 67406551–67498692 65 6 6 3.03E-23 IL23R Crohn's disease (60), 
Psoriasis (2), RA (1), 
CAD (1), combined 
WTCCC cases (1)

9 89310993–89384465 46 9 7 2.80E-05 DAPK1 Alzheimer's (19), HOMA-
IR (17), Waist:height (5), 
Type II (2), Fasting insulin 
(2), RA (1)

6 151254904–
151296407

17 91 8 2.90E-08 MTHFDL1 CAD (10), Type 1 (2), 
combined WTCCC cases 
(1), Hypertension (1), 
FPG (1), Insulinogenic 
index (1), ALS (1)

11 5401462–5499595 29 23 9 9.46E-24 HBB, UBQLN3, 
olfactory receptors

MCV (8), HbA2 (7), RBC 
(3), HbA1C (1), CAD (3), 
Type II (3), Fat mass (2), 
Bipolar disorder (1), 
Crohn's disease (1)

16 55526649–55589312 22 43 10 1.00E-73 CETP HDL cholesterol (16), 
Type II (3), ApoAI (2), 
HTN (1)

9 116701486–
116796674

31 22 11 1.61E-09 TNFSF8, TNC Crohn's disease (29), 2 hr 
glucose tolerance test (2)

8 128116770–
128194686

24 31 12 1.10E-12 intergenic, 8q24 Colorectal cancer (10), 
Prostate cancer (8), 
Bipolar disorder (3), CAD 
(2), Hypertension (1)

8 19857092–19899552 42 11 13 2.00E-28 LPL Triglycerides (22), HDL 
(11), Triglyceride:HDL 
(4), CAD (4), RA (1), Hip 
circumference (1)

9 22102599–22126489 26 29 20 1.00E-20 ANRIL, 3' of CDKN2A/
2B

Type II (12), CAD (11), 
combined WTCCC cases 
(2), Coronary artery 
calcification (1)

10 123321680–
123395011

28 24 21 2.00E-76 FGFR2 Breast cancer (24), RA 
(2), Type II (1), combined 
WTCCC cases (1)
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there is also evidence for pleiotropy for a previously repli-
cated Alzheimer's disease locus (MAPT, KIAA1267, STH),
which displays a signal for Crohn's disease, and a second
replicated Alzheimer's locus (DAPK1), which shows evi-
dence for Type II diabetes and related traits across multi-
ple studies.

We considered regions that were not highlighted in the
original GWAS articles but that nonetheless reveal a high
density of associations in our analysis (Table 2). Although

associations were noted in more than two studies for all of
these regions, none of the single SNP associations was
considered to be significant on a genome-wide level. A
dense cluster of significant associations for Crohn's dis-
ease and HDL cholesterol is located in the monocarboxy-
late transporter 2 gene (SLC16A7, also known as MCT2),
a ubiquitously expressed transporter that imports and
exports lactate and pyruvate. Other clusters of interest
include: a complement related factor, CSMD1, mainly for
association with HIV-1 viral load; and associations with

6 20706282–20796100 33 21 28 4.11E-11 CDKAL1 Type II (32), Insulin 
response (1)

16 49300832–49399578 47 8 31 2.51E-49 NOD2 Crohn's disease (44), RA 
(1), combined WTCCC 
cases (1), ApoB (1)

16 52327178–52389272 38 14 33 7.30E-14 FTO TypeII (15), Hip 
circumference (15), Early 
onset obesity (6), Fasting 
glucose (1), ALS (1)

10 114722872–
114798892

39 13 34 1.00E-48 TCF7L2 Type II (36), Waist:height 
(2), BMI (1)

9 22007836–22093813 52 7 41 2.10E-19 MTAP, ANRIL, 
CDKN2A/2B

CAD (48), Coronary 
artery calcification (2), 
Type II (2), Type I (1), RA 
(1)

17 35304874–35382291 44 10 43 2.00E-23 ORMDL3 Childhood asthma (34), 
ORMDL3 expression (7), 
Crohn's disease (3)

1 228303905–
228375529

24 32 55 7.00E-15 GALNT2 Type II (9), Triglycerides 
(7), HDL (6), Crohn's 
disease (1), ALS (1)

16 49218265–49298963 34 19 73 4.71E-29 NOD2, SLIC1, CYLD Crohn's disease (33), 
Bipolar disorder (1)

11 41805501–41887387 34 20 74 5.70E-08 11p12, 800 kb from 
NGL1

Type II (33), Coronary 
spasm (1)

1 109608806–
109623689

23 37 92 1.20E-33 SORT1, CELSR2, 
PSRC1, MYBPHL, SARS

LDL cholesterol (16), 
CAD (4), Total 
cholesterol (1), Bipolar 
disorder (1)

8 128404855–
128498005

23 38 99 1.27E-14 POU5F1 Prostate cancer (8), 
Colorectal cancer (13), 
Breast cancer (1), 
Hypertension (1)

5 40513272–40597115 40 12 264 8.73E-12 intergenic, 5p31.1 Crohn's disease (40)

20 33403387–33489397 36 17 322 5.01E-12 GDF5, UQCC, CEP250 Height (35), Hypertension 
(1)

10 64100271–64194296 24 35 494 1.00E-10 ZNF365, ADO, EGR2 Crohn's disease (16), 
Type II (8)

17 41401810–41495480 38 15 526 3.53E-05 KIAA1267, MAPT, STH Crohn's disease (26), 
Alzheimer's (11), 
Insulinogenic index (1)

10 44011247–44096316 23 39 647 9.46E-08 intergenic, 10q11.21 CAD (20), Diastolic 
blood pressure (2), 
Fasting glucose (1)

17 41305238–41395352 37 16 746 2.78E-05 KIAA1267, MAPT, STH Crohn's disease (19), 
Alzheimer's (18)

2 21223320–21252721 27 27 796 8.10E-09 upstream of APOB LDL cholesterol (17), 
Total cholesterol (10)

Densest regions of GWAS associations in the human genome previously highlighted in a GWAS study (based on analysis of 100 kb bins). Bin 
rankings are given based on simple counts of associations, and after adjusting for HapMap CEU LD (average pairwise r2 in the same region), out of 
18,310 bins in the genome that contained 1 or more GWAS association. Bins with known, replicated associations ranked in the top 40 by density 
and/or after LD adjustment are listed.

Table 1: Densest regions of GWAS associations in the human genome based on analysis of 100 kb bins. (Continued)
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Table 2: Densest regions of GWAS associations in the human genome based on analysis of 100 kb bins.

Chr Position GWAS assoc. in bin Density rank LD adj. rank Min. p value Gene(s) Phenotype(s) in 
decreasing order of 

occurrence

10 6316580–6390596 17 92 14 2.70E-06 PFKFB3 LDL cholesterol (4), 
Total cholesterol (4), 
Celiac disease (2), RA (2), 
Waist circumference (2), 
Bipolar disorder (2), 
Weight (1)

13 109616103–109677555 19 67 15 7.61E-06 COL4A1 Weight (11), Type II (2), 
ALS (2), BMI (1), Height 
(1), Diastolic blood 
pressure (1), combined 
WTCCC cases (1)

8 4621850–4669277 27 25 16 1.12E-04 CSMD1 HIV-1 viral load set point 
(25), Crohn's disease (1), 
combined WTCCC cases 
(1)

3 21847197–21874359 20 56 17 2.00E-05 intergenic, 3p24.1 Type II (10), Diastolic 
blood pressure (4), 
Bipolar disorder (2), 
Alzheimer's (2), 
Parkinson's (1), Crohn's 
disease (1), combined 
WTCCC cases (1)

13 23522469–23566520 15 142 18 2.62E-04 SPATA13 Fat mass (8), Type II (3), 
Alzheimer's (2), Crohn's 
(1), RA (1)

13 109706778–109769126 9 447 24 2.0E-05 COL4A1 HbA1c (3), CAD (2), RA 
(1), ApoB (1), Crohn's 
(1), Parkinson's (1), 
Alzheimer's (1)

20 59002911–59076486 17 94 25 2.11E-05 intergenic, 20q13.33 CAD (6), Type II (2), 
combined WTCCC cases 
(2), HTN (2), RA (1), 
Crohn's disease (1), 
Breast cancer (1), 
Alzheimer's (1), ALS (1)

2 121639597–121685155 15 143 26 4.00E-06 intergenic, 2q14.2 Alzheimer's (4), 
Triglyceride/HDL ratio 
(4), Triglycerides (3), 
HDL (1), Type I (1), RA 
(1), Insulinogenic index 
(1)

4 178511559–178569631 10 448 30 6.90E-06 NEIL3 ALS (3), Parkinson's (1), 
Bipolar disorder (1), 
Type II (1), Type I (1), 
combined WTCCC cases 
(1), mFPG (1), heart rate 
variability (1)

16 76400711–76498035 11 333 32 1.10E-04 KIAA1576 2 hr insulin test (5), 
combined WTCCC cases 
(2), LV diastolic 
dimension (1), Fasting 
insulin (1), HOMA-IR (1), 
Alzheimer's (1)

3 2801545–2885980 11 334 35 2.48E-05 CNTN4 Total cholesterol (3), 
HIV-1 viral load set point 
(2), combined WTCCC 
cases (1), RA (1), 
Waist:height squared (1), 
2 hr glucose tolerance 
test (1), Alzheimer's (1), 
ALS (1)
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22 48109439–48199236 9 583 42 3.76E-05 intergenic, 22q13.32 Type II (3), CAD (2), 
HTN (2), LDL (1), Small 
vessel stroke (1)

7 77505244–77596871 17 95 44 1.38E-04 MAGI2 BMI (5), Waist 
circumference (5), 
Waist:height squared (5), 
HTN (1), ALS (1)

16 6603645–6620427 15 145 45 2.31E-05 A2BP1 HOMA-IR (6), Fasting 
insulin (4), 2 hr insulin 
test (3), RA (1), Nicotine 
dependence (1)

8 134608378–134674046 14 177 46 5.66E-05 ST3GAL1 Type II (6), Alzheimer's 
(6), Crohn's disease (2)

11 113445679–113499715 13 221 47 1.25E-05 ZBTB16 Waist circumference (4), 
HDL (3), BMI (2), Weight 
(2), Type II (1), LDL (1)

8 4200701–4270026 10 450 51 2.79E-04 CSMD1 HIV-1 (4), HTN (1), 
Systolic blood pressure 
(1), Type I (1), FPG (1), 
Colorectal cancer (1), 
Alzheimer's (1)

20 54803001–54891697 8 761 52 2.65E-04 intergenic, 20q13.31 ApoB (2), CAD (1), HTN 
(1), Fasting glucose (1), 2 
hr glucose (1), 
Alzheimer's (1), 
Triglyceride/HDL ratio 
(1)

13 109813629–109898019 15 146 53 1.89E-05 COL4A2 Type II (10), CAD (2), 
HTN (1), ALS (1), 
Alzheimer's (1)

16 82802796–82891261 8 762 54 1.60E-05 KCNG4, WFDC1 HIV-1 (2), Type II (1), 
Crohn's disease (1), Fat 
mass (1), Insulinogenic 
index (1), ALS (1), 
combined WTCCC cases 
(1)

6 164313234–164367157 22 44 135 3.84E-05 intergenic, 6q26 Insulinogenic index (14), 
LDL (3), HOMA-IR (2), 
Alzheimer's (1), 
Parkinson's (1), RA (1)

13 63720215–63799016 24 33 148 7.46E-05 intergenic, 13q21.31 HDL cholesterol (8), 
Waist circumference (7), 
Weight (5), CAD (2), 
BMI (1), Gallstone 
disease (1)

3 162876798–162898990 24 34 229 2.41E-05 intergenic, 3q26.1 BMI (7), Waist 
circumference (6), 
Waist:height (6), Weight 
(2), Early onset Type II 
(1), Hypertension (1), 
Crohn's disease (1)

12 58400177–58492903 35 18 267 1.12E-05 SLC16A7 Crohn's disease (21), 
HDL (14)

21 40500455–40546492 22 46 326 9.05E-05 DSCAM Height (11), Weight (7), 
Waist circumference (4)

12 111841825–111894699 22 47 440 5.92E-05 OAS1/2/3, RPH3A Crohn's disease (18), 
Type I (4)

7 86415282–86498669 23 40 1434 1.60E-04 KIAA1324L Type II (20), Triglyceride/
HDL ratio (2), CAD (1)

4 35101778–35198927 23 41 1569 7.72E-05 intergenic, 4p15.1 Nicotine dependence 
(21), Type I (1), 
Hypertension (1)

Densest regions of GWAS associations in the human genome not previously highlighted in a GWAS study (based on analysis of 100 kb bins). Bin 
rankings are given based on simple counts of associations, and after adjusting for HapMap CEU LD (average pairwise r2 in the same region), out of 
18,310 bins in the genome that contained 1 or more GWAS association. Bins with associations not previously highlighted and ranked in the top 55 
by density and/or after LD adjustment are listed.

Table 2: Densest regions of GWAS associations in the human genome based on analysis of 100 kb bins. (Continued)
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Table 3: Top repeated occurrences from 52,554 unique SNPs among 56,411 SNP-phenotype associations.

SNPid Repeat assoc. Gene(s) Trait(s) P value range Chr Position Gene size SNP on 
platforms?

Perfect CEU 
LD proxies on 

other 
platforms?

rs4420638 11 APOE/APOC 
cluster

Lipids, 
Alzheimer's, 

CAD

1.7E-4 to 
1.0E-60

19 50114786 4 kb Affymetrix, 
Illumina

Y

rs599839 8 PSRC1 (near 
CELSR2, 
SORT1)

Lipids, CAD 2.2E-5 to 
1.2E-33

1 109623689 88 kb Affymetrix, 
Illumina

Y

rs693 8 APOB Lipids 6.8E-4 to 
1.0E-21

2 21085700 43 kb Affymetrix, 
Illumina

Y

rs17482753 6 LPL Lipids 3.6E-5 to 
5.9E-19

8 19876926 29 kb Affymetrix Y

rs780094 6 GCKR Triglycerides, 
Crohn's

6.0E-3 to 
1.0E-15

2 27594741 27 kb Affymetrix, 
Illumina

Y

rs1801282 6 PPARG TypeII, 
Alzheimer's, 

Obesity

4.5E-2 to 
1.7E-6

3 12368125 146 kb Affymetrix, 
Illumina

Y

rs910049 5 MHC locus 
(C6orf10)

TypeII, TypeI, 
MS, CAD

7.8E-4 to 
3.0E-93

6 32423705 79 kb Affymetrix, 
Illumina

Y

rs2076530 5 MHC locus 
(BTNL2)

MS, TypeI, RA 3.2E-10 to 
6.7E-74

6 32471794 12 kb Affymetrix, 
Illumina

Y

rs7901695 5 TCF7L2 TypeII, 
Waist:Height

2.6E-4 to 
1.0E-48

10 114744078 216 kb Affymetrix, 
Illumina

Y

rs7903146 5 TCF7L2 TypeII 5.5E-8 to 
1.0E-48

10 114748339 216 kb Illumina N

rs4506565 5 TCF7L2 TypeII, BMI 8.6E-4 to 
2.3E-31

10 114746031 216 kb Affymetrix N

rs10503669 5 LPL Lipids 9.1E-4 to 
3.9E-22

8 19891970 29 kb Affymetrix Y

rs562338 5 APOB Lipids 2.2E-6 to 
5.6E-22

2 21141826 43 kb Affymetrix Y

rs11209026 5 IL23R Crohn's, 
Psoriasis

4.8E-4 to 
6.6E-19

1 67478546 93 kb Affymetrix, 
Illumina

Y

rs8050136 5 FTO BMI, TypeII 9.8E-7 to 
7.3E-14

16 52373776 410 kb Affymetrix, 
Illumina

Y

rs9939609 5 FTO BMI, TypeII 1.9E-6 to 
9.0E-12

16 52378028 410 kb Affymetrix Y

rs4970834 5 CELSR2 (near 
SORT1, PSRC1)

Lipids, CAD 3.4E-4 to 
3.0E-11

1 109616403 26 kb Affymetrix, 
Illumina

Y

rs1111875 5 HHEX TypeII 1.4E-3 to 
5.7E-10

10 94452862 6 kb Affymetrix, 
Illumina

Y

rs13266634 5 SLC30A8 TypeII 3.3E-6 to 
5.3E-8

8 118253964 42 kb Illumina N

rs968671 5 GABRG3 BMI, 
Hypertension

3.3E-4 to 
2.5E-6

15 25036654 650 kb Affymetrix N

rs7034356 5 RAPGEF1 BMI 3.7E-4 to 
1.3E-5

9 133468838 161 kb Affymetrix Y

rs4740294 5 RAPGEF1 BMI 8.3E-4 to 
1.3E-5

9 133462842 161 kb Affymetrix Y

rs481843 5 Intergenic 
(near APO 
cluster, 
BUD13)

Lipids, 
Alzheimer's

9.3E-4 to 
2.1E-5

11 116031077 - Affymetrix Y

rs2889849 5 PIGU BMI, Lipids 8.8E-4 to 
1.9E-4

20 32627938 117 kb Affymetrix, 
Illumina

Y

rs10498015 5 SPAG16 Lipids, Hgt, 
Wgt

9.7E-4 to 
1.2E-4

2 214425824 165 kb Affymetrix, 
Illumina

Y

Highly repeated occurrences of unique SNPs among 56,411 SNP-phenotype associations. We report the presence of these SNPs and whether a 
perfect proxy LD SNP exists based on the HapMap CEU population, on both Affymetrix and Illumina platforms, and the other platform in the case 
of a SNP only genotyped on an array from one company. This information was determined using the SNAP tool [33] and demonstrates that signals 
from a small minority of these SNPs could be missed depending on the platform applied in each case. Underlined entries represent newly 
recognized loci or phenotype associations.



BMC Medical Genetics 2009, 10:6 http://www.biomedcentral.com/1471-2350/10/6

Page 12 of 17

(page number not for citation purposes)

Crohn's disease and Type I diabetes at OAS1, an enzyme
that degrades viral RNA and has previously been associ-
ated with Type I diabetes, multiple sclerosis and SARS
infection. Accounting for LD in the density analysis
changed the rankings of the top regions (Tables 1 and 2),
but all of the unadjusted bins remained within the top 5%
of all bins for known, replicated regions (Table 1) and
within the top 10% of all bins for those presented in Table
2.

Highly repeated SNPs across GWAS association results

After accounting for aliases used for identical SNPs, we
counted the frequency of occurrence of individual SNPs
among top GWAS associations to search for SNPs associ-
ated repeatedly across traits. Among all SNP associations
(n = 56,411), 52,554 unique SNPs were observed, and the
bulk of these SNPs were associated with a single pheno-
type once (n = 49,313). Examining the most redundant
SNPs across GWAS associations revealed a set of known,
replicated loci, validating this approach (Table 3). For
example, a single SNP located 3' of APOC1 (rs4420638)
was associated 11 times across GWAS, including associa-
tion with Alzheimer's disease, lipid-related traits and cor-
onary artery disease (CAD). Some replicated loci
contained multiple SNPs with repeated associations,
which may be due to LD and differences in representation
on arrays (APOB, LPL, TCF7L2, SORT1, CELSR2, PSRC1,
and FTO in Table 3). By searching for repeated SNP asso-
ciations, a number of new suggestive loci were also
observed, each of which was associated independently
with five traits, with none reaching genome-wide signifi-
cance. These included: GABRG3 (rs968671) which
showed association with BMI-related traits and hyperten-
sion and is located in a cluster of GABA receptor subunits,
notable for the role of GABA signaling in sympathetic vas-
omotor tone; RAPGEF1 (rs7034356, rs4740294), an
exchange factor involved in cell signaling, was associated
with BMI-related traits; PIGU (rs2889849), a subunit of
glycosylphosphatidylinositol transamidase, was associ-
ated with lipid- and BMI-related traits; and SPAG16
(rs10498015), a sperm-associated protein, was associated
with height, weight and lipid-traits (Table 3).

Over-represented functional gene categories among top 

GWAS association results

Using our standardized RefSeq gene annotations of GWAS
associations, we identified all protein-coding genes con-
taining one or more association among top GWAS results
(n = 5,966). We explored whether genes with specific
types of biological function are over-represented across
significant GWAS results using GOminer, software origi-
nally designed for microarray analysis [6]. Genes relating
to cell adhesion functions were highly over-represented (P
< 4.6 × 10-14) across the meta-dataset, as were genes
related to signal transduction (P < 9.7 × 10-11), transport

activity (P < 1.1 × 10-9), and protein phosphorylation (P <
2.4 × 10-7) (Table 4). To test the sensitivity of these find-
ings to the inclusion of specific datasets, we repeated the
analysis after removing data from two of the largest data
contributors (WTCCC, DGI) leaving a subset of associa-
tions within 2,888 genes. In the repeat analysis, the distri-
bution and statistical significance of associations among
the top biological function categories was not signifi-
cantly altered (Table 4). In an analysis stratified by major
disease categories ([see Additional file 3] for the specific
studies included in each set), we found that genes relating
to cell adhesion were significantly over-represented in
every disease set and ion transport related genes were sig-
nificantly over-represented in every disease set except
lipid-related traits [see Additional file 5]. Examining sig-
nificantly associated protein-coding gene categories with
FDR < 0.05 in each disease set revealed a positive control
for this approach, the "antigen processing and presenta-
tion" gene category in the rheumatoid arthritis set (P < 2.4
× 10-9) [see Additional file 5]. A number of other over-rep-
resented categories were also concordant with the
expected specific disease contexts: "nervous system devel-
opment" (ALS, Alzheimer's disease, Weight/BMI), "synap-
tic transmission" (ALS), "metal ion/sodium/calcium
transport" (CAD, Hypertension), "phospholipid trans-
port" (Type II Diabetes), and "response to nutrient levels"
(Weight/BMI).

Discussion
In our evaluation of a comprehensive GWAS results data-
base across diverse phenotypes, we confirm the potential
benefit of open access to GWAS results data by a series of
observations. After re-annotation of all reported results,
we determined that more than two-thirds of associations
are in or within reasonably limited physical and genetic
distance from a protein-coding gene, with a significant
minority of associations more distant from a protein-cod-
ing gene. While intentionally hypothesis generating, the
results of our analyses (Tables 1, 2, 3, 4, and [see Addi-
tional file 5]) suggest there are a number of novel associ-
ated loci, pleiotropic effects of known loci, and newly
emphasized functional gene categories in human dis-
eases. Using standardized gene annotations of top GWAS
associations, we further undertook an ontology-based
functional analysis, revealing a striking over-representa-
tion of cell adhesion-related genes implicated in GWAS
studies encompassing a diversity of diseases (P < 4.6 × 10-

14 for all diseases). We make the compiled results fully
available in supplemental files, [see Additional file 2] or
[see Additional file 4], and also provide input files that
can be used to visualize all associations included here, or
from specific studies, using UCSC Genome Graphs [see
Additional file 6].
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Using a straightforward bin clustering analysis of all
GWAS results we identified known, replicated loci, but
also observed high density clustering of associations in
gene regions that were not previously highlighted in the
primary GWAS studies, but displayed significance in two
or more GWAS (Table 2). The densest cluster of such asso-
ciations was observed for Crohn's disease and HDL cho-
lesterol in the 3' region of a monocarboxylate transporter,
SLC16A7, also known as MCT2. Notably a related mono-
carboxylate transporter, MCT1, was shown to be
decreased in expression in the inflamed colonic mucosa
of patients with ulcerative colitis and Crohn's disease rel-
ative to controls [7]. The next densest cluster was prima-
rily associated with HIV-1 viral set point [8] in CSMD1, a
gene which encodes a soluble protein that can block the
classical complement activation pathway [9]. This is of
particular interest since a characteristic of HIV-1 infection
and persistence is the active evasion of the host humoral

response, a key component of which is complement acti-
vation [10].

The preceding examples, and others in Tables 2 and 3
(RAPGEF1, PIGU, SPAG16, PFKFB3, COL4A1/2, A2BP1)
suggest novel candidate genetic loci that require further
replication, but we also noted GWAS associations of inter-
est in at least one locus with previous evidence for associ-
ation. A gene encoding 2',5' oligoadenylate synthetase 1
(OAS1) is stimulated by interferon, plays an important
role in innate immunity and was previously shown to be
genetically associated with Type I Diabetes [11], multiple
sclerosis [12], SARS [13] and hepatitis C persistent infec-
tion [14]. Here we report signals in GWAS results for both
Type I Diabetes and Crohn's disease which, given prior
associations, suggests this locus may harbor at least one
functional allele that impacts a range of immune-related
etiologies. Arguably, this example may demonstrate that

Table 4: GOminer gene ontology analysis of GWAS results, indicating the most over-represented ontological categories.

Including WTCCC/DGI results (n = 5966 genes) Excluding WTCCC/DGI 
results 

(n = 2888 genes)

Gene Ontology category RefSeq genes in 
Category

RefSeq genes 
observed in 

GWAS

GO category 
enrichment

P-value for 
enrichment

FDR P-value for enrichment

GO:0007155_cell_adhesion 650 309 1.41 4.56E-14 0 1.99E-17

GO:0051056_regulation_of_ 
small_GTPase_mediated_ 

signal_transduction

161 94 1.73 9.73E-11 0 3.76E-06

GO:0051179_localization 2493 975 1.16 1.12E-10 0 2.32E-07

GO:0006810_transport 2128 837 1.17 1.13E-09 0 2.46E-06

GO:0051234_establishment_
of_localization

2189 856 1.16 2.64E-09 0 2.92E-06

GO:0006811_ion_transport 682 297 1.29 2.39E-08 0 1.32E-08

GO:0009966_regulation_of_ 
signal_transduction

408 189 1.37 5.37E-08 0 0.00132

GO:0046578_regulation_of_ 
Ras_protein_signal_

transduction

122 70 1.70 6.27E-08 0 0.00014

GO:0007156_homophilic_cell
_adhesion

134 75 1.66 8.92E-08 0 6.35E-09

GO:0016337_cell-
cell_adhesion

245 121 1.46 2.26E-07 0.000091 1.04E-07

GO:0006468_protein_amino_
acid_phosphorylation

536 236 1.31 2.43E-07 0.000083 7.42E-07

GO:0043687_post-
translational_protein_ 

modification

1171 473 1.20 2.83E-07 0.000154 0.00097

GO:0007265_Ras_protein_ 
signal_transduction

177 92 1.54 3.59E-07 0.000143 0.00013

GO:0006464_protein_ 
modification_process

1399 555 1.18 3.91E-07 0.0002 0.00721

GO:0007242_intracellular_ 
signaling_cascade

1210 486 1.19 4.26E-07 0.000188 0.00040

GO:0006817_phosphate_ 
transport

83 50 1.79 6.31E-07 0.000176 2.10E-05
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previous candidate gene centered associations can be rep-
licated via in silico analysis of GWAS results. During the
review of this article, published and unpublished studies
came to our attention, which provide some additional val-
idation for results we present. We noted in Table 3 the
highly repeated association of SNPs in genes including
RAPGEF1 and PIGU across multiple GWAS and suggested
these as potential novel candidate genes for further study
and replication. Recently a genome-scan for melanoma,
reported the most significant association, which was rep-
licated, was found in PIGU (p < 1.0 × 10-15) [15]. The
genome-wide significant SNP from Brown and colleagues
is in significant LD with the SNP present in Table 3 (D'
1.0, r2 0.57). This genomic region (20q11.22) also ranked
relatively high in our bin-based analysis (density rank =
78, LD-adjusted rank = 1,338) as a previously, unrepli-
cated region that contained a high density of GWAS asso-
ciations for diverse diseases. In an analysis of 222
candidate genes for association with diabetes and related
traits, extending previously published GWAS analyses,
Gaulton and colleagues [16] report a RAPGEF1 SNP
(rs4740283) as the most statistically significant associated
SNP with Type II Diabetes among all SNPs and genes they
analyzed. This SNP is nearby and in complete LD (D' 1.0,
r2 1.0) with a RAPGEF1 SNP, rs7034356, we reported here
in Table 3. These newly reported and replicated results for
PIGU and RAPGEF1, as well as some as yet unpublished,
but replicated GWAS results for other genes we highlight
strongly suggest that the availability and analysis of GWAS
results across diverse traits may be useful in predicting and
supporting functional loci for further biological study.

Creation of a standardized results database allowed us to
conduct a functional gene category analysis. The over-rep-
resentation of cell adhesion genes was strongest among
weight- and BMI-associated traits (P < 7.1 × 10-20). This
expands on an earlier report on the over-representation of
cell adhesion genes in significant addiction-related GWAS
results [17]. The finding was not sensitive to the inclusion
of data from specific studies, suggesting either a broad

impact of genetic variability in cell adhesion genes on
diverse disease etiologies or a systematic bias toward these
genes on commercial genotyping arrays. A previous anal-
ysis of relative ontology representation of SNPs on major
commercial genotyping arrays indicated that genes relat-
ing to biological adhesion account for relatively few
arrayed genes (~2%) [18]. Current evidence does support
roles for cell adhesion molecules in a number of major
diseases [19], and notably an ontology-based analysis of
the Phase II data from the HapMap project indicated that
cell adhesion genes are among the gene groups with the
most evidence for recombination in recent human history
suggesting potential selective pressures on this group [20].
It is notable that expected gene ontologies were over-rep-
resented for specific disease categories (e.g., antigen
processing and presentation in rheumatoid arthritis, CNS
development and synaptic transmission in ALS, metal
ion/sodium/calcium transport in CAD). This finding may
be consistent with the hypothesis that multiple loci in
related physiological pathways and processes, each with a
relatively small magnitude of effect, may make a signifi-
cant aggregate contribution to genetic risk of complex dis-
eases.

Consistent, widespread standards of reporting and anno-
tation of full disclosure results may facilitate hypothesis-
generation and extend discovery that is already occurring
from GWAS and their follow-up studies. While GWAS
have resulted in the discovery of new and strongly repli-
cated genetic associations relevant to human disease,
there continues to be a substantial challenge to discover-
ing meaningful genotype-phenotype associations among
a surfeit of data. The typical staged approach to GWAS dis-
covery consists of ranking statistical associations and rep-
lication testing in large follow-up sample cohorts; while
some "true" associations are found positioned relatively
low on the initial p-value ranked list [21]. A recent follow-
up meta-analysis across Type II Diabetes GWAS resulted
in the identification and replication of additional loci that
did not meet genome-wide significant thresholds in any

Table 5: Potential criteria for standardized reporting of GWAS results.

Methodological description (array(s), calling algorithm, DNA extraction method, DNA pooling)

Full disclosure of SNP list genotyped, with genomic build and position

Genotyped strand and call rates for each SNP

QC filtering criteria employed

Sample sizes for all analyzed populations and indication of genotyping conducted for each

Sample demographics: gender, mean age, ethnogeographic make-up, geographic coordinates

Specific phenotype description(s)

Description of analytical and statistical procedures applied (genetic models, imputation, etc.)

Full p-values and effects estimates (such as direction of effect with respect to alleles, beta coefficients and standard errors) for association in main 
GWAS scans, and for meta-analysis if done across scans

List of SNPs with genomic build and position for which replication was attempted

Appropriate measures to mask group and individual identification if data are posted publicly

Contact information for submitters and parties responsible for portions of the GWAS
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primary GWAS analysis, highlighting the benefit of com-
bining GWAS results from multiple studies [22]. Other
studies following initial GWAS data releases have
employed pathway-based analyses [23], multilocus asso-
ciation testing [22] and in silico comparisons across multi-
ple GWAS for related phenotypes, for example to find
SNPs associated with both LDL cholesterol and CAD [25].
As more data become available, further analyses become
feasible, including the possibility of using Bayesian infer-
ence to weight SNPs with a priori evidence for association
for use in the analysis of new trait scans [3,26,27]. Weight-
ing of SNPs could be conducted based on a variety of
parameters including a priori linkage, or functional evi-
dence such as prior gene expression GWAS. Our results
(Figure 3) suggest that weighting schemes incorporating
gene centricity and tagging of gene regions may be rele-
vant, as previously demonstrated [26].

A growing number of GWAS investigative teams including
the Diabetes Genetic Initiative [28], the Wellcome Trust
Case Control Consortium [29] and the Framingham
Heart Study [30] are leading efforts for the early and wide-
spread dissemination of aggregate results from GWAS to
enable further scientific research. Informatics initiatives
including the National Center for Biotechnology Informa-
tion's (NCBI) database of Genotype and Phenotype
(dbGaP) have a core goal of systematically making availa-
ble GWAS participant-level data and aggregate results for
future analysis [4]. However, our analysis suggests that the
extent and quality of further analyses of GWAS results will
largely depend upon the extent of SNP results to which
researchers have access and the quality of data annotation.
We found that a substantial portion of GWAS results are
currently unavailable even through an application proc-
ess, and further that available results are largely presented
in a non-uniform manner among disparate databases and
web clients, and are often lacking even the most basic
gene and SNP annotation. Shifts in SNP-genome posi-
tions and SNPids over time and unavailable full SNP lists
for some platforms and custom arrays also exacerbate
attempts to harmonize results from different studies or
genotyping platforms. Further complicating the move to
widely distribute aggregate results is the report that the
identity of individual research participants may be
revealed from large numbers of aggregate genotype-phe-
notype research results. Estimation methods have been
reported, using simple allele frequencies or genotype
counts, which make it possible to accurately determine
whether specific individuals with known high-density
SNP profiles are participants in a complex genomic DNA
mixture, such as the case or control groups from publicly
available aggregate datasets [31]. In response to this
report, access to aggregate genotype data for GWAS studies
on dbGaP and other GWAS portals has been removed
from public access and made available through controlled

access processes requiring the user to receive approval
from a data access committee. In total these substantial
obstacles to further analysis suggest a need to establish
and adopt standards for GWAS reporting.

A previous working group paper suggested criteria for
establishing and evaluating GWAS reports and replica-
tion, and their report highlights the types of information
that would be central to a GWAS data standard [1]. The
centralization of GWAS results in a standardized reposi-
tory containing information similar to that presented in
the database here and periodically updated from the liter-
ature, could provide a platform for further analysis by the
research community with many potential benefits,
including functionality for integration with other infor-
matics resources and the ability to iteratively access,
search and conduct additional analyses as new scan data
becomes available. The establishment of GWAS reporting
standards is beyond the scope of this article and requires
a dialogue throughout the community. The adoption of
MIAME standards for microarray gene expression studies
has enabled substantial advances in that field and more
systematic bioinformatics analysis of results [32]. In an
ideal scenario journals would require authors to make a
submission that meets or exceeds a GWAS reporting
standard before accepting a paper for publication (Table
5). While the disclosure of genotype results even when
appropriately de-identified and subject to other research
protections has potential dilemmas ethical and otherwise,
the disclosure of association p-values, basic experimental
and SNP annotation information may be less problem-
atic. We suggest that in order to also protect the interests
of invested researchers who may have ongoing projects
following initial GWAS analysis that any minimal stand-
ard allow for a lagging time period before the disclosure
of full association results.

Conclusion
We provide a comprehensive open access database of
available GWAS results, along with general observations
and first analyses. We observed substantial heterogeneity
in the amount and type of information currently reported
in GWAS articles. After substantial data collection and
informatics integration efforts, our first pass analysis
across GWAS indicates there may be substantial benefits
to centralizing and opening access to GWAS results. We
found support for potential pleiotropy of known, repli-
cated loci, as well as the suggestion of new, interesting
candidate genes and functional categories that require fur-
ther validation and study. The creation of an open access
resource for GWAS results should encourage and facilitate
new genetic and genomic analysis, and provides a poten-
tial resource for easier participation in results sharing
among interested researchers.
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