
* Corresponding author. Tel.: +919948536763
E-mail address: drpurusotham.or@gmail.com (P. Singamsetty)

© 2019 by the authors; licensee Growing Science, Canada.
doi: 10.5267/j.dsl.2018.8.002

Decision Science Letters 8 (2019) 121–136

Contents lists available at GrowingScience

Decision Science Letters

homepage: www.GrowingScience.com/dsl

An open close multiple travelling salesman problem with single depot

Jayanth Kumar Thenepallea and Purusotham Singamsettya*

aVellore Institute of Technology, Vellore, India
C H R O N I C L E A B S T R A C T

Article history:
Received January 16, 2018
Received in revised format:
July 10, 2018
Accepted August 8, 2018
Available online
August 12, 2018

 This paper introduces a novel practical variant, namely an open close multiple travelling
salesmen problem with single depot (OCMTSP) that concerns the generalization of classical
travelling salesman problem (TSP). In OCMTSP, the overall salesmen can be categorized into
internal/permanent and external/outsourcing ones, where all the salesmen are positioned at the
depot city. The primary objective of this problem is to design the optimal route such that all
salesmen start from the depot/base city, and then visit a given set of cities. Each city is to be
visited precisely once by exactly one salesman, and only the internal salesmen have to return to
the depot city whereas the external ones need not return. To find optimal solutions, an exact
pattern recognition technique based Lexi-search algorithm (LSA) is developed which has been
subjected in Matlab. Comparative computational results of the LSA have been made with the
existing methods for general multiple travelling salesman problem (MTSP). Further, to test the
performance of LSA, computational experiments have been carried out on some benchmark as
well as randomly generated test instances for OCMTSP, and results are reported. The overall
computational results demonstrate that the proposed LSA is efficient in providing optimal and
sub-optimal solutions within the considerable CPU times.

.thors; licensee Growing Science, Canada2018 by the au©

Keywords:
Open close multiple travelling
salesmen problem
Lexi-search algorithm
Pattern recognition technique

1. Introduction

The classical travelling salesman problem (TSP) is one of the typical problems in combinatorial
optimization and which is known to be NP-hard. It is the problem of determining an optimal closed
Hamiltonian path in a given directed/undirected network. The multiple travelling salesmen problem
(MTSP) is a generalized version of TSP, which is more complicated than the classical TSP (Berenguer,
1979; Carter & Ragsdale, 2006). This TSP consists of exactly one tour whereas the MTSP involves a
set of m disjoint tours for m salesman. The MTSP with single depot can be formally defined as follows:
Let a given set of n cities is to be traversed by m (n > m; m >1) salesmen, where all the salesmen are
positioned at the depot city. The problem is to determine m tours such that all the salesmen have to start
from the depot city, visits each city exactly once and return to the depot city with optimal traversal
cost/distance. The various applications of MTSP emerge in real world problems such as printing press
scheduling, school bus routing, crew scheduling, interview scheduling, hot rolling scheduling, mission
planning and design of global navigation satellite system (GNSS) (Kara & Bektas, 2006; Bolanos et
al., 2015; Kiraly et al., 2016). Due to its diversified applications, the MTSP has been extended to many
practical variants such as MTSP with multiple depots, fixed number of salesmen, fixed charges, and

 122

time windows (Ali & Kennington, 1986; Lenstra & Kan, 1979; Kara & Bektas, 2006). Since, the MTSP
is an exceptional variant of TSP, the solution procedures available for TSP can also be applicable for
MTSP. Furthermore, the MTSP can be extended to various practical situations like distribution system
in transportation, particularly in vehicle routing problems (VRP). This study keeps much attention on
MTSP than the usual TSP. The solution methods used to solve MTSP can be categorized into
heuristics, meta-heuristics, and exact approaches. Different heuristic algorithms have been presented
in the literature to solve MTSP and its variants. The first heuristic algorithm for min-sum MTSP was
appeared in (Russell, 1977), where it utilizes an extension of prominent Lin and Kernighan heuristic.
A two phase heuristic algorithm has been proposed to solve no-depot min-max MTSP, where m tours
are established in the first phase, and these tours are explored in phase two (Na, 2007). A neural
network based solution procedure (Wacholder et al., 1989) has been developed for solving MTSP. A
competition based neural network approach (Somhom et al., 1999) for MTSP with minmax objectives
has been proposed. Soylu (2015) presented a general variable neighborhood search algorithm (VNS)
for MTSP and which was then applied to a real life problem raised in traffic signalization network of
Kayseri province in Turkey. The exact solution methods for different models of MTSP can be found
in (Gavish & Srikanth, 1986; Franca, 1995; Bektas, 2006; Bhavani & Sundara Murthy, 2006; Sarin et
al., 2014; Balkrishna & Murthy, 2012). Apart from the heuristics and exact algorithms, bio-inspired
approaches like genetic and evolutionary algorithms have been developed to tackle MTSP and its
variants in the literature. Yousefikhoshbakht et al. (2013) suggested a modified version of ant colony
optimization (ACO), which exploits an efficient method to overcome the local optimum. A genetic
algorithm based novel approach (Kiraly & Abonyi, 2010) has been developed to tackle MTSP. Larki
and Yousefikhoshbakht (2014) proposed an efficient evolutionary optimization approach, which
includes the composition of modified imperialist competitive algorithm and Lin-Kernigan heuristic. A
new steady-state grouping genetic algorithm (GGA-SS) (Singh & Baghel, 2009) has been developed
for MTSP. A genetic algorithm utilizing new crossover operator known to be two part chromosome
crossover (TCX) (Yuan et al., 2013) has been suggested for solving MTSP. Sarin et al. (2014) studied
the multiple asymmetric travelling salesmen problem with and without effect of precedence constraints.
Venkatesh and Singh (2015) presented two meta-heuristics such as artificial bee colony (ABC) and
invasive weed optimization (IWO) algorithms to tackle MTSP. Wang et al. (2015) developed an
enhanced non-dominated sorting genetic algorithm II (NSGA-II) by utilizing the set of experience of
knowledge structures (SOEKS) to tackle MTSP. Bolanos et al. (2016) developed an effective genetic
algorithm (GA) to solve MTSP. Changdar et al. (2016) studied the solid MTSP in the fuzzy
environment and proposed a hybrid algorithm based genetic and ant colony optimization approach.

From the extensive literature review, it is observed that the most of the studies of MTSP and its variants
dealt with the assumption that all the salesman need to return to the depot city after visiting the given
cities. However, many real time scenarios can be seen that the salesmen may or may not to come back
to the depot city. Outsourcing is one such scenario that becomes a widespread business strategy
followed by any organization and serves increasing productivity in services and operations. Usually,
outsourcing takes place in logistics transportation and distribution activities where the tasks are to be
collaboratively done by permanent and temporary/outsourcing resources to cut down the overall
expenses and enhance the productivity, service quality. Any organization may be experienced in raising
the demand for services on particular time horizons. However, this exceptional demand does not
support the investment for organizations in hiring new permanent sources. Thus, it is inevitable to
collaborate with external sources to fulfil the additional requirements. With this motivation, in this
paper, a novel practical variant of MTSP namely an open close multiple travelling salesmen problem
with single depot (OCMTSP) is considered, where the open and closed paths are simultaneously
concerned with the solution. Closed path refers that the salesman starts and finishes at the depot city,
while open path refers the salesman need not come back to the depot city. Here, the open and closed
paths are designed by the external and internal salesmen respectively, where the internal salesmen are
referred to as organizational permanent sources and the external ones are called temporary/ outsourcing
people hired by the organization. In the general MTSP, all the salesmen start and end their tours at the

J. K. Thenepalle and P. Singamsetty / Decision Science Letters 8 (2019)

123

depot city, forms closed tours and is referred to as closed MTSP and conversely, if all the salesmen are
restricted not to return to the depot city, the problem is called as open MTSP. The problem OCMTSP
is a combination of both open and closed MTSP. For ease of understanding, Figure 1 depicts three
heterogeneous variants of single depot MTSP with three salesmen. In Fig. 1 (a) represents the MTSP
with closed paths, (b) illustrates the MTSP with open paths, and (c) shows the MTSP with mixed paths
(combination of open and closed paths). In order to solve this OCMTSP optimally, an exact algorithm
namely, the pattern recognition technique based Lexi-search algorithm (LSA) is developed. The
problem OCMTSP has several real time applications in transportation and distribution system.

The paper is arranged as follows: The subsequent section will formally define the proposed problem
and a zero-one integer programming model. Section 3 describes the preliminaries connected to the
solution procedure. The proposed Lexi-search algorithm (LSA) is presented in Section 4, whereas
Section 5 provides a numerical illustration for OCMTSP. Computational details are reported in Section
6. Finally, concluding remarks are summarized in Section 7.

(a) (b) (c)

Fig. 1. Three heterogeneous variants of MTSP with a single depot' instead of 'Three distinct
variants of MTSP with respect to single depot

2. Problem description and formulation

This section is devoted to proposing formulation for OCMTSP. The OCMTSP can be formally defined
as follows: Let (,)G N E be a directed connected graph, where {1,2,..., }N n be the given set of n

cities/nodes (including depot city) and E be an edge/arc set. A non-negative asymmetric distance ijd

is associated with each edge (,)i j E and indicates the travel distance from thi city to thj city. Let
{1,2,..., }K m be the set of m (where ;)m p q m n salesman, among them p internal salesman

and q external salesman are positioned at a depot/base city (say ,)N . For each edge (,)i j E ,

1ijx , if and only if the salesman traverses from thi city to thj city, and 0ijx , otherwise. The cities

other than the depot are known to be intervening cities. The prpblem OCMTSP determines p closed
paths and q open paths for respective internal and external salesman, such that each intervening city
is to be visited by exactly one salesman and the overall distance traversed by m salesman is minimized.

The following assumptions are used to formulate the model OCMTSP.

 There are number of cities to be visited by 	 salesmen, of which internal and external
salesmen, all are positioned at the depot city.

 All the salesmen have to start from the depot city and only internal salesmen need to return to
the depot city, whereas the external ones need not to return.

 There are	 closed paths and 	 open paths associated with the feasible solution.

 The number of internal salesmen and external salesmen are predefined.

 The number of cities to be assigned dynamically for internal and external salesmen such that
the total travel distance is least.

 124

 Each city is to be visited exactly once by only one salesman except the depot city.

 Each thk salesman visits a subset of cities dented by kS , thus the number of cities visited by

any salesman is bounded i.e. a salesman must visit at least 1 city and at most 1n m cities.

 The entries in the distance matrix assume arbitrary units.

Under these assumptions, the model OCMTSP is formulated as a zero-one integer programming
problem as follows:

1 1

Minimize
n n

ij ij
i j

Z d x
= =

=åå

(1)

Subject to the constraints

1 1

1
n n

ij
i j

x m n q
= =

= + - -åå

(2)

1

,
n

j
j

x m N

(3)

1

,
n

i
i

x p N

(4)

1

1, / { }
n

ij
i

x j N

(5)

1

1, /{ }
n

ij
j

x i N

(6)

1 | | 1;kS n m k K£ £ - + " Î (7)

+Sub tour/illegal tour elimination constraints (8)

{0,1} ,ijx i j NÎ " Î (9)

In the above model, (1) represents the objective function that minimizes the overall distance traversed
by m salesman. The constraint (2) ensures from the fact that any feasible solution consists of

1m n q arcs. Constraints set (3-4) assures that m salesman depart from depot city and p
salesman need to return the depot city . Constraint sets (5-6) represents that a salesman enters into
each city exactly once and exit from each city at most once. The constraint (7) imposes the lower and
upper bound on the number of cities visited by any salesman so that no salesman is left ideal. The
constraint (8) aims to eliminate the sub tours from the solution which are not feasible. Finally, the
constraint (9) represents the binary variable i.e. 1ijx , if the edge (,)i j E is traversed by a salesman

and otherwise 0.ijx

3. Preliminaries of LSA

The main components associated to the Lexi-search algorithm (LSA) are described as follows:

3.1. Feasible solution

A solution to the OCMTSP is said to be a feasible, if it satisfies all the problem constraints given in
(2)-(9).

3.2.Pattern

An indicator two-dimensional arrangement X which is connected to the solution is termed as pattern.
A pattern X is said to be feasible pattern if the pattern X is feasible. The value of the pattern X is
determined using (10), provides the overall travel distance and this is equal to the value of the objective
function

J. K. Thenepalle and P. Singamsetty / Decision Science Letters 8 (2019)

125

1 1

()
n n

ij ij
i j

V X d x
= =

=åå
(10)

3.3. Alphabet table

An alphabet table is formed by arranging the elements of the distance matrix []ijD d in non-

decreasing order and indexed from 1 to n n . Let 2{1,2,..., }SN n be the set of n n ordered indices,

arrays d and Cd represent the distance and cumulative sums of the elements in D , respectively. Let
the arrays R and C respectively denote row and column indices of the ordered elements in SN . The
table comprises the set of ordered indices such as , , , RSN d Cd andC is referred as alphabet table. Let

1 2 3(, , ,...,)r rL p p p p be an ordered string of r indices from the set SN , where ip is a member of

SN . The pattern rL indicated by an ordered indices and these indices are independent of the order ip

in the sequence. For uniqueness, the indices from SN are organized in non-decreasing order such that

1, 1,2,..., 1.i ip p i r

3.4. Word and partial word

An ordered sequence 1 2 3(, , ,...,)r rL p p p p is represented as a word of length r . A feasible word rL

is said to be a partial feasible word if 1r m n q and if 1r m n q , then it represents the
full length feasible word or simply a word. Any one of the indices from SN can take up the prime
position in the partial word rL . A partial word rL defines a block of words with rL as a leader. If the

block of word characterized by it has at least one feasible word then the leader is said to be feasible,
otherwise infeasible.

3.5. Value of a word

The value of the word rL denoted by ()rV L is determined iteratively by using 1() () ()rr rV L V L d p

with 0() 0V L , where ()rd p be the distance array which is organized in such a way that
2

1() (), 1,2,...,r rd p d p i n n . The value ()rV L is similar to the value of (X)V .

3.6. Computation of bounds

The effective setting of lower and upper bounds are more challenging to the class of NP-hard problems
to control the search space. Initially, the upper bound of rL is assumed to be a high value (UB = VT

= 9999) (for minimization objective functions) as a trial solution. The lower bound ()rLB L of the

partial word rL can be determined using the following formula:

() () () (),r r r rLB L V L Cd p B r Cd p where 1 1B n p m n q .

4. Lexi-search algorithm

Optimal solutions obtained by exact search methods have grown into more attractive in the context of
solving combinatorial optimization problems in order to make effective decisions. The exact
approaches can be observed as exhaustive and implicit search methods. One of the prominent implicit
search technique is Branch and Bound method (B&B) (Little et al., 1963). LSA is one such implicit
enumeration procedure, due to effective bound settings, only a fractional part of a solution space is
investigated and converges to optimal solution systematically (Pandit, 1962), which was developed to
tackle the loading problem. Infact, B&B can be seen as a special case of LSA. The LSA takes care of
all the components of B&B such as the development of feasible solutions, feasibility checking and
determining the bounds for the partial feasible solution. The entire search process is done in a precise
manner and resembles to the search for an essence of a word in a dictionary, thus, the name is given as

 126

“Lexi-search”. Moreover, this systematic search defends stack overflow and search time. The main
difficulty of any problem utilizing implicit enumeration methods is (i) checking the feasibility (ii)
setting effective bounds. There is a difficulty in testing the feasibility for few problems. To overcome
this, a pattern recognition technique based Lexi-search approach (Murthy, 1976) has been developed
and stated as follows:

“A unique pattern is connected with each solution of a problem. Partial pattern represents a partial
solution. An alphabet-table is characterizes with the assistance of which the words, representing the
pattern are listed in a lexicographic or dictionary order. During the search for an optimal word, when
a partial word is considered, first bounds are determined and then the partial words for which the value
is less than the trail value are checked for the feasibility”.

Proposed Lexi-search Algorithm

The step by step procedure of Lexi-search algorithm is described as follows:
Step 1: Initialization

Initialize the distance matrix []ijD d , the required parameters , , ,m n p q and

9999UB VT= = (large value) and go to Step 2.
Step 2: Construct an alphabet table using the given distance matrix D as discussed in the Section

3.3 and move to Step 3.
Step 3: Bound Settings

The algorithm starts with a partial word () 1,r rrL p p SN , where the length of the

partial word is unity, i.e. 1r . Determine the lower bound of a partial word ()rLB L as

explained in Section 3.6. If ()rLB L VT , then go to Step 5, else go to Step 4.

Step 4: If ()rLB L VT , then drop the partial word rL and dismiss the block of words with rL as

leader. Since it does not yield an optimal solution and thus, reject all the partial words of
the order r that succeeds rL and go to Step 7.

Step 5: Feasibility Checking
If the partial word rL satisfies the constraint set (2)-(9) then it is said to be feasible,

otherwise, it is infeasible. If rL is feasible, then accept it and continue for next partial word

of order 1r and go to Step 6, else proceed with the next partial word of order r by
considering another letter that succeeds rp in its thr position and go to Step 3.

Step 6: Concatenation
If rL is a full length feasible word of length r (i.e. 1)r m n q , then replace VT by

the value of ()rLB L and then go to Step 8. If rL is a partial word, then it can be

concatenated by using 11 *()r rrL L p , where * indicates the concatenation operation and

go to Step 3.
Step 7: If all the words of order r are exhausted and length of the word rL is 1, then the search

mechanism is terminated and go to Step 9, else move to Step 8.
Step 8: Backtracking

Backtracking is adopted to explore the search space; the current VT is assumed as an upper
bound and continues the search with next letter of the partial word of order 1r , go to
Step 3. Repeat the Steps 3 to 8 until VT has no further improvement and ignore the
feasible/infeasible solutions which are not constitute in the optimal solution. Go to Step 9.

Step 9: Record the latest VT and the corresponding word rL . Go to Step 10.

Step 10: Stop

J. K. Thenepalle and P. Singamsetty / Decision Science Letters 8 (2019)

127

Finally, at the end of the search, VT provides the optimal solution and the word rL give the position

of the letters and one can find the optimal schedule for connectivity of given cities with the help of .rL

5. Numerical Illustration

A numerical example with 9 cities is considered to explain the concepts and the LSA for OCMTSP, for
which {1,2,3,4,5,6,7,8,9}N . The distance between each pair of cities assumes a non-negative

quantity, can be asymmetric, represented as a distance matrix D and is given in Table 1, where ‘–’
indicates the disconnectivity or self-loop between the pair of cities. Let the depot city as =1, assumed
that there are three salesman (3m), in which two internal salesman (2)p and one

external/outsourcing salesman (1)q are positioned at the depot city. The problem is to find the best
route plan for the three salesman to cover all the 9-cities such that the overall traversal distance is
minimum. The asymmetric distance matrix D assumes the non-negative values (arbitrary units) and is
given in Table 1.

Table 1
Distance matrix (D)

i\ j 1 2 3 4 5 6 7 8 9

1 - 10 15 95 66 55 29 2 21

2 61 - 55 22 50 72 1 58 29
3 45 50 - 69 7 89 22 78 59
4 91 67 75 - 35 27 34 89 63
5 60 36 90 31 - 50 61 77 12
6 3 82 20 70 39 - 77 28 5
7 16 57 26 86 53 19 - 69 46
8 13 14 54 8 84 37 87 - 42
9 17 32 68 30 48 79 52 44 -

5.1. Alphabet table

Table 2 concerns the construction of alphabet table as discussed in Section 3.3 for the distance matrix
D . The first three columns report that the serial number ()SN , distance ()d and cumulative distance

()Cd , respectively. The subsequent two columns provide the details about row ()R and column ()C
indices, respectively. For convenience, a partial alphabet table is considered and given in Table 2.

Table 2
Alphabet Table

SN d Cd R C SN d Cd R C

1 1 1 2 7 16 21 183 1 9
2 2 3 1 8 17 22 205 3 7
3 3 6 6 1 18 22 227 2 4
4 5 11 6 9 19 26 253 7 3
5 7 18 3 5 20 27 280 4 6
6 8 26 8 4 21 28 308 6 8
7 10 36 1 2 22 29 337 1 7
8 12 48 5 9 23 29 366 2 9
9 13 61 8 1 24 30 396 9 4

10 14 75 8 2 25 31 427 5 4
11 15 90 1 3 – – – – –
12 16 106 7 1 72 95 3363 1 4
13 17 123 9 1 73 – – 1 1
14 19 142 7 6 – – – – –
15 20 162 6 3 81 – – 9 9

The first three columns report that the serial number . , distance and cumulative distance
respectively. The subsequent two columns provide the details about row and column indices
respectively. For convenience, a partial alphabet table is considered and given in Table 2.

 128

5.2.Search table

The logical flow of the developed LSA (presented in Section 4) is given through a numerical example
in Table 3.

Table 3
Search Table

S.N 1 2 3 4 5 6 7 8 9 10 V LB R C Rem
1 1 1 75 2 7 A
2 2 3 75 1 8 A
3 3 6 75 6 1 A
4 4 11 75 6 9 R
5 5 13 85 3 5 A
6 6 21 85 8 4 A
7 7 31 85 1 2 A
8 8 43 85 5 9 A
9 9 56 85 8 1 R
10 10 57 88 8 2 R
11 11 58 91 1 3 A
12 12 74 91 7 1 A
13 13 91 91 9 1 R
14 14 93 93 7 6 R
15 15 94 94 6 3 R
16 16 95 95 1 9 R
17 17 96 96 3 7 R
18 18 96 96 2 4 R
19 19 100 100 7 3 R
20 20 101 101 4 6 A,VT=101
21 13 75 94 9 1 A
22 14 94 94 7 6 A,VT=94
23 14 77 97 7 6 >VT, R
24 12 59 95 7 1 >VT, R
25 9 44 89 8 1 R
26 10 45 93 8 2 R
27 11 46 98 1 3 >VT, R
28 8 33 91 5 9 A
29 9 46 91 8 1 R
30 10 47 95 8 2 >VT, R
31 9 34 96 8 1 >VT, R
32 7 23 93 1 2 A
33 8 35 93 5 9 A
34 9 48 93 8 1 A
35 10 62 93 8 2 R
36 11 63 96 1 3 >VT, R
37 10 49 97 8 2 >VT, R
38 9 36 98 8 1 >VT, R
39 8 25 100 5 9 >VT, R
40 6 14 94 8 4 >VT, R
41 4 8 87 6 9 A
42 5 15 87 3 5 A
43 6 23 87 8 4 A
44 7 33 87 1 2 A
45 8 45 87 5 9 R
46 9 46 91 8 1 R
47 10 47 95 8 2 >VT, R
48 8 35 93 5 9 R
49 9 36 98 8 1 >VT, R
50 7 25 95 1 2 >VT, R
51 6 16 96 8 4 >VT, R
52 5 10 98 3 5 >VT, R
53 3 4 88 6 1 A
54 4 9 88 6 9 R
55 5 11 99 3 5 >VT, R
56 4 6 101 6 9 >VT, R
57 2 2 89 1 8 A
58 3 5 89 6 1 A
59 4 9 89 6 9 R
60 5 12 100 3 5 >VT, R
61 4 7 102 6 9 >VT, R
62 2 3 103 6 1 >VT, R

J. K. Thenepalle and P. Singamsetty / Decision Science Letters 8 (2019)

129

Table 3 explains the details that how the algorithm enumerates the solutions as well as converges to the
optimal solution. The column indexed by SN represents the serial number. Since 9, 3, 2n m p
and 1q , therefore the total number of arcs required for the optimal schedule of OCMTSP is

1 10m n q . Thus, the length of optimal feasible word becomes 10. The columns 1, 2, 3, 4, …,

10 of Table 3 represents the respective positions of the letters of a word rL . The subsequent columns

labelled as , ,V LB R and C respectively represent the value, lower bound, row and column indices of
the partial word. Finally, the column indexed by Rem represents the remarks of a partial word i.e. if a
partial word is feasible then it is accepted and denoted by ‘A’, otherwise rejected and indicated by ‘R’.
Here, serial number SN indicates the iteration count.

5.3.Optimal and sub-optimal solutions

The set of solutions, which are observed from the search table are given in Table 4. Table 4 reports the
details of feasible patterns, corresponding schedules, feasible (sub-optimal) and optimal solutions. The
initial found pattern 10 {1,2,3,5,6,7,8,11,12,20}L gives the objective function value 101VT units

that is noticed at 20th row of the Table 3. In order to improve this solution backtracking is performed.
After performing the backtracking by considering the initial found solution (i.e. 101 units) as current
upper bound, the best objective function value as 94VT units and whose feasible pattern

10 {1,2,3,5,6,7,8,11,13,14}L is found at 22nd row of the Table 3. Table 3 clearly shows that the

objective function value 94VT units dominates all the other solutions, and hence the current solution
(i.e. 94VT units) become the optimal solution. This clearly shows the developed LSA is capable to
enumerate the possible solutions that assist the decision maker to construct viable decisions with
preferred solutions also. The graphical representation of respective feasible and optimal solutions is
given in Fig. 2 and Fig. 3.

Table 4
Optimal and Sub-optimal Solutions

S.N Feasible Pattern Corresponding schedule Solution
1 , , , , , , , , , (2, 7), (1, 8), (6, 1), (3, 5),

(8, 4),(1, 2), (5, 9), (1, 3),
(7, 1), (4, 6)

101
(Sub-optimal)

2 , , , , , , , , , (2, 7), (1, 8), (6, 1), (3, 5),
(8, 4), (1, 2), (5, 9), (1, 3),
(9, 1), (7, 6)

94
(Optimal)

Fig. 2. Feasible solution of OCMTSP Fig.3. Optimal solution of OCMTSP

 130

6. Computational analysis

This section presents the computational details of the proposed LSA over benchmark instances. In order
to assess the LSA performance, first we compare our results with the existing results. We then,
considered few standard instances from TSPLIB (Reinhelt, 2014) and evaluated the performance of
LSA for OCMTSP. Finally, we extend our computational experiments to random instances to assess
the performance of LSA. All the experiments were conducted by implementing the LSA in Matlab
2017a and then running on PC with 2.0 GHz, Intel(R) core i3 processor, 4 GB of RAM running
Microsoft Windows 10 Operating System.

6.1. Comparative results of LSA with existing results

To measure the solution quality, the results over the benchmark instances of proposed LSA was
compared to the results of CPLEX, Benders and GA based ant colony optimization (ACO) methods
reported in (Changdar et al., 2016). The comparative analysis is carried out on four asymmetric
benchmark instances namely br17, ftv33, ftv35, and ftv38 taken from the TSPLIB and overall results
about 12 cases are summarized in Table 5. From the results given in Table 5, the following remarks are
noticed:

a. The best found solutions for four cases namely br17 (with 2, 3 and 4 salesman) and ftv33 (with
2 salesman) using LSA coincides with the existing CPLEX, Benders, and GA based ACO
approaches.

b. For ftv33 (with 3 salesman) and ftv35 (with 2 salesman), the results of LSA coincides with
CPLEX, Benders methods and better than the GA based ACO approach, while for ftv35 (with
3 salesman) and ftv38 (with 2 and 3 salesman), LSA results identical with Benders and GA
based ACO methods and better than CPLEX method.

c. For ftv35 (with 4 salesman) and ftv38 (with 4 salesman), LSA results matches with GA based
ACO method and better than the Benders method, while for the same cases the blank results
indicate that the results are not provided in the former works.

d. Clearly it is seen that LSA is superior than CPLEX and Benders method in providing the optimal
solution, while except the case ftv33 (with 4 salesman) GA based ACO provided the better
solution than LSA, but the solution obtained by LSA for the same case is same as that of CPLEX
and Benders method.

e. From the overall results, the LSA is better than the CPLEX, Benders method and is competitive
with GA based ACO method.

Moreover, to visually evaluate the capability of the proposed LSA with CPLEX, Benders and GA
methods on four standard test instances, the bar charts are presented. Figures 4, 5, 6 and 7 represents
the four bar charts to compare the travel distance over the distinct number of salesman on the
benchmark instances br17, ftv33, ftv35, and ftv38, respectively. In Fig. 4, it is seen that all the four
methods are providing the same solutions on the benchmark instance br17 with 2, 3, and 4 salesman.
In Fig. 5, it is observed that the proposed LSA results matches with CPLEX and Benders methods on
the ftv33 with 2, 3, and 4 salesman, while the GA based ACO result on ftv33 with 4 salesman better
than LSA. Similarly, in Fig. 6, it is witnessed that the proposed LSA results matches with CPLEX and
Benders methods on the ftv35 with 2 salesman and far better than GA based ACO method. The LSA
results matches with Benders and GA based ACO methods on the ftv35 with3 salesman. Finally, in Fig.
7, it is evident that the proposed LSA results matches with Benders and GA based ACO methods on
ftv38 with 2 and 3 salesman and far better than CPLEX method.From the figures, it is seen that in most
of the cases LSA works better than CPLEX, Benders method and is competitive with GA based ACO
method.

J. K. Thenepalle and P. Singamsetty / Decision Science Letters 8 (2019)

131

6.2. Analyzing the performance of LSA for OCMTSP over benchmark and random instances

In order to measure the performance of LSA for OCMTSP, four benchmark test instances namely br17,
ftv33, ftv35, and ftv38 are taken from TSPLIB. The experiments were performed on each test instance
by setting distinct values on the parameters namely, number of salesman ()m , number of internal

salesman ()p and number of external salesman ()q . Overall, 17 cases have been tested for four test
instances and the results are reported in Table 6. Table 6 summarizes the best-found solutions using
LSA for each case of the test instance within the predefined time limit of 3600 seconds. The route plans
of the salesman with respect to the best solution of OCMTSP is given in Table 7.

Table 5
Comparative results of LSA for MTSP using various existing algorithms (Changdar et al., 2016)

Instance Number of
Salesmen

CPLEX Benders
Method

GA based
ACO

Proposed
LSA

br17

2 39 39 39 39
3 42 42 42 42
4 47 47 47 47

ftv33

2 1302 1302 1302 1302
3 1328 1328 1342 1328
4 1367 1367 1352 1367

ftv35

2 1489 1489 1511 1489
3 1541 1511 1511 1511
4 − 1551 1532 1532

ftv38

2 1551 1505 1505 1505
3 1567 1521 1521 1521
4 − 1546 1532 1532

Table 8 provides a summary of the descriptive statistical results of CPU execution times of LSA for
OCMTSP tested on randomly generated test instances ranging from 10 to 80 cities. The arc distance

ijd

takes the random values over the range [1 300]. For each problem size, a set of 10 independent test

instances are generated, together becomes 80 random instances and tested with distinct combinations
of m, p and q . The columns Min., Max., Avg., and SD are the minimum, maximum, average CPU
runtimes required to find the best solutions in all of the 10 runs and the standard deviation of the CPU
runtimes, respectively.From the results reported in Table 8, it is observed that the average CPU
runtimes required to solve the problems are ranging from 0.0688 seconds to 204.3234 seconds.
However, the runtimes are little higher, but are practicably acceptable. It is seen that, the average CPU
runtimes start increasing when the problems of size 30 or higher with different combinations of m , p
and q . From overall results, an interesting observation is that apart from the problem size ()n , the
combination of key parameters m, p , and q also decides the problem complexity and yet, solving
larger instances may take higher CPU runtimes. Furthermore, for each of the data set, standard
deviation (SD) is also measured and it is evident that the SD results are closer to zero. This shows that
LSA CPU runtimes are less spread out from the average CPU runtimes.

Fig. 4. Comparison of travel distance for br17 by
considering two, three and four salesmen

Fig. 5. Comparison of travel distance for ftv33 by
considering two, three and four salesmen

 132

Fig. 6. Comparison of travel distance for ftv35 by
considering two and three salesmen

Fig. 7. Comparison of travel distance for ftv38 by
considering two, and three salesmen

Table 6
Results of LSA for OCMTSP on benchmark instances
Instance |N| m p q Best solution
br17 17 5 3 2 35

6 4 2 41
4 3 1 35
5 2 3 30
6 2 4 33

ftv33 33 5 3 2 1240
7 4 3 1278
6 3 3 1225
6 2 4 1185

ftv35 35 6 2 4 1294
5 2 3 1307
8 3 5 1324
7 3 4 1328

ftv44 45 5 3 2 1619
4 3 1 1691
6 4 2 1678
6 3 3 1603

|N|=n – Number of cities; m – Number of salesmen; p – Number of internal salesmen; q – Number of external salesmen;
Best solution – best found solution using LSA within the specified time limit.

Table 7
The route plan of the salesman with respect to the best solution of OCMTSP
SN Route plan
1 1→12→1; 1→2→10→11→13→1; 1→3→14→1; 1→8→9→17; 1→6→7→15→16→4→5
2 1→12→1; 1→2→10→11→1; 1→13→1; 1→3→14→1

1→8→9→17; 1→6→7→15→16→4→5
3 1→12→1; 1→2→10→11→13→1; 1→3→14→1;

1→8→9→17→6→7→15→16→4→5
4 1→12→1; 1→2→10→11→13→1;

1→3→14; 1→8→9→17; 1→6→7→15→16→4→5
5 1→12→1; 1→2→10→11→1; 1→13

1→3→14; 1→8→9→17; 1→6→7→15→16→4→5
6 1→14→1; 1→2→34→31→3→4→1; 1→15→16→17→1

1→26→25→24→28→29→30→27→23→21→22→32→19→20→18→12
1→13→10→33→8→9→11→5→7→6

J. K. Thenepalle and P. Singamsetty / Decision Science Letters 8 (2019)

133

Table 7
The route plan of the salesman with respect to the best solution of OCMTSP (Continued)
7 1→14→1; 1→13→1; 1→15→16→17→1; 1→3→4→1

1→2→34→31→5→7→6; 1→10→33→8→9→11
1→26→25→24→28→29→30→27→23→21→22→32→19→20→18→12

8 1→14→1; 1→17→1; 1→15→16→1; 1→2→3→4→34→31→5→7→6
1→26→25→24→28→29→30→27→23→21→22→32→19→20→18→12
1→13→10→33→8→9→11

9 1→14→1; 1→15→16→17→1; 1→2→3→4→34→31→5→7→6
1→26→25→24→20→32→19→18→12; 1→13→10→33→8→9→11
1→28→29→30→27→23→21→22

10 1→14→1; 1→15→16→17→1
1→2→4→36→33→31→28→24→21→22→23→29→30→32→3→5→6→8→7
1→27→26→25→20→34→19→18→11; 1→12→13; 1→35→9→10

11 1→14→1; 1→2→31→28→24→21→22→23→29→30→32→36→33→5→3→4→1
1→17→15→16→12→13→6→8→7
1→27→26→25→20→34→19→18→11; 1→35→9→10

12 1→14→1; 1→17→1; 1→15→16→1
1→2→4→36→33→31→28→24→21→22→23→29→30→32
1→27→26→25→20→34→19→18→11; 1→12→13; 1→35→9→10; 1→3→5→6→8→7

13 1→14→1; 1→17→1; 1→15→16→1;
1→2→4→36→33→31→28→24→21→22→23→29→30→32→3→5→6→8→7
1→27→26→25→20→34→19→18→11; 1→12→13; 1→35→9→10

14 1→22→1; 1→2→3→7→42→40→39→45→4→5→6→1; 1→20→1
1→32→31→30→28→34→35→37→38→36→33→29→26→27→43→24→25→23→19
→17→18→16→13→14→15→44→12→11→8→10→9→41; 1→21

15 1→22→1; 1→2→3→1; 1→20→21→8→10→9→41→7→42→40→39→45→4→5→6→1
1→32→31→30→23→15→44→12→11→13→14→16→17→18→19→43→24→25→26
→27→28→29→34→35→36→33→37→38

16 1→22→1; 1→2→3→1; 1→21→8→10→9→41→7→42→40→39→45→4→5→6→1; 1→20→1;
1→15→44→12→11→13→14→16→17→18
1→32→31→30→28→34→35→37→38→36→33→29→26→27→43→24→25→23→19

17 1→22→1; 1→2→3→7→42→40→39→45→4→5→6→1; 1→20→1
1→32→31→30→28→34→35→37→38→36→33→29→26→27→43→24→25→23→19
1→21→8→10→9→41; 1→15→11→44→12→13→14→16→17→18

Table 8
Descriptive statistics of CPU runtime of LSA on random instances
SN |N| m p q NPT CPU runtime (In seconds) SD

Min. Max. Avg.
1 10 3 2 1 10 0.0529 0.0883 0.0688 0.0131
2 15 3 2 1 10 0.1028 0.2025 0.1558 0.0369
3 20 4 2 2 10 0.7203 0.9454 0.8481 0.0777
4 30 4 3 1 10 4.7203 4.9934 4.8693 0.0913
5 40 5 2 3 10 10.0214 14.7340 11.6064 0.1052
6 50 7 4 3 10 25.0314 30.9862 28.3240 0.2234
7 60 7 5 2 10 62.0314 80.9862 68.3240 0.5234
8 80 8 6 2 10 180.2210 238.0432 204.3234 0.3042
SN–Serial Number; |N| – Number of cities; m – Number of salesmen; p – Number of internal salesmen; q–Number of external salesmen; NPT–Number
of problems tried; Min.–Minimum CPU runtime required for finding best solution; Max.–Maximum CPU runtime required for finding best solution;
Avg.– Average CPU runtime required for finding best solution; SD – Standard deviation of CPU runtimes.

 134

7. Conclusions

In this paper, we considered an exceptional combinatorial optimization problem called an open close
multiple travelling salesmen problem with single depot (OCMTSP), motivated by the real world
outsourcing scenarios in human resource allocation and routing problems. The OCMTSP can be viewed
as a combination of open-TSP and closed-TSP. The model OCMTSP has been presented as a zero-one
integer programming. An efficient exact algorithm, the pattern recognition technique based Lexi-search
algorithm (LSA) is developed for OCMTSP. Through the comparative results, the effectiveness of the
LSA for MTSP has been measured.

The LSA performance of OCMTSP is tested over some benchmark as well as randomly generated test
instances and the results are reported. The extensive computational results showed that the LSA
performs well in yielding exact solutions within practically considerable CPU runtimes. Furthermore,
an interesting observation is that the key parameters m, p and q judge the performance of the LSA for
solving OCMTSP. The model OCMTSP finds good number of applications in transportation, vehicle
routing and logistics distributions etc. For the future consideration, one can extend the model OCMTSP
with time windows, multiple depots and other practical variants etc. However, developing an efficient
exact algorithm for such variants is still a challenging problem.

Acknowledgement

The authors would like to thank the anonymous referees for constructive comments on earlier version
of this paper.

References

Ali, A. I., & Kennington, J. L. (1986). The asymmetric M-travelling salesmen problem: A duality based

branch-and-bound algorithm. Discrete Applied Mathematics, 13(2-3), 259-276.
Balakrishna, U., & Murthy, M. S. (2012). A pattern recognition lexi-search approach to generalized

time-dependent travelling salesman problem. Opsearch, 49(3), 191-208.
Bektas, T. (2006). The multiple traveling salesman problem: an overview of formulations and solution

procedures. Omega, 34(3), 209-219.
Berenguer, X. (1979). A characterization of linear admissible transformations for the m-travelling

salesmen problem. European Journal of Operational Research, 3(3), 232-238.
Bhavani, V., & Murthy, M. S. (2006). Truncated M-travelling salesmen problem. Opsearch, 43(2),

152-177.
Bolaños, R., Echeverry, M., & Escobar, J. (2015). A multiobjective non-dominated sorting genetic

algorithm (NSGA-II) for the Multiple Traveling Salesman Problem. Decision Science Letters, 4(4),
559-568.

Bolanos, R. (2016). A population-based algorithm for the multi travelling salesman problem.
International Journal of Industrial Engineering Computations, 7(2), 245-256.

Carter, A. E., & Ragsdale, C. T. (2006). A new approach to solving the multiple traveling salesperson
problem using genetic algorithms. European Journal of Operational Research, 175(1), 246-257.

Changdar, C., Pal, R. K., & Mahapatra, G. S. (2017). A genetic ant colony optimization based algorithm
for solid multiple travelling salesmen problem in fuzzy rough environment. Soft Computing, 21(16),
4661-4675.

J. K. Thenepalle and P. Singamsetty / Decision Science Letters 8 (2019)

135

França, P. M., Gendreau, M., Laporte, G., & Müller, F. M. (1995). The m-traveling salesman problem
with minmax objective. Transportation Science, 29(3), 267-275.

Gavish, B., & Srikanth, K. (1986). An optimal solution method for large-scale multiple traveling
salesmen problems. Operations Research, 34(5), 698-717.

Kara, I., & Bektas, T. (2006). Integer linear programming formulations of multiple salesman problems
and its variations. European Journal of Operational Research, 174(3), 1449-1458.

Király, A., & Abonyi, J. (2010). A novel approach to solve multiple traveling salesmen problem by
genetic algorithm. Computational Intelligence in Engineering, 141-151.

Király, A., Christidou, M., Chován, T., Karlopoulos, E., & Abonyi, J. (2016). Minimization of off-
grade production in multi-site multi-product plants by solving multiple traveling salesman problem.
Journal of Cleaner Production, 111, 253-261.

Larki, H., & Yousefikhoshbakht, M. (2014). Solving the multiple traveling salesman problem by a
novel meta-heuristic algorithm. Journal of Optimization in Industrial Engineering, 7(16), 55-63.

Lenstra, J. K., & Kan, A. R. (1979). A characterization of linear admissible transformations for the m-
travelling salesmen problem: A result of Berenguer. European Journal of Operational
Research, 3(3), 250-252.

Little, J. D., Murty, K. G., Sweeney, D. W., & Karel, C. (1963). An algorithm for the traveling salesman
problem. Operations Research, 11(6), 972-989.

Murthy, M. S. (1976). A bulk transportation problem. Opsearch, 13(3–4), 143-155.
Na, B. (2007). Heuristic approaches for no-depot k-traveling salesmen problem with a minmax

objective (Doctoral dissertation, Texas A&M University).
Pandit, S. N. (1962). The loading problem. Operations Research, 10(5), 639-646.
Russell, R. A. (1977). An effective heuristic for the m-tour traveling salesman problem with some side

conditions. Operations Research, 25(3), 517-524.
Reinhelt, G. (2014). {TSPLIB}: a library of sample instances for the TSP (and related problems) from

various sources and of various types. URL: http://comopt. ifi. uniheidelberg. de/software/TSPLIB95.
Sarin, S. C., Sherali, H. D., Judd, J. D., & Tsai, P. F. J. (2014). Multiple asymmetric traveling salesmen

problem with and without precedence constraints: Performance comparison of alternative
formulations. Computers & Operations Research, 51, 64-89.

Singh, A., & Baghel, A. S. (2009). A new grouping genetic algorithm approach to the multiple traveling
salesperson problem. Soft Computing-A Fusion of Foundations, Methodologies and Applications,
13(1), 95-101.

Somhom, S., Modares, A., & Enkawa, T. (1999). Competition-based neural network for the multiple
travelling salesmen problem with minmax objective. Computers & Operations Research, 26(4),
395-407.

Soylu, B. (2015). A general variable neighborhood search heuristic for multiple traveling salesmen
problem. Computers & Industrial Engineering, 90, 390-401.

Venkatesh, P., & Singh, A. (2015). Two metaheuristic approaches for the multiple traveling salesperson
problem. Applied Soft Computing, 26, 74-89.

Wacholder, E., Han, J., & Mann, R. C. (1989). A neural network algorithm for the multiple traveling
salesmen problem. Biological Cybernetics, 61(1), 11-19.

Wang, P., Sanin, C., & Szczerbicki, E. (2015). Evolutionary algorithm and decisional DNA for multiple
travelling salesman problem. Neurocomputing, 150, 50-57.

Yousefikhoshbakht, M., Didehvar, F., & Rahmati, F. (2013). Modification of the ant colony
optimization for solving the multiple traveling salesman problem. Romanian Journal of Information
Science and Technology, 16(1), 65-80.

Yuan, S., Skinner, B., Huang, S., & Liu, D. (2013). A new crossover approach for solving the multiple
travelling salesmen problem using genetic algorithms. European Journal of Operational Research,
228(1), 72-82.

 136

© 2019 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY)
license (http://creativecommons.org/licenses/by/4.0/).

