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 This paper introduces a novel practical variant, namely an open close multiple travelling 
salesmen problem with single depot (OCMTSP) that concerns the generalization of classical 
travelling salesman problem (TSP).  In OCMTSP, the overall salesmen can be categorized into 
internal/permanent and external/outsourcing ones, where all the salesmen are positioned at the 
depot city. The primary objective of this problem is to design the optimal route such that all 
salesmen start from the depot/base city, and then visit a given set of cities. Each city is to be 
visited precisely once by exactly one salesman, and only the internal salesmen have to return to 
the depot city whereas the external ones need not return.   To find optimal solutions, an exact 
pattern recognition technique based Lexi-search algorithm (LSA) is developed which has been 
subjected in Matlab. Comparative computational results of the LSA have been made with the 
existing methods for general multiple travelling salesman problem (MTSP). Further, to test the 
performance of LSA, computational experiments have been carried out on some benchmark as 
well as randomly generated test instances for OCMTSP, and results are reported. The overall 
computational results demonstrate that the proposed LSA is efficient in providing optimal and 
sub-optimal solutions within the considerable CPU times. 
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1. Introduction 

The classical travelling salesman problem (TSP) is one of the typical problems in combinatorial 
optimization and which is known to be NP-hard.  It is the problem of determining an optimal closed 
Hamiltonian path in a given directed/undirected network. The multiple travelling salesmen problem 
(MTSP) is a generalized version of TSP, which is more complicated than the classical TSP (Berenguer, 
1979; Carter & Ragsdale, 2006). This TSP consists of exactly one tour whereas the MTSP involves a 
set of m disjoint tours for m salesman. The MTSP with single depot can be formally defined as follows: 
Let a given set of n cities is to be traversed by m (n > m; m >1) salesmen, where all the salesmen are 
positioned at the depot city. The problem is to determine m tours such that all the salesmen have to start 
from the depot city, visits each city exactly once and return to the depot city with optimal traversal 
cost/distance.  The various applications of MTSP emerge in real world problems such as printing press 
scheduling, school bus routing, crew scheduling, interview scheduling, hot rolling scheduling, mission 
planning and design of global navigation satellite system (GNSS) (Kara & Bektas, 2006; Bolanos et 
al., 2015; Kiraly et al., 2016).  Due to its diversified applications, the MTSP has been extended to many 
practical variants such as MTSP with multiple depots, fixed number of salesmen, fixed charges, and 



  122

time windows (Ali & Kennington, 1986; Lenstra & Kan, 1979; Kara & Bektas, 2006).  Since, the MTSP 
is an exceptional variant of TSP, the solution procedures available for TSP can also be applicable for 
MTSP. Furthermore, the MTSP can be extended to various practical situations like distribution system 
in transportation, particularly in vehicle routing problems (VRP). This study keeps much attention on 
MTSP than the usual TSP.  The solution methods used to solve MTSP can be categorized into 
heuristics, meta-heuristics, and exact approaches. Different heuristic algorithms have been presented 
in the literature to solve MTSP and its variants. The first heuristic algorithm for min-sum MTSP was 
appeared in (Russell, 1977), where it utilizes an extension of prominent Lin and Kernighan heuristic. 
A two phase heuristic algorithm has been proposed to solve no-depot min-max MTSP, where m  tours 
are established in the first phase, and these tours are explored in phase two (Na, 2007).  A neural 
network based solution procedure (Wacholder et al., 1989) has been developed for solving MTSP.  A 
competition based neural network approach (Somhom et al., 1999) for MTSP with minmax objectives 
has been proposed. Soylu (2015) presented a general variable neighborhood search algorithm (VNS) 
for MTSP and which was then applied to a real life problem raised in traffic signalization network of 
Kayseri province in Turkey.  The exact solution methods for different models of MTSP can be found 
in (Gavish & Srikanth, 1986; Franca, 1995; Bektas, 2006; Bhavani & Sundara Murthy, 2006; Sarin et 
al., 2014; Balkrishna & Murthy, 2012). Apart from the heuristics and exact algorithms, bio-inspired 
approaches like genetic and evolutionary algorithms have been developed to tackle MTSP and its 
variants in the literature.   Yousefikhoshbakht et al. (2013) suggested a modified version of ant colony 
optimization (ACO), which exploits an efficient method to overcome the local optimum.  A genetic 
algorithm based novel approach (Kiraly & Abonyi, 2010) has been developed to tackle MTSP. Larki 
and Yousefikhoshbakht (2014) proposed an efficient evolutionary optimization approach, which 
includes the composition of modified imperialist competitive algorithm and Lin-Kernigan heuristic.  A 
new steady-state grouping genetic algorithm (GGA-SS) (Singh &  Baghel,  2009) has been developed 
for MTSP.  A genetic algorithm utilizing new crossover operator known to be two part chromosome 
crossover (TCX) (Yuan et al., 2013) has been suggested for solving MTSP. Sarin et al. (2014) studied 
the multiple asymmetric travelling salesmen problem with and without effect of precedence constraints. 
Venkatesh and Singh (2015) presented two meta-heuristics such as artificial bee colony (ABC) and 
invasive weed optimization (IWO) algorithms to tackle MTSP. Wang et al. (2015) developed an 
enhanced non-dominated sorting genetic algorithm II (NSGA-II) by utilizing the set of experience of 
knowledge structures (SOEKS) to tackle MTSP. Bolanos et al. (2016) developed an effective genetic 
algorithm (GA) to solve MTSP.  Changdar et al. (2016) studied the solid MTSP in the fuzzy 
environment and proposed a hybrid algorithm based genetic and ant colony optimization approach. 
 
From the extensive literature review, it is observed that the most of the studies of MTSP and its variants 
dealt with the assumption that all the salesman need to return to the depot city after visiting the given 
cities. However, many real time scenarios can be seen that the salesmen may or may not to come back 
to the depot city. Outsourcing is one such scenario that becomes a widespread business strategy 
followed by any organization and serves increasing productivity in services and operations. Usually, 
outsourcing takes place in logistics transportation and distribution activities where the tasks are to be 
collaboratively done by permanent and temporary/outsourcing resources to cut down the overall 
expenses and enhance the productivity, service quality. Any organization may be experienced in raising 
the demand for services on particular time horizons.  However, this exceptional demand does not 
support the investment for organizations in hiring new permanent sources.  Thus, it is inevitable to 
collaborate with external sources to fulfil the additional requirements. With this motivation, in this 
paper, a novel practical variant of MTSP namely an open close multiple travelling salesmen problem 
with single depot (OCMTSP) is considered, where the open and closed paths are simultaneously 
concerned with the solution. Closed path refers that the salesman starts and finishes at the depot city, 
while open path refers the salesman need not come back to the depot city. Here, the open and closed 
paths are designed by the external and internal salesmen respectively, where the internal salesmen are 
referred to as organizational permanent sources and the external ones are called temporary/ outsourcing 
people hired by the organization. In the general MTSP, all the salesmen start and end their tours at the 
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depot city, forms closed tours and is referred to as closed MTSP and conversely, if all the salesmen are 
restricted not to return to the depot city, the problem is called as open MTSP. The problem OCMTSP 
is a combination of both open and closed MTSP. For ease of understanding, Figure 1 depicts three 
heterogeneous variants of single depot MTSP with three salesmen. In Fig. 1 (a) represents the MTSP 
with closed paths, (b) illustrates the MTSP with open paths, and (c) shows the MTSP with mixed paths 
(combination of open and closed paths).  In order to solve this OCMTSP optimally, an exact algorithm 
namely, the pattern recognition technique based Lexi-search algorithm (LSA) is developed. The 
problem OCMTSP has several real time applications in transportation and distribution system. 
 
The paper is arranged as follows: The subsequent section will formally define the proposed problem 
and a zero-one integer programming model. Section 3 describes the preliminaries connected to the 
solution procedure.  The proposed Lexi-search algorithm (LSA) is presented in Section 4, whereas 
Section 5 provides a numerical illustration for OCMTSP. Computational details are reported in Section 
6.  Finally, concluding remarks are summarized in Section 7. 

 
(a) (b) (c) 

Fig. 1. Three heterogeneous variants of MTSP with a single depot' instead of 'Three distinct 
variants of MTSP with respect to single depot 

 

2. Problem description and formulation 
 
This section is devoted to proposing formulation for OCMTSP. The OCMTSP can be formally defined 
as follows: Let ( , )G N E  be a directed connected graph, where {1,2,..., }N n  be the given set of n  

cities/nodes (including depot city) and E  be an edge/arc set. A non-negative asymmetric distance ijd  

is associated with each edge ( , )i j E  and indicates the travel distance from thi city to thj city. Let 
{1,2,..., }K m  be the set of m (where ; )m p q m n    salesman, among them p  internal salesman 

and q  external salesman are positioned at a depot/base city (say , )N   . For each edge ( , )i j E ,

1ijx  , if and only if the salesman traverses from thi city to thj city, and 0ijx  , otherwise. The cities 

other than the depot are known to be intervening cities. The prpblem OCMTSP determines p  closed 
paths and q  open paths for respective internal and external salesman, such that each intervening city 
is to be visited by exactly one salesman and the overall distance traversed by m salesman is minimized. 
 

The following assumptions are used to formulate the model OCMTSP. 

 There are  number of cities to be visited by 	  salesmen, of which   internal and  external 
salesmen, all are positioned at the depot city. 

 All the salesmen have to start from the depot city and only internal salesmen need to return to 
the depot city, whereas the external ones need not to return. 

 There are	  closed paths and 	  open paths associated with the feasible solution. 

 The number of internal salesmen and external salesmen are predefined. 

 The number of cities to be assigned dynamically for internal and external salesmen such that 
the total travel distance is least. 
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 Each city is to be visited exactly once by only one salesman except the depot city. 

 Each thk  salesman visits a subset of cities dented by kS , thus the number of cities visited by 

any salesman is bounded i.e. a salesman must visit at least 1 city and at most 1n m  cities. 

 The entries in the distance matrix assume arbitrary units.  

Under these assumptions, the model OCMTSP is formulated as a zero-one integer programming 
problem as follows: 
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+Sub tour/illegal tour elimination constraints (8) 

{0,1} ,ijx i j NÎ " Î (9) 
 

In the above model, (1) represents the objective function that minimizes the overall distance traversed 
by m  salesman. The constraint (2) ensures from the fact that any feasible solution consists of 

1m n q    arcs. Constraints set (3-4) assures that m salesman depart from depot city and p  
salesman need to return the depot city  . Constraint sets (5-6) represents that a salesman enters into 
each city exactly once and exit from each city at most once. The constraint (7) imposes the lower and 
upper bound on the number of cities visited by any salesman so that no salesman is left ideal. The 
constraint (8) aims to eliminate the sub tours from the solution which are not feasible. Finally, the 
constraint (9) represents the binary variable i.e. 1ijx  , if the edge ( , )i j E  is traversed by a salesman 

and otherwise 0.ijx   
 

 

3. Preliminaries of LSA 
 

The main components associated to the Lexi-search algorithm (LSA) are described as follows: 

3.1. Feasible solution 

A solution to the OCMTSP is said to be a feasible, if it satisfies all the problem constraints given in 
(2)-(9). 

3.2.Pattern 

An indicator two-dimensional arrangement X  which is connected to the solution is termed as pattern.  
A pattern X is said to be feasible pattern if the pattern X  is feasible. The value of the pattern X  is 
determined using (10), provides the overall travel distance and this is equal to the value of the objective 
function  
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1 1

( )
n n

ij ij
i j

V X d x
= =

=åå  
(10)

3.3. Alphabet table 

An alphabet table is formed by arranging the elements of the distance matrix [ ]ijD d  in non-

decreasing order and indexed from 1 to n n . Let 2{1,2,..., }SN n  be the set of n n ordered indices, 

arrays d  and Cd  represent the distance and cumulative sums of the elements in D , respectively. Let 
the arrays R and C respectively denote row and column indices of the ordered elements in SN . The 
table comprises the set of ordered indices such as , , , RSN d Cd  andC is referred as alphabet table. Let 

1 2 3( , , ,..., )r rL p p p p be an ordered string of r  indices from the set SN , where ip  is a member of

SN .  The pattern rL  indicated by an ordered indices and these indices are independent of the order ip  

in the sequence.  For uniqueness, the indices from SN  are organized in non-decreasing order such that

1, 1,2,..., 1.i ip p i r    
 

3.4. Word and partial word 

An ordered sequence 1 2 3( , , ,..., )r rL p p p p  is represented as a word of length r . A feasible word rL  

is said to be a partial feasible word if 1r m n q     and if 1r m n q    , then it represents the 
full length feasible word or simply a word. Any one of the indices from SN can take up the prime 
position in the partial word rL .  A partial word rL  defines a block of words with rL  as a leader.  If the 

block of word characterized by it has at least one feasible word then the leader is said to be feasible, 
otherwise infeasible. 

3.5. Value of a word 

The value of the word rL  denoted by ( )rV L  is determined iteratively by using 1( ) ( ) ( )rr rV L V L d p   

with 0( ) 0V L  , where ( )rd p  be the distance array which is organized in such a way that 
2

1( ) ( ), 1,2,...,r rd p d p i n n    . The value ( )rV L  is similar to the value of (X)V . 

3.6. Computation of bounds  

The effective setting of lower and upper bounds are more challenging to the class of NP-hard problems 
to control the search space. Initially, the upper bound of rL  is assumed to be a high value (UB  = VT  

= 9999) (for minimization objective functions) as a trial solution. The lower bound ( )rLB L  of the 

partial word rL  can be determined using the following formula: 

( ) ( ) ( ) ( ),r r r rLB L V L Cd p B r Cd p      where 1 1B n p m n q       . 

4. Lexi-search algorithm 
 

Optimal solutions obtained by exact search methods have grown into more attractive in the context of 
solving combinatorial optimization problems in order to make effective decisions. The exact 
approaches can be observed as exhaustive and implicit search methods. One of the prominent implicit 
search technique is Branch and Bound method (B&B) (Little et al., 1963). LSA is one such implicit 
enumeration procedure, due to effective bound settings, only a fractional part of a solution space is 
investigated and converges to optimal solution systematically (Pandit, 1962), which was developed to 
tackle the loading problem.  Infact, B&B can be seen as a special case of LSA. The LSA takes care of 
all the components of B&B such as the development of feasible solutions, feasibility checking and 
determining the bounds for the partial feasible solution. The entire search process is done in a precise 
manner and resembles to the search for an essence of a word in a dictionary, thus, the name is given as 



  126

“Lexi-search”.  Moreover, this systematic search defends stack overflow and search time. The main 
difficulty of any problem utilizing implicit enumeration methods is (i) checking the feasibility (ii) 
setting effective bounds.  There is a difficulty in testing the feasibility for few problems. To overcome 
this, a pattern recognition technique based Lexi-search approach (Murthy, 1976) has been developed 
and stated as follows: 

 

“A unique pattern is connected with each solution of a problem. Partial pattern represents a partial 
solution.  An alphabet-table is characterizes with the assistance of which the words, representing the 
pattern are listed in a lexicographic or dictionary order.  During the search for an optimal word, when 
a partial word is considered, first bounds are determined and then the partial words for which the value 
is less than the trail value are checked for the feasibility”. 

Proposed Lexi-search Algorithm 
 

The step by step procedure of Lexi-search algorithm is described as follows: 
Step 1:   Initialization 

Initialize the distance matrix [ ]ijD d , the required parameters , , ,m n p q  and 

9999UB VT= = (large value) and go to Step 2. 
Step 2: Construct an alphabet table using the given distance matrix D  as discussed in the Section 

3.3 and move to Step 3. 
Step 3: Bound Settings  

The algorithm starts with a partial word ( ) 1,r rrL p p SN   , where the length of the 

partial word is unity, i.e. 1r . Determine the lower bound of a partial word ( )rLB L  as 

explained in Section 3.6. If ( )rLB L VT , then go to Step 5, else go to Step 4. 

Step 4: If ( )rLB L VT ,  then drop the partial word rL  and dismiss the block of words with rL  as 

leader. Since it does not yield an optimal solution and thus, reject all the partial words of 
the order r  that succeeds rL and go to Step 7. 

Step 5: Feasibility Checking 
If the partial word rL  satisfies the constraint set (2)-(9) then it is said to be feasible, 

otherwise, it is infeasible. If rL  is feasible, then accept it and continue for next partial word 

of order 1r  and go to Step 6, else proceed with the next partial word of order r  by 
considering another letter that succeeds rp in its thr  position and go to Step 3. 

Step 6: Concatenation 
If rL  is a full length feasible word of length r  (i.e. 1)r m n q    , then replace VT  by 

the value of ( )rLB L and then go to Step 8.  If rL  is a partial word, then it can be 

concatenated by using 11 *( )r rrL L p   , where * indicates the concatenation operation and 

go to Step 3. 
Step 7: If all the words of order r  are exhausted and length of the word rL  is 1, then the search 

mechanism is terminated and go to Step 9, else move to Step 8. 
Step 8: Backtracking  

Backtracking is adopted to explore the search space; the current VT  is assumed as an upper 
bound and continues the search with next letter of the partial word of order 1r  , go to 
Step 3.  Repeat the Steps 3 to 8 until VT  has no further improvement and ignore the 
feasible/infeasible solutions which are not constitute in the optimal solution. Go to Step 9.

Step 9: Record the latest VT  and the corresponding word rL . Go to Step 10. 

Step 10: Stop 
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Finally, at the end of the search, VT  provides the optimal solution and the word rL  give the position 

of the letters and one can find the optimal schedule for connectivity of given cities with the help of .rL  
 

5. Numerical Illustration  
 

A numerical example with 9 cities is considered to explain the concepts and the LSA for OCMTSP, for 
which {1,2,3,4,5,6,7,8,9}N  . The distance between each pair of cities assumes a non-negative 

quantity, can be asymmetric, represented as a distance matrix  D  and is given in Table 1, where ‘–’ 
indicates the disconnectivity or self-loop between the pair of cities. Let the depot city as   =1, assumed 
that there are three salesman ( 3m  ), in which two internal salesman ( 2)p  and one 

external/outsourcing salesman ( 1)q   are positioned at the depot city. The problem is to find the best 
route plan for the three salesman to cover all the 9-cities such that the overall traversal distance is 
minimum. The asymmetric distance matrix D  assumes the non-negative values (arbitrary units) and is 
given in Table 1.  
 
Table 1   
Distance matrix (D) 

i\ j 1 2 3 4 5 6 7 8 9 

1 - 10 15 95 66 55 29 2 21 

2 61 - 55 22 50 72 1 58 29 
3 45 50 - 69 7 89 22 78 59 
4 91 67 75 - 35 27 34 89 63 
5 60 36 90 31 - 50 61 77 12 
6 3 82 20 70 39 - 77 28 5 
7 16 57 26 86 53 19 - 69 46 
8 13 14 54 8 84 37 87 - 42 
9 17 32 68 30 48 79 52 44 - 

 

5.1. Alphabet table 

Table 2 concerns the construction of alphabet table as discussed in Section 3.3 for the distance matrix 
D . The first three columns report that the serial number ( )SN , distance ( )d  and cumulative distance

( )Cd , respectively. The subsequent two columns provide the details about row ( )R  and column ( )C  
indices, respectively. For convenience, a partial alphabet table is considered and given in Table 2. 
 
 

Table 2  
Alphabet Table 

SN d Cd R C  SN d Cd R C 

1 1 1 2 7 16 21 183 1 9
2 2 3 1 8 17 22 205 3 7
3 3 6 6 1 18 22 227 2 4
4 5 11 6 9 19 26 253 7 3
5 7 18 3 5 20 27 280 4 6
6 8 26 8 4 21 28 308 6 8
7 10 36 1 2 22 29 337 1 7
8 12 48 5 9 23 29 366 2 9
9 13 61 8 1 24 30 396 9 4

10 14 75 8 2 25 31 427 5 4
11 15 90 1 3 – – – – –
12 16 106 7 1 72 95 3363 1 4
13 17 123 9 1 73 – – 1 1
14 19 142 7 6 – – – – –
15 20 162 6 3 81 – – 9 9

 
The first three columns report that the serial number . , distance  and cumulative distance  
respectively. The subsequent two columns provide the details about row  and column  indices 
respectively. For convenience, a partial alphabet table is considered and given in Table 2. 
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5.2.Search table 

The logical flow of the developed LSA (presented in Section 4) is given through a numerical example 
in Table 3.  
 
Table 3  
Search Table 

S.N 1 2 3 4 5 6 7 8 9 10 V LB R C Rem 
1 1          1 75 2 7 A 
2  2         3 75 1 8 A 
3   3        6 75 6 1 A 
4    4       11 75 6 9 R 
5    5       13 85 3 5 A 
6     6      21 85 8 4 A 
7      7     31 85 1 2 A 
8       8    43 85 5 9 A 
9        9   56 85 8 1 R 
10        10   57 88 8 2 R 
11        11   58 91 1 3 A 
12         12  74 91 7 1 A 
13          13 91 91 9 1 R 
14          14 93 93 7 6 R 
15          15 94 94 6 3 R 
16          16 95 95 1 9 R 
17          17 96 96 3 7 R 
18          18 96 96 2 4 R 
19          19 100 100 7 3 R 
20          20 101 101 4 6 A,VT=101 
21         13  75 94 9 1 A 
22          14 94 94 7 6 A,VT=94 
23         14  77 97 7 6 >VT, R 
24        12   59 95 7 1 >VT, R 
25       9    44 89 8 1 R 
26       10    45 93 8 2 R 
27       11    46 98 1 3 >VT, R 
28      8     33 91 5 9 A 
29       9    46 91 8 1 R 
30       10    47 95 8 2 >VT, R 
31      9     34 96 8 1 >VT, R 
32     7      23 93 1 2 A 
33      8     35 93 5 9 A 
34       9    48 93 8 1 A 
35        10   62 93 8 2 R 
36        11   63 96 1 3 >VT, R 
37       10    49 97 8 2 >VT, R 
38      9     36 98 8 1 >VT, R 
39     8      25 100 5 9 >VT, R 
40    6       14 94 8 4 >VT, R 
41   4        8 87 6 9 A 
42    5       15 87 3 5 A 
43     6      23 87 8 4 A 
44      7     33 87 1 2 A 
45       8    45 87 5 9 R 
46       9    46 91 8 1 R 
47       10    47 95 8 2 >VT, R 
48      8     35 93 5 9 R 
49      9     36 98 8 1 >VT, R 
50     7      25 95 1 2 >VT, R 
51    6       16 96 8 4 >VT, R 
52   5        10 98 3 5 >VT, R 
53  3         4 88 6 1 A 
54   4        9 88 6 9 R 
55   5        11 99 3 5 >VT, R 
56  4         6 101 6 9 >VT, R 
57 2          2 89 1 8 A 
58  3         5 89 6 1 A 
59   4        9 89 6 9 R 
60   5        12 100 3 5 >VT, R 
61  4         7 102 6 9 >VT, R 
62 2          3 103 6 1 >VT, R 
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Table 3 explains the details that how the algorithm enumerates the solutions as well as converges to the 
optimal solution.  The column indexed by SN represents the serial number. Since 9, 3, 2n m p    
and 1q  , therefore the total number of arcs required for the optimal schedule of OCMTSP is 

1 10m n q    . Thus, the length of optimal feasible word becomes 10. The columns 1, 2, 3, 4, …, 

10 of Table 3 represents the respective positions of the letters of a word rL . The subsequent columns 

labelled as , ,V LB R and C  respectively represent the value, lower bound, row and column indices of 
the partial word. Finally, the column indexed by Rem represents the remarks of a partial word i.e. if a 
partial word is feasible then it is accepted and denoted by ‘A’, otherwise rejected and indicated by ‘R’.  
Here, serial number SN  indicates the iteration count.  
 

5.3.Optimal and sub-optimal solutions 

The set of solutions, which are observed from the search table are given in Table 4.  Table 4 reports the 
details of feasible patterns, corresponding schedules, feasible (sub-optimal) and optimal solutions. The 
initial found pattern 10 {1,2,3,5,6,7,8,11,12,20}L   gives the objective function value 101VT   units 

that is noticed at 20th row of the Table 3. In order to improve this solution backtracking is performed. 
After performing the backtracking by considering the initial found solution (i.e. 101 units) as current 
upper bound, the best objective function value as 94VT   units and whose feasible pattern

10 {1,2,3,5,6,7,8,11,13,14}L   is found at 22nd row of the Table 3. Table 3 clearly shows that the 

objective function value 94VT  units dominates all the other solutions, and hence the current solution 
(i.e. 94VT   units) become the optimal solution. This clearly shows the developed LSA is capable to 
enumerate the possible solutions that assist the decision maker to construct viable decisions with 
preferred solutions also.  The graphical representation of respective feasible and optimal solutions is 
given in Fig. 2 and Fig. 3. 
 
Table 4  
Optimal and Sub-optimal Solutions 

S.N Feasible Pattern Corresponding schedule Solution 
1 , , , , , , , , ,  (2, 7), (1, 8), (6, 1), (3, 5), 

(8, 4),(1, 2),  (5, 9), (1, 3), 
(7, 1), (4, 6) 

101 
(Sub-optimal) 

2 , , , , , , , , ,  (2, 7), (1, 8), (6, 1), (3, 5), 
(8, 4), (1, 2), (5, 9), (1, 3), 
(9, 1), (7, 6) 

94 
(Optimal) 

 
 
 

 

Fig. 2. Feasible solution of OCMTSP Fig.3. Optimal solution of OCMTSP 
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6. Computational analysis 

This section presents the computational details of the proposed LSA over benchmark instances. In order 
to assess the LSA performance, first we compare our results with the existing results. We then, 
considered few standard instances from TSPLIB (Reinhelt, 2014) and evaluated the performance of 
LSA for OCMTSP. Finally, we extend our computational experiments to random instances to assess 
the performance of LSA. All the experiments were conducted by implementing the LSA in Matlab 
2017a and then running on PC with 2.0 GHz, Intel(R) core i3 processor, 4 GB of RAM running 
Microsoft Windows 10 Operating System. 

6.1. Comparative results of LSA with existing results  

To measure the solution quality, the results over the benchmark instances of proposed LSA was 
compared to the results of CPLEX, Benders and GA based ant colony optimization (ACO) methods 
reported in (Changdar et al., 2016). The comparative analysis is carried out on four asymmetric 
benchmark instances namely br17, ftv33, ftv35, and ftv38 taken from the TSPLIB and overall results 
about 12 cases are summarized in Table 5. From the results given in Table 5, the following remarks are 
noticed:  
 

a. The best found solutions for four cases namely br17 (with 2, 3 and 4 salesman) and ftv33 (with 
2 salesman) using LSA coincides with the existing CPLEX, Benders, and GA based ACO 
approaches. 

b. For ftv33 (with 3 salesman) and ftv35 (with 2 salesman), the results of LSA coincides with 
CPLEX, Benders methods and better than the GA based ACO approach, while for ftv35 (with 
3 salesman) and ftv38 (with 2 and 3 salesman), LSA results identical with Benders and GA 
based ACO methods and better than CPLEX method.   

c. For ftv35 (with 4 salesman) and ftv38 (with 4 salesman), LSA results matches with GA based 
ACO method and better than the Benders method, while for the same cases the blank results 
indicate that the results are not provided in the former works.  

d. Clearly it is seen that LSA is superior than CPLEX and Benders method in providing the optimal 
solution, while except the case ftv33 (with 4 salesman) GA based ACO provided the better 
solution than LSA, but the solution obtained by LSA for the same case is same as that of CPLEX 
and Benders method.    

e. From the overall results, the LSA is better than the CPLEX, Benders method and is competitive 
with GA based ACO method. 

 

Moreover, to visually evaluate the capability of the proposed LSA with CPLEX, Benders and GA 
methods on four standard test instances, the bar charts are presented. Figures 4, 5, 6 and 7 represents 
the four bar charts to compare the travel distance over the distinct number of salesman on the 
benchmark instances br17,  ftv33,  ftv35, and  ftv38, respectively. In Fig. 4, it is seen that all the four 
methods are providing the same solutions on the benchmark instance br17 with 2, 3, and 4 salesman. 
In Fig. 5, it is observed that the proposed LSA results matches with CPLEX and Benders methods on 
the ftv33 with 2, 3, and 4 salesman, while the GA based ACO result on ftv33 with 4 salesman better 
than LSA. Similarly, in Fig. 6, it is witnessed that the proposed LSA results matches with CPLEX and 
Benders methods on the ftv35 with 2 salesman and far better than GA based ACO method. The LSA 
results matches with Benders and GA based ACO methods on the ftv35 with3 salesman. Finally, in Fig. 
7, it is evident that the proposed LSA results matches with Benders and GA based ACO methods on 
ftv38 with 2 and 3 salesman and far better than CPLEX method.From the figures, it is seen that in most 
of the cases LSA works better than CPLEX, Benders method and is competitive with GA based ACO 
method.  
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6.2. Analyzing the performance of LSA for OCMTSP over benchmark and random instances 

In order to measure the performance of LSA for OCMTSP, four benchmark test instances namely br17, 
ftv33, ftv35, and ftv38 are taken from TSPLIB. The experiments were performed on each test instance 
by setting distinct values on the parameters namely, number of salesman ( )m , number of internal 

salesman ( )p  and number of external salesman ( )q . Overall, 17 cases have been tested for four test 
instances and the results are reported in Table 6. Table 6 summarizes the best-found solutions using 
LSA for each case of the test instance within the predefined time limit of 3600 seconds. The route plans 
of the salesman with respect to the best solution of OCMTSP is given in Table 7.  
 

Table 5  
Comparative results of LSA for MTSP using various existing algorithms (Changdar et al., 2016) 

Instance Number of 
Salesmen 

CPLEX Benders 
Method 

GA based 
ACO 

Proposed 
LSA 

 
br17 

2 39 39 39 39 
3 42 42 42 42 
4 47 47 47 47 

 
ftv33 

2 1302 1302 1302 1302 
3 1328 1328 1342 1328 
4 1367 1367 1352 1367 

 
ftv35 

2 1489 1489 1511 1489 
3 1541 1511 1511 1511 
4 − 1551 1532 1532 

 
ftv38 

2 1551 1505 1505 1505 
3 1567 1521 1521 1521 
4 − 1546 1532 1532 

 

 

Table 8 provides a summary of the descriptive statistical results of CPU execution times of LSA for 
OCMTSP tested on randomly generated test instances ranging from 10 to 80 cities. The arc distance 

ijd
 
takes the random values over the range [1 300].  For each problem size, a set of 10 independent test 

instances are generated, together becomes 80 random instances and tested with distinct combinations 
of m, p  and q . The columns Min., Max., Avg., and SD are the minimum, maximum, average CPU 
runtimes required to find the best solutions in all of the 10 runs and the standard deviation of the CPU 
runtimes, respectively.From the results reported in Table 8, it is observed that the average CPU 
runtimes required to solve the problems are ranging from 0.0688 seconds to 204.3234 seconds. 
However, the runtimes are little higher, but are practicably acceptable. It is seen that, the average CPU 
runtimes start increasing when the problems of size 30 or higher with different combinations of m , p  
and q . From overall results, an interesting observation is that apart from the problem size ( )n , the 
combination of key parameters m, p , and q  also decides the problem complexity and yet, solving 
larger instances may take higher CPU runtimes. Furthermore, for each of the data set, standard 
deviation (SD) is also measured and it is evident that the SD results are closer to zero. This shows that 
LSA CPU runtimes are less spread out from the average CPU runtimes. 

 
Fig. 4. Comparison of travel distance for br17 by 
considering two, three and four salesmen 

Fig. 5. Comparison of travel distance for ftv33 by 
considering two, three and four salesmen 
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Fig. 6. Comparison of travel distance for ftv35 by 
considering two and three salesmen 

Fig. 7. Comparison of travel distance for ftv38 by 
considering two, and  three salesmen 

 
Table 6  
Results of LSA for OCMTSP on benchmark instances 
Instance |N| m p q Best solution 
br17 17 5 3 2 35 

6 4 2 41 
4 3 1 35 
5 2 3 30 
6 2 4 33 

ftv33 33 5 3 2 1240 
7 4 3 1278 
6 3 3 1225 
6 2 4 1185 

ftv35 35 6 2 4 1294 
5 2 3 1307 
8 3 5 1324 
7 3 4 1328 

ftv44 45 5 3 2 1619 
4 3 1 1691 
6 4 2 1678 
6 3 3 1603 

|N|=n – Number of cities; m – Number of salesmen; p – Number of internal salesmen; q – Number of external salesmen; 
Best solution – best found solution using LSA within the specified time limit. 
 
Table 7  
The route plan of the salesman with respect to the best solution of OCMTSP 
SN Route plan 
1 1→12→1; 1→2→10→11→13→1; 1→3→14→1; 1→8→9→17; 1→6→7→15→16→4→5 
2 1→12→1; 1→2→10→11→1; 1→13→1; 1→3→14→1 

1→8→9→17;  1→6→7→15→16→4→5 
3 1→12→1; 1→2→10→11→13→1; 1→3→14→1;  

1→8→9→17→6→7→15→16→4→5 
4 1→12→1; 1→2→10→11→13→1;  

1→3→14; 1→8→9→17; 1→6→7→15→16→4→5 
5 1→12→1; 1→2→10→11→1; 1→13 

1→3→14; 1→8→9→17; 1→6→7→15→16→4→5 
6 1→14→1; 1→2→34→31→3→4→1; 1→15→16→17→1 

1→26→25→24→28→29→30→27→23→21→22→32→19→20→18→12 
1→13→10→33→8→9→11→5→7→6 
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Table 7  
The route plan of the salesman with respect to the best solution of OCMTSP (Continued) 
7 1→14→1; 1→13→1; 1→15→16→17→1; 1→3→4→1 

1→2→34→31→5→7→6; 1→10→33→8→9→11 
1→26→25→24→28→29→30→27→23→21→22→32→19→20→18→12 

8 1→14→1; 1→17→1; 1→15→16→1; 1→2→3→4→34→31→5→7→6 
1→26→25→24→28→29→30→27→23→21→22→32→19→20→18→12 
1→13→10→33→8→9→11 

9 1→14→1; 1→15→16→17→1; 1→2→3→4→34→31→5→7→6 
1→26→25→24→20→32→19→18→12; 1→13→10→33→8→9→11 
1→28→29→30→27→23→21→22 

10 1→14→1; 1→15→16→17→1 
1→2→4→36→33→31→28→24→21→22→23→29→30→32→3→5→6→8→7 
1→27→26→25→20→34→19→18→11; 1→12→13; 1→35→9→10 

11 1→14→1; 1→2→31→28→24→21→22→23→29→30→32→36→33→5→3→4→1 
1→17→15→16→12→13→6→8→7 
1→27→26→25→20→34→19→18→11; 1→35→9→10 

12 1→14→1; 1→17→1; 1→15→16→1 
1→2→4→36→33→31→28→24→21→22→23→29→30→32 
1→27→26→25→20→34→19→18→11; 1→12→13; 1→35→9→10; 1→3→5→6→8→7 

13 1→14→1; 1→17→1; 1→15→16→1; 
1→2→4→36→33→31→28→24→21→22→23→29→30→32→3→5→6→8→7 
1→27→26→25→20→34→19→18→11; 1→12→13; 1→35→9→10 

14 1→22→1; 1→2→3→7→42→40→39→45→4→5→6→1; 1→20→1 
1→32→31→30→28→34→35→37→38→36→33→29→26→27→43→24→25→23→19 
→17→18→16→13→14→15→44→12→11→8→10→9→41; 1→21 

15 1→22→1; 1→2→3→1; 1→20→21→8→10→9→41→7→42→40→39→45→4→5→6→1 
1→32→31→30→23→15→44→12→11→13→14→16→17→18→19→43→24→25→26 
→27→28→29→34→35→36→33→37→38 

16 1→22→1; 1→2→3→1; 1→21→8→10→9→41→7→42→40→39→45→4→5→6→1; 1→20→1; 
1→15→44→12→11→13→14→16→17→18 
1→32→31→30→28→34→35→37→38→36→33→29→26→27→43→24→25→23→19 

17 1→22→1; 1→2→3→7→42→40→39→45→4→5→6→1; 1→20→1 
1→32→31→30→28→34→35→37→38→36→33→29→26→27→43→24→25→23→19 
1→21→8→10→9→41; 1→15→11→44→12→13→14→16→17→18 

 
Table 8  
Descriptive statistics of CPU runtime of LSA on random instances 
SN |N| m p q NPT CPU runtime (In seconds) SD 

Min. Max. Avg. 
1 10 3 2 1 10 0.0529 0.0883 0.0688 0.0131 
2 15 3 2 1 10 0.1028 0.2025 0.1558 0.0369 
3 20 4 2 2 10 0.7203 0.9454 0.8481 0.0777 
4 30 4 3 1 10 4.7203 4.9934 4.8693 0.0913 
5 40 5 2 3 10 10.0214 14.7340 11.6064 0.1052 
6 50 7 4 3 10 25.0314 30.9862 28.3240 0.2234 
7 60 7 5 2 10 62.0314 80.9862 68.3240 0.5234 
8 80 8 6 2 10 180.2210 238.0432 204.3234 0.3042 
SN–Serial Number; |N| – Number of cities; m – Number of salesmen; p – Number of internal salesmen; q–Number of external salesmen; NPT–Number 
of problems tried; Min.–Minimum CPU runtime required for finding best solution; Max.–Maximum CPU runtime required for finding best solution; 
Avg.– Average CPU runtime required for finding best solution; SD – Standard deviation of CPU runtimes. 
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7. Conclusions 
 
In this paper, we considered an exceptional combinatorial optimization problem called an open close 
multiple travelling salesmen problem with single depot (OCMTSP), motivated by the real world 
outsourcing scenarios in human resource allocation and routing problems. The OCMTSP can be viewed 
as a combination of open-TSP and closed-TSP. The model OCMTSP has been presented as a zero-one 
integer programming. An efficient exact algorithm, the pattern recognition technique based Lexi-search 
algorithm (LSA) is developed for OCMTSP. Through the comparative results, the effectiveness of the 
LSA for MTSP has been measured.    
 
The LSA performance of OCMTSP is tested over some benchmark as well as randomly generated test 
instances and the results are reported. The extensive computational results showed that the LSA 
performs well in yielding exact solutions within practically considerable CPU runtimes. Furthermore, 
an interesting observation is that the key parameters m, p and q judge the performance of the LSA for 
solving OCMTSP. The model OCMTSP finds good number of applications in transportation, vehicle 
routing and logistics distributions etc. For the future consideration, one can extend the model OCMTSP 
with time windows, multiple depots and other practical variants etc. However, developing an efficient 
exact algorithm for such variants is still a challenging problem. 
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