
An Open and Parallel Multiresolution
Framework Using Block-Based
Adaptive Grids

Mario Sroka, Thomas Engels, Philipp Krah, Sophie Mutzel,
Kai Schneider and Julius Reiss

Abstract A numerical approach for solving evolutionary partial differential
equations in two and three space dimensions on block-based adaptive grids is pre-
sented. The numerical discretization is based on high-order, central finite-differences
and explicit time integration. Grid refinement and coarsening are triggered by mul-
tiresolution analysis, i.e. thresholdingofwavelet coefficients,which allowcontrolling
the precision of the adaptive approximation of the solution with respect to uniform
grid computations. The implementation of the scheme is fully parallel usingMPIwith
a hybrid data structure. Load balancing relies on space filling curves techniques. Vali-
dation tests for 2D advection equations allow to assess the precision and performance
of the developed code. Computations of the compressible Navier-Stokes equations
for a temporally developing 2D mixing layer illustrate the properties of the code for
nonlinear multi-scale problems. The code is open source.

Keywords Adaptive block-structured mesh · Multiresolution · Wavelets
Parallel computing · Open source · Linear advection · Compressible navier-stokes

1 Introduction

For many applications in computational fluid dynamics, adaptive grids are more
advantageous than uniform grids, because computational efforts are put at locations
required by the solution. Since small-scale flow structures may travel, emerge and

M. Sroka · P. Krah · S. Mutzel · J. Reiss (B)
Technische Universität Berlin, Müller-Breslau-Strasse 15, 10623 Berlin, Germany
e-mail: reiss@tnt.tu-berlin.de

T. Engels
École normale supérieure, LMD (UMR 8539), 24, Rue Lhomond,
75231 Paris Cedex 05, France
e-mail: thomas.engels@ens.fr

K. Schneider
Aix–Marseille Université, CNRS, Centrale Marseille, I2M UMR 7373,
39 rue Joliot-Curie, 13451 Marseille Cedex 20, France

© Springer Nature Switzerland AG 2019
R. King (ed.), Active Flow and Combustion Control 2018,
Notes on Numerical Fluid Mechanics and Multidisciplinary Design 141,
https://doi.org/10.1007/978-3-319-98177-2_19

305

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98177-2_19&domain=pdf

306 M. Sroka et al.

disappear, the required local resolution is time-dependent. Therefore dynamic grid-
ding, which tracks the evolution of the solution, is more efficient than static grids.
However, suitable grid adaptation techniques are necessary to dynamically track
the solution. These techniques can increase the computational cost, therefore their
efficiency is problem dependent and related to the sparsity of the adaptive grid.

Examples where adaptivity is beneficial are reactive flows with localized flame
fronts, detonations and shock waves [1, 23], coherent structures in turbulence [24]
and flapping insect flight [12]. For the latter the time-varying geometry generates
localized turbulent flow structures. These applicationsmotivate and trigger the devel-
opment of a novel multiresolution framework, which can be used for many mixed
parabolic/hyperbolic partial differential equations (PDE).

The idea of adaptivity is to refine the grid where required and to coarsen it where
possible, while controlling the precision of the solution.

Such approaches have a long tradition and can be traced back to the late seventies
[5]. Adaptive mesh refinement and multiresolution concepts developed by Berger et
al. [2] and Harten [14, 15], respectively, are meanwhile widely used for large scale
computations (e.g. [10, 18, 20]).

Berger suggested a flexible refinement strategy by overlaying different grids of
various orientation and size, in the following referred to as adaptive mesh refine-
ment (AMR). Harten instead discusses a mathematical more rigorous wavelet based
method, termed multiresolution (MR). For AMR methods, the decision where to
adapt the grid is based on error indicators, such as gradients of the solution or derived
quantities. In contrast inMR, themultiresolution transform allows efficient compres-
sion of data fields by thresholding detail coefficients. This multiresolution transform
is equivalent to biorthogonal wavelets, see e.g. [15]. An important feature of MR is
the reliable error estimator of the solution on the adaptive grid, as the error introduced
by removing grid points can be directly controlled.

In wavelet-based approaches the governing equations are discretized, either by
using wavelets in a Galerkin or collocation approach [24], or using a classical dis-
cretization, e.g. finite volumes or differences, where the grid is adapted locally using
MR analysis [4, 10].

MR methods typically keep only the information which is dictated by a threshold
criterion, which is refereed to as sparse point representation (SPR), introduced in
[16]. AMR methods often utilize blocks and refine complete areas, by which the
maximal sparsity is typically abandoned in favor of a simpler code structure. An
example of this approach is the AMROC code [8], where blocks of arbitrary size
and shape are refined. A detailed comparison of MR with AMR techniques has been
carried out in [9].

For practical applications both the data compression and the speed-up of the
calculation are crucial. The latter is reduced by the computational overhead to handle
the adaptive grid and corresponding datastructures. This effort differs substantially
between different approaches [19]. It can be reduced by refining complete blocks,
thereby reducing the elements to manage, and by exploiting simple grid structures.

AMRmethod using a quad- or octtree representation to simplify the grid structure
is reported, e.g., in [10, 11] and has later also been used in [22].

An Open and Parallel Multiresolution Framework … 307

For detailed reviews on the subject of multiresolution methods we refer the reader
to [7, 10, 18, 24, 24]. Implementation issues have been discussed in [6].

Our aim is to provide a multiresolution framework, which can be easily adapted
to different two- and three-dimensional simulations encountered in CFD, and which
can be efficiently used on fully parallel machines.

To this end the chosen framework is block based, with nested blocks on quad-
or octree grids. The individual blocks define structured grids with a fixed number of
points. Refinement and coarsening are controlled by a threshold criterion applied to
the wavelet coefficients. The software, termed “wavelet adaptive block-based solver
for interactions with turbulence” (WABBIT), is open-source and freely available1 in
order tomaximize its utility for the scientific community and for reproducible science.

The purpose of this paper is to introduce the code, present its main features and
explain structural and implementation details. It is organized as follows. In Sect. 2
we give an overview of implementation and structure details. Numerics will only
be shortly described, but special issues of our data structure, interpolation, and the
MPI coding will be explained in detail. Section3 considers a classical validation test
case, including a discussion on the adaptivity and convergence order of WABBIT.
In Sect. 4 we present computations for a temporally developing double shear layer,
governed by the compressible Navier-Stokes equations. Section5 draws conclusions
and gives perspectives for future work.

2 Code Structure

In this section we present a detailed description of the data and code structure. One of
the main concepts in WABBIT is the encapsulation and separation of the set of PDE
from the rest of the code, thus the PDE implementation is not significantly different
from that in a single domain code and can easily be exchanged. The code solves
evolutionaryPDEof the type∂tφ = N (φ). The spatial part N (φ) is referred to as right
hand side in this report. A primary directive for the code is its “explicit simplicity”,
which means avoiding complex programming structures to improve maintainability.
WABBIT iswritten in Fortran 95 and aims at reaching high performance onmassively
parallel machines with distributed memory architecture. We use the MPI library to
parallelize all subroutines, while parallel I/O is handled through the HDF5 library.

2.1 Multiresolution Algorithm

The main structure of the code is defined by the multiresolution algorithm. After the
initialization phase, the general process to advance the numerical solution ϕ (tn, x)
on the grid Gn to the new time level tn+1 can be outlined as follows.

1Available on https://github.com/adaptive-cfd/WABBIT.

https://github.com/adaptive-cfd/WABBIT

308 M. Sroka et al.

1. Refinement. We assume that the grid Gn is sufficient to adequately represent the
solution ϕ (tn, x), but we cannot suppose this will be true at the new time level.
Non-linearities may create scales that cannot be resolved on Gn , and transport
can advect existing fine structures. Therefore, we have to extend Gn to ˜Gn by
adding a “safety zone” [24] to ensure that the new solution ϕ

(

tn+1, x
)

can be
represented on ˜Gn . To this end, all blocks are refined by one level, which ensures
that quadratic non-linearities cannot produce unresolved scales.

2. Evolution. On the new grid ˜Gn , we first synchronize the layer of ghost nodes
(Sect. 2.5) and then solve the PDE using finite differences and explicit time-
marching methods.

3. Coarsening. We now have the new solution ϕ(tn+1, x) on the grid ˜Gn . The grid
˜Gn is a worst-case scenario and guarantees resolving ϕ(tn+1, x) using a priori
knowledge on the non-linearity. It can now be coarsened to obtain the new grid
Gn+1, removing, in part, blocks created during the refinement stage. Section2.3
explains this process in more detail.

4. Load balancing. The remaining blocks are, if necessary, redistributed amongMPI
processes using a space-filling curve [25], such that all processes compute approx-
imately the same number of blocks. The space-filling curve allows preservation
of locality and reduces interprocessor communication cost.

2.2 Block- and Grid Definition

BlockDefinition. The decomposition of the computational domain builds on blocks as
smallest elements, as used for example in [11]. The approach thus builds on a hybrid
datastructure, combining the advantages of structured and unstructured data types.
The structured blocks have a high CPU caching efficiency. Using blocks instead of
single points reduces neighbor search operations. A drawback of the block based
approach is the reduced compression rate.

A block is illustrated in Fig. 1. Its definition (in 2D) is

Fig. 1 Definition of a block with Bs = 5 and ng = 1

An Open and Parallel Multiresolution Framework … 309

B� =
{

x = x0 + (

i · Δx�, j · Δx�
)T

, 0 ≤ i, j ≤ Bs

}

where x0 is the blocks origin, Δx� = 2−�L/(Bs − 1) is the lattice spacing at level
�, and L the size of the entire computational domain. The mesh level encodes the
refinement from 1 as coarsest to the user defined value Jmax as finest. Blocks have Bs

points in each direction, where Bs is odd, which is a requirement of the grid definition
we use. We add a layer of ng ghost points that are synchronized with neighboring
blocks (see Sect. 2.5). The first layer of physical points is called conditional ghost
nodes, and they are defined as follows:

1. If the adjacent block is on the same level, then the conditional ghost nodes are
part of both blocks and thus redundant in memory; their values are identical.

2. If the levels differ, the conditional ghost nodes belong to the block on the finer
level, i.e., their values will be overwritten by those on the finer block.

Grid Definition. A complete grid consisting of Nb = 7 blocks is shown in Fig. 2.
We force the grid to be graded, i.e., we limit the maximum level difference between
two blocks to one. Blocks are addressed by a quadtree-code (or an octtree in 3D), as
introduced in [13], and also shown in Fig. 2. Each digit of the treecode represents one
mesh level, thus its length indicates the level � of the block. If a block is coarsened,
the last digit is removed, while for refinement refinement, one digit is added. The
function of the treecode is to allow quick neighbor search, which is essential for high
performance. For a given treecode the adjacent treecodes can easily be calculated
[13]. A list of the treecodes of all existing blocks allows us to find the data of the
neighboring block, see Sect. 2.4. To ensure unique and invertible neighbor relations,
we define them not only containing the direction but also encode if a block covers

Fig. 2 Example grid with
Nb = 7 blocks. Three blocks
on mesh level 1 (gray) and
four on level 2 (black),
together with their treecodes.
Note that the mesh level is
equal to the length of the
treecode. Points at the
coarse/fine interface belong
to finer blocks

310 M. Sroka et al.

only part a border. This situation occurs if two neighboring blocks differ in level.
We also account for diagonal neighborhoods. In two space dimensions 16 different
relations defined (74 in 3D). This simplifies the ghost nodes synchronization step,
since all required information, the neighbor location and interpolation operation are
available.

Right Hand Side Evaluation. The PDE subroutine purely acts on single blocks.
Therefore efficient, single block finite difference schemes can be used allowing to
combine existing codes with the WABBIT framework. Adapting the block size to
the CPU cache offers near optimal performance on modern hardware. The size of
the ghost node layer can be chosen freely, to match numerical schemes with different
stencil sizes.

2.3 Refinement/Coarsening of Blocks

If a block is flagged for refinement by some criteria (see blow) this refinement is
executed as illustrated in Fig. 3. The block, with synchronized ghost points, is first
uniformly upsampled by midpoint insertion, i.e., missing values on the grid

˜B� =
{

x = x0 + (

i · Δx�/2, j · Δx�/2
)T

, −2ng ≤ i, j ≤ 2Bs − 1 + 2ng
}

are interpolated (gray points in Fig. 3 center). In other words, a prediction operator
P�→�+1 is applied [14]. The data is then distributed to four new blocks B�+1

i , where
one digit is added to the treecode, which are created on the MPI process holding the
initial (“mother”) block. The blocks are nested, i.e. all nodes of a coarser block also
exist in the finer one. The reverse process is coarsening, where four sister blocks on
the same level are merged into one coarser block by applying the restriction operator

Fig. 3 Process of refining block with treecode X. First, the block is upsampled, including the ghost
nodes layer. Then, four new blocks are created, where one digit is added to the treecode

An Open and Parallel Multiresolution Framework … 311

R�→�−1, which simply removes every second point. For coarsening, no ghost node
synchronization is required, but all four blocks need to be gathered on one MPI rank.

The refinement operator uses central interpolation schemes. Using one-sided
schemes close to the boundary would not require ghost points and would thus reduce
the number of communications. They yield errors only of the order of the threshold ε.
However, the small, but non-smooth structures of these errors force very finemeshes,
which can increase the number of blocks. This fill-up can lead to prohibitively expen-
sive calculations.

Computation of Detail Coefficients. The decision whether a block can be coarsened
or not is made by calculating its detail coefficients [24]. The are computed by first
applying the restriction operator, followed by the prediction operator. After this round
trip of restriction and prediction, the original resolution is recovered, but the values
of the data differ slightly. The difference

D = {d(x)} = B� − P�−1→�(R�→�−1(B�))

is called details. If details are small, the field is smooth on the current grid level.
Therefore, the details act as indicator for a possible coarsening [14]. Non-zero details
are obtained at odd indices only (gray points in Fig. 3, center) because of the nested
grid definition and the fact that restriction and prediction do not change these values.
The refinement flag for a block is then

r =
{

−1 if
∥

∥d(x)
∥

∥∞ < ε

0 otherwise

where −1 indicates coarsening and 0 no change. In other words, the largest detail
sets the status of the block. Note, that WABBIT technically provides the possibility
to flag −1 for coarsening, 0 for unaltered and +1 for refinement, it can hence be
used with arbitrary indicators. Since a block cannot be coarsened if its sister blocks
on the same root do not share the +1 refinement status, WABBIT assigns the −2
status for blocks that can indeed be coarsened, after checking for completeness and
gradedness.

2.4 Data Structure

The data are split into two kinds of data, first, the field data (the flow fields) required
to calculate the PDE and, second, the data to administer the block decomposition
and the parallel distribution.

Data which are held only on one specific MPI process are called heavy data. This
is the (typically large) field data and the neighbor relations for the blocks held by
the MPI process. The field data (hvy_block) is a five dimensional array where the

312 M. Sroka et al.

first three indices describe the note within a block (3D notation is always used in the
code), the fourth index the index of the physical variables and the last one the block
index identifying it within the MPI process.

The light data (lgt_block) are data which are kept synchronous between all
processes. They describe the global topology of the adapted grid and change during
the computation. The light data consist of the block treecode, the block mesh level
and the refinement flag. Additionally, we encode the MPI process rank iprocess and
the block index on this process jblock by the position I of the data within the light
data array, I = (iprocess − 1) · Nmax + jblock, where Nmax is the maximal number of
blocks per process. The light data enable each process to determine the process
holding neighboring blocks, by looking for the index I corresponding to the adja-
cent treecode. The number of blocks required during the computation is unknown
before running the simulation. To avoid time consuming memory allocation, Nmax is
typically determined by the available memory. This sets the index range of the last
index of the heavy data and determines the size of the light data. Hence, many blocks
are typically unused; they are marked by setting the treecode in the light data list to
-1. To accelerate the search within the light data, we keep a second list of indices
holding active entries.

2.5 Parallel Implementation

Data Synchronization. For parallel computing, an efficient data synchronization strat-
egy is essential for good performance. There are two different tasks in WABBIT,
namely light and heavy data synchronisation. Light data synchronization is an MPI
all-to-all operation, where we communicate active entries of the light data only.
Heavy data synchronization, i.e. filling the ghost nodes layer of each block, is much
more complicated. We have to balance a small number of MPI calls and a small
amount of communicated data, and additionally we have to ensure that no idle time
occurs due to blocking of a process by a communication in which this process is
not involved. To this end, we use MPI point-to-point communication, namely non-
blocking non-buffered send/receive calls. To reduce the number of communications,
the ghost point data of all blocks belonging to one process are gathered and send as
one chunk. After the MPI communications, all processes store received data in the
ghost point layers.

The conditional ghost nodes require special attention during the synchronization.
To ensure that neighboring blocks always have the same values at these nodes, the
redundant nodes are sent, when required, to the neighboring process. Blocks on
higher mesh levels (finer grids) always overwrite the redundant nodes to neighbors
on lower mesh level (coarser grid). It is assumed that two blocks on the same mesh
level never differ at a redundant node, because any numerical scheme should always
produce the same values.

An Open and Parallel Multiresolution Framework … 313

Load Balancing. The external neighborhood consists of ghost nodes, which may
be located on other processes and therefore have to be sent/received in the heavy
data synchronization step. Internal ghost nodes can simply be copied within the
process memory, which is much faster than MPI communication. It is, thus, desired
to reduce inter-process neighborhood.We use space filling curves [25] to redistribute
the blocks among the processes for their good localization. The computation of the
space filling curve is simple, because we can use the treecode to calculate the index
on the curve.

3 Advection Test Case

As a validation case, we now consider a benchmarking problem for the 2D advec-
tion equation, ∂tϕ + u · ∇ϕ = 0, where ϕ(x, y, t) is a scalar and 0 ≤ x, y < 1. The
spatially-periodic setup considers time-periodic mixing of a Gaussian blob,

ϕ(x, y, 0) = e−((x−c)2+(y−d)2)/β

where c = 0.5, d = 0.75 and β = 0.01. The time-dependent velocity field is given
by

u(x, y, t) = cos

(

πt

ta

) (

sin2(πx) sin(2πy)
sin2(πy)(− sin(2πx))

)

(1)

and swirls the initial distribution, but reverses to the initial state at t = ta . The swirling
motion produces increasingly fine structures until t = ta/2, where ta controls also
the size of structures. The larger ta , the more challenging is the test.

Spatial derivatives are discretized with a 4th-order, central finite-difference
scheme and we use a 4th-order Runge–Kutta time integration. Interpolation for the
refinement operator is also 4th order. We compute the solution for ta = 5, for various
maximal mesh levels Jmax. The computational domain is a unit square and we use a
block size of 33 × 33.

Figure4 illustratesϕ at the initial time, t = 0, and the instant ofmaximal distortion
at t = 2.5 = ta/2. At t = 2.5 the grid is strongly refined in regions of fine structures,
while the remaining part of the domain features a coarser resolution, e.g., in the
center of the domain. Further the distribution among the MPI processes is shown by
different colors, revealing the locality of the space filling curve.

In the following we compare soloutions with the finest strutures at t = ta/2 with a
reference solution, to investigate the quality and performance. The reference solution
is obtainedwith a pseudo-spectral code on a sufficiently finemesh to have a negligible
error compared with the current results.

Figure5a illustrates the relative error, computed as the ∞-norm of the difference
ϕ − ϕex, normalized by ||ϕex||∞. All quantities are evaluated on the terminal grid. A
linear least squares fit exhibits convergence orders close to one for the large maximal

314 M. Sroka et al.

Fig. 4 Shown is a pseudocolor-plot of ϕ at times t = 0, t = ta/2 = 2.5 and the distribution of
the blocks among the MPI processes by different colors at t = 2.5 (from left to right). Each block
covers 33 × 33 points

(a) (b)

(c) (d)

Fig. 5 Swirl test for varying Jmax and ε. a For different maximal refinement levels a saturation of
the error is seen at different values of ε, showing the cross over form threshold- to discretization-
error. b Error decay for fixed ε = 10−7 and varying Jmax (i.e. the rightmost data points in A) as
a function of the number of points in one direction. The adaptive computation preserves roughly
the 4th order accuracy of the discretization scheme. c Compression rate defined as block of the
adaptive mesh compared with a equidistant mesh constantly on the same Jmax. d The CPU time as a
function of discretization error for two different initial conditions. For the broad pulse (β = 10−2)
the adaptive solution is faster for an appropriate choice of Jmax(ε) for the finer pules (β = 10−2) it
is faster even for a constant Jmax = ∞ for relevant errors

An Open and Parallel Multiresolution Framework … 315

refinements. In this case the error decays, as expected, linearly in ε. For smaller
Jmax we find a saturation of the error, which is determined by the highest allowed
resolution. This different levels are plotted in Fig. 5b, where a convergence order
close to four, as expected by the space and time discretization is found. Thus, the
points where the saturation sets in are turnover points form an threshold to and cut-
off dominated error. For the sake of efficiency one aims to be close to this turnover
point where both errors are of similar size. In Fig. 5c the compression rate, i.e. the
number of blocks relative to an equidistant grid constantly on the level of the same
Jmax is depicted. As expected the compression becomes close to one for small ε.
In Fig. 5d the error is shown as a function of the computational time for two initial
conditions, the broad pulse with β = 10−2 and a narrower one with β = 10−4. For
the broad pulse (β = 10−2) the curves for different Jmax are below the equidistant
curve only for carefully chosen values of ε. This is explained by the wide area of
refinement at the final time, see Fig. 4. Here a multi-resolution method cannot win
much. Even for Jmax = 14, which in practice means deactivating the level restriction,
a similar scaling as for the equidistant grid is found with a factor approaching about
four. Thus, even without tuning Jmax(ε) accordingly, and given the low cost of the
right hand side, the computational complexity of the adaptive code scales reasonably
compared to the equidistant solution. For a finer initial condition (β = 10−4), even
without the level restriction (Jmax = ∞), the adaptive code produces better run-times
for practical relevant errors.

4 Navier-Stokes Test Case

In this section we present the results of a second test case, governed by the ideal-gas,
constant heat capacity compressible Navier-Stokes equations in the skew-symmetric
formulation [21]. A double shear-layer in a periodic domain is perturbed so that the
growing instabilities end up with small scale structures, similar to [17]. The size
of the computational domain is L = Lx = Ly = 8 and the shear layer is initially
located at L

2 ± 0.25. The density and y-velocity is ρ1 = 2 and v1 = 1 between the
shear layers and ρ0 = 1 and v0 = −1 otherwise. At the jumps it is smoothed by
tanh((y − yjump)/λw) with a width λw = L/240. The initial pressure is uniformly
p = 2.5. The x-velocity is disturbed to induce the instability in a controlled manner
by u = λ sin(2π(y − L/2)) with λ = 0.1. The dynamic viscosity is given by μ =
10−6. The adiabatic index is γ = 1.4 and the Prandtl number is Pr = 0.71 and the
specific gas constant Rs = 287.05.

We discretize spatial derivatives with standard 4th-order central differencing
scheme, use the standard 4th-order Runge-Kutta time integration and for interpo-
lation a 4th-order scheme. We use global time stepping so that the time step is
(usually) determined by the time step at the highest mesh level. We apply a shock
capturing filter as described in [3] with a threshold value of rth = 10−5 in every time
step. Filtering, as any procedure to suppress high wave numbers (e.g. flux limiter,

316 M. Sroka et al.

slope limiter or numerical damping), interacts with the MR. No special modifica-
tion beyond the previously described [21] smoothed detector, was necessary for the
use with the multi resolution framework. The investigation of the interplay between
filtering and MR is left for future work.

In Fig. 6 the density field for adaptive computations with a threshold ε = 10−3

at t = 4 is shown. In both density and vorticity field one can observe small scale
structures created by the shear layer instability. The size and form of the structures
are in agreement with [17].

In the right of Fig. 7 the compression rate of the shear layer is plotted over time.
We start with a low number of blocks (i.e. low values of the compression rate),
the grid fills up to the maximal refinement with simulation time. This is explained
by short wavelength acoustic waves emitted by the shear layer. Depending on the
investigation target a modified threshold criterion, e.g., applying it only to certain
variables might be beneficial. For this the error estimation must be reviewed and it
is left for future work.

In Fig. 7 we show the kinetic energy spectra for these computations compared to
the result for a fixed grid. To calculate the energy spectra we refine the mesh after the
computation to a fixed mesh level, if needed. They agree well on the resolved scales.

Fig. 6 Double shear layer, plot of density ρ and the absolute value of the vorticity |ω| at time t = 4
on an adaptive grid with threshold value ε = 1e-3, maximum mesh level Jmax = 8

An Open and Parallel Multiresolution Framework … 317

Fig. 7 Left: Energy spectrum of the double shear layer. The computations were performed on a
fixed grid with mesh level J = 7, and on adaptive grids with threshold value ε = 10−3, maximum
mesh level Jmax = 7, Jmax = 8, t = 4. Right: The compression rate. After high initial copressions
the grid fills up due to high wavenumber acoustic waves

Fig. 8 From the strong
scaling a parallel fraction of
99% can be estimated

For the higher maximum mesh level Jmax we observe a better resolution of the small
scale structures. Summarized, if we compare adaptive and fixed mesh computation,
we can observe a good resolution of the small scales within the double shear layer.

Figure8 shows the strong scaling behavior for the adaptive double shear layer
computation with Jmax = 7. We observe a scaling which is predicted by Amdahl’s
law with a parallel fraction of 0.99. The observed strong scaling is reasonable and
we anticipate that code optimization will yield further improvements.

5 Conclusions and Perspectives

The novel framework WABBIT with its main structures and concepts has been
described. WABBIT uses a multiresolution algorithm to adapt the mesh to capture
small localized structures. Within the framework different equation sets can be used.

318 M. Sroka et al.

We showed that the error due to the thresholding is controlled and scales nearly
linear. In the Gaussian pulse test case we found that the maximum number of blocks
is reached at the largest deformation of the pulse and after that the mesh is coarsen
with several orders of magnitude. We observed that the fill-up was strongly reduced
by using a symmetric interpolation stencil, which will be investigated in future work.

In the second test case we showed an application of the compressible Navier-
Stokes equations. Here we saw a good resolution of small scale structures and
observed the impact of discarding wavelet coefficient on the physics of the shear
layer. In our simulations we observe a reasonable strong scaling. Scaling will be
assessed in more detail when foreseen improvements are implemented.

In the near future we will extend the physical situation by using reactive Navier-
Stokes equations to simulate turbulent flames. Validation for 3D problems and further
improvement of the performance is currently worked on. For this an additional par-
allelization with openMP is in preparation, which should reduce the communication
effort further in typical cluster architecture. Further a generic boundary handling
within the frame work and an interface to connect other MPI programs is under way.

Acknowledgements MS and JR thankfully acknowledge funding by the Deutsche Forschungsge-
meinschaft (DFG) (grant SFB-1029, project A4). TE and KS acknowledge financial support from
the Agence nationale de la recherche (ANR Grant 15-CE40-0019) and DFG (Grant SE 824/26-1),
project AIFIT. This work was granted access to the HPC resources of IDRIS under the allocation
2018-91664 attributed by GENCI (Grand Équipement National de Calcul Intensif). For this work
we were also granted access to the HPC resources of Aix-Marseille Université financed by the
project Equip@Meso (ANR-10-EQPX- 29-01). TE and KS thankfully acknowledge financial sup-
port granted by theministères desAffaires étrangères et du développement International (MAEDI) et
de l’Education national et l’enseignement supérieur, de la recherche et de l’innovation (MENESRI),
and the Deutscher Akademischer Austauschdienst (DAAD) within the French-German Procope
project FIFIT.

References

1. Bengoechea, S.,Gray, J.A.T.,Moeck, J.P., Paschereit, C.O., Sesterhenn, J.:Detonation initiation
in pipes with a single obstacle for hydrogen-enriched air mixtures. Submitted to Combustion
and Flame (2018)

2. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations.
J. Comp. Phys. 53(3), 484–512 (1984)

3. Bogey, C., De Cacqueray, N., Bailly, C.: A shock-capturing methodology based on adaptative
spatial filtering for high-order non-linear computations. J. Comp. Phys. 228(5), 1447–1465
(2009)

4. Bramkamp, F., Lamby, P., Müller, S.: An adaptive multiscale finite volume solver for unsteady
and steady state flow computations. J. Comp. Phys. 197(2), 460–490 (2004)

5. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comp. 31(138),
333–390 (1977)

6. Brix, K., Melian, S., Müller, S., Bachmann, M.: Adaptive multiresolution methods: practical
issues ondata structures, implementation andparallelization.ESAIM:Proc.34, 151–183 (2011)

7. Coquel, F., Maday, Y., Müller, S., Postel, M., Tran, Q.H.: New trends in multiresolution and
adaptive methods for convection-dominated problems. ESAIM: Proc. 29, 1–7 (2009)

An Open and Parallel Multiresolution Framework … 319

8. Deiterding, R., Domingues, M.O., Gomes, S.M., Roussel, O., Schneider, K.: Adaptive mul-
tiresolution or adaptive mesh refinement? a case study for 2d euler equations. ESAIM: Proc.
29, 28–42 (2009)

9. Deiterding, R., Domingues, M.O., Gomes, S.M., Schneider, K.: Comparison of adaptive mul-
tiresolution and adaptive mesh refinement applied to simulations of the compressible euler
equations. SIAM J. Sci. Comp. 38(5), S173–S193 (2016)

10. Domingues, M.O., Gomes, S.M., Roussel, O., Schneider, K.: Adaptive multiresolution meth-
ods. ESAIM: Proc. 34, 1–96 (2011)

11. Domingues, M.O., Gomes, S.M., Diaz, L.M.A.: Diaz. Adaptive wavelet representation and
differentiation on block-structured grids. Appl. Numer. Math. 47(3), 421–437 (2003)

12. Engels, T., Kolomenskiy, D., Schneider, K., Sesterhenn, J.: Flusi: A novel parallel simulation
tool for flapping insect flight using a fourier method with volume penalization. SIAM J. Sci.
Comp. 38(5), S3–S24 (2016)

13. Gargantini, I.: An effectiveway to represent quadtrees. Commun.ACM 25(12), 905–910 (1982)
14. Harten, A.: Discrete multi-resolution analysis and generalized wavelets. Appl. Numer. Math.

12(1), 153–192 (1993). special issue
15. Harten, A.:Multiresolution representation of data: a general framework. SIAM J. Numer. Anal.

33(3), 1205–1256 (1996)
16. Holmström, M.: Solving hyperbolic pdes using interpolating wavelets. SIAM J. Sci. Comp.

21(2), 405–420 (1999)
17. Maulik, R., San,O.: Resolution and energy dissipation characteristics of implicit les and explicit

filtering models for compressible turbulence. Fluids 2(2), 14 (2017)
18. Müller, S.: Adaptive Multiscale Schemes for Conservation Laws. Springer (2003)
19. Müller, S.: Multiresolution schemes for conservation laws. In: DeVore, R., Kunoth, A. (eds.),

Multiscale, Nonlinear and Adaptive Approximation, pp. 379–408, Berlin, Heidelberg (2009).
Springer Berlin Heidelberg

20. Deiterding, R: Block-structured adaptive mesh refinement—theory, implementation and appli-
cation. ESAIM: Proc. 34, 97–150 (2011)

21. Reiss, J., Sesterhenn, J.: A conservative, skew-symmetric finite difference scheme for the
compressible navier-stokes equations. Comput. Fluids 101, 208–219 (2014)

22. Rossinelli, D., Hejazialhosseini, B., Spampinato, D.G., Koumoutsakos, P.: Multicore/multi-
gpu accelerated simulations of multiphase compressible flows using wavelet adapted grids.
SIAM J. Sci. Comp. 33(2), 512–540 (2011)

23. Roussel, O., Schneider, K.: Adaptive multiresolution computations applied to detonations. Z.
Phys. Chem. 229(6), 931–953 (2015)

24. Schneider, K., Vasilyev, O.V.: Wavelet methods in computational fluid dynamics. Ann. Rev.
Fluid Mech. 42(1), 473–503 (2010)

25. Zumbusch, G.: Parallel multilevel methods: adaptive mesh refinement and loadbalancing.
Advances in numerical mathematics. 1 edn (2003)

	An Open and Parallel Multiresolution Framework Using Block-Based Adaptive Grids
	1 Introduction
	2 Code Structure
	2.1 Multiresolution Algorithm
	2.2 Block- and Grid Definition
	2.3 Refinement/Coarsening of Blocks
	2.4 Data Structure
	2.5 Parallel Implementation

	3 Advection Test Case
	4 Navier-Stokes Test Case
	5 Conclusions and Perspectives
	References

