An open implementation of Cloud Types for the Web

Tim Coppieters

Vrije Universiteit Brussel
tcoppiet@vub.ac.be

Laure Philips

Vrije Universiteit Brussel
Iphilips@vub.ac.be

Tom Van Cutsem

Vrije Universiteit Brussel
tvcutsem@vub.ac.be

Wolfgang De Meuter

Vrije Universiteit Brussel
wdmeuter@vub.ac.be

Abstract

Cloud Types is an interesting EC model that closely integrates
its consistency model with the programming language, rendering
EC programming more feasible for the average programmer. We
have created an open implementation of the model in a JavaScript
end-to-end implementation that can act both as an experimental
platform for researchers and as an open EC model for the web.
Furthermore we are experimenting with additions to the model such
as an RDBM-like authorization system in combination with Views
in order to give more control over the state and to allow partitioning.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Distributed Programming

Keywords Cloud Types, JavaScript, Web Applications, Autho-
rization, Eventual Consistency

1. Introduction

During the last few years first attempts have been made to present
easier Eventual Consistency (EC) programming models by inte-
grating it more closely with the programming language. Cloud
Types[1] is one of the most recent models that takes such an ap-
proach. It allows developers to create an EC application (providing
both server and client replication, and thus offline availability of
the data) by using automatically replicated data types with commu-
tative operations (as also introduced by CRDTI[2]) or last-writer
semantics and strong consistency whenever required. While the
programming model restricts the developer to certain EC choices
(e.g. no conflict detection/resolution), it does provide a more un-
derstandable environment for the developers to create EC applica-
tions.

2. Open Web Implementation

We believe such an approach is the way to go to make EC pro-
gramming more feasible. More intelligent language abstractions

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

PaPEC 14, April 13 - 16, 2014, Amsterdam, Netherlands.

Copyright © 2014 ACM 978-1-4503-2716-9/14/04. .. $15.00.
http://dx.doi.org/10.1145/2596631.2596640

that cover the complex problems of EC will help and attract more
developers to the EC community. In order to further progress our
research in that direction, it is key to experiment with and build on
previous work. Although the mentioned Cloud Types model is al-
ready utilized in TouchDevelop, a closed-source Microsoft product
supported by the creators of Cloud Types, it was not yet opera-
tionalized in such way that researchers/developers can experiment
with it, hands on.

Therefore, we decided to implement the complete model in a
JavaScript end-to-end library approach!. In short, it allows you to
declare the replicated data types using a Node.js server and use the
EC data on the client-side (e.g. in your browser) with another JS
library, using WebSockets for communication. The library has a
clear API, an extensive documentation and an implementation that
is kept as close to the original description of the language model
as possible. This (1) allows researchers to better understand and
experiment with the model and (2) makes the model available in a
widely used environment, namely the web platform.

3. More Control

We are currently using this implementation to examine the bound-
aries of the model for web application programming. Thus far we
encountered two main problems in order to use it for our day-to-day
web applications. First, there is no way to control what happens
with the shared data, i.e. we do not want everyone to see, create,
update and delete all data. Second, there is no way to partition the
state in such way that the client can decide to only access a part of
the data. By allowing to retrieve and synchronize only the neces-
sary data on demand, it becomes feasible to encode larger data sets
in the cloud types.

These two concerns can be easily exemplified. For the first con-
cern, take the grocery list example from the original paper[1]. In
order to port this example to a mature and scaleable grocery list
web application, we want users to register, login, create new lists
and join other users’ lists either by providing a special token sup-
plied by the owner or by being added explicitly by a user of such
list. Another example that demonstrates our need for control would
be the typical in-house company application with managers, em-
ployees, payments, etc. (e.g. as used in [3]). A user can only start
using this type of application if somebody gives him/her explicit
access and adds him/her to a group with certain privileges. Further-
more we also want to add fine-grained dynamic constraints such as

Uhttps://github.com/ticup/CloudTypes-paper

”an employee can only see the salary of another employee if it is
smaller than its own”.

For the second concern, take an event management system that
contains a lot of related information about each event and partici-
pating artists. The last thing we want is to always send all the data
to all clients. In contrast, we only want to send and synchronize the
data that the client needs at a particular moment. By default, this
could be all the data within the upcoming year. If the user needs
data of previous events or events that occur more than one year
from now, he/she could then request this on demand.

In order to solve these two issues we drew inspiration from the
database community and created the following additions to the
Cloud Types model:

1. An authentication system, adding the notion of users and
groups and built-in functions login and register.

2. Views that allow for context dependent filtering by creating a
filter on an Entity or Array where the inclusion of an entry can
depend on the current user or user-provided parameters.

3. RDBM-like privileges on Entity, Array, Property, View and
View Property level, based on [3]. These privileges are built on
top of the system, using Cloud Types, meaning they also benefit
from the eventually consistent properties of Cloud Types.

4. Statically defined, data-driven server execution (upon cre-
ation or deletion of an Entity or upon updating a Property).

These additions cover previously mentioned concerns and effec-
tively allows us to implement proposed examples. While this is
still work-in-progress, they are currently successfully implemented
in the web library. We will not elaborate on the extensions here,
but we are planning to publish them in the future using the formal
Cloud Types model.

4. Discussion

Adding the notion of users to the system opens up the possibility
of adding user-level guarantees for the replicated data using ses-
sion guarantees[4]. The original Cloud Types model provides all
guarantees (Read Your Writes, Monotonic Reads, Writes Follow
Reads and Monotonic Writes) for a particular client, but if a user
goes from one client to another (and thereby switches servers), only
Monotonic Writes and Writes Follow Reads can be guaranteed for
the user. Adding the Session Guarantees at user level, either all by
default or either by specification as suggested in [5], would provide
a more consistent view on the state for the user and consequently
improve the experience with the system.

RDBM privileges, as described in [3], have a stricter notion
of granting and revoking the privileges than we currently have.
Namely, when a user A grants a privilege X to user B, a user C can
not revoke that privilege from B, because user C did not grant that
privilege to B. In our current implementation this is not the case,
namely user C could revoke that privilege (at least if it has permis-
sion to grant/revoke such privilege). As a consequence we also do
not perform recursive revoking, which is the act of revoking the
privileges granted by a user if the privilege that allowed that user
to grant those privileges is now revoked. This was done because
our use-cases had more benefit from the simple, more relaxed, ver-
sion. This stems from the fact that the notion of a user is somewhat
different in our context from a user in relational databases.

The addition of statically defined, data-driven server execution
allows us to execute code on the server in a very strict, but simple
manner. The main purpose of this addition was to enable a user to
grant himself privileges (code on the server is executed as root,

which has all privileges) by creating the correct data instead of
getting the privilege from another user. This allows us to implement
the grouped grocery list requirement, where we want to be able
to grant access to a user for a particular list if the user supplies
the correct token for that list. While the data-driven approach is
a nice and simple way to add server execution (results can be
reported back to the client by creating data again), a more complex
interleaved client/server execution model such as that from HOP[6]
would be more powerful.

5. Conclusion

We introduced the JavaScript end-to-end open web implementation
of the Cloud Types model. Experience from this implementation
learned us that we needed more control over the shared data in order
to use it for mature web applications. This was demonstrated by
providing some example applications we wanted to create with the
model, but which we could not with the current state. This lead to
a brief introduction of some additions we currently made, allowing
us to effectively implement the desired applications.

References

[1] S. Burckhardt, M. Fihndrich, D. Leijen, and B. P. Wood, “’Cloud
types for eventual consistency,” in Proceedings of the 26th European
Conference on Object-Oriented Programming, ECOOP’12, (Berlin,
Heidelberg), pp. 283-307, Springer- Verlag, 2012.

[2] N. Preguica, J. Marques, M. Shapiro, and M. Letia, A commutative
replicated data type for cooperative editing,” in Distributed Computing
Systems. ICDCS ’09. 29th IEEE International Conference on, pp. 395-
403, 2009.

[3] E. Bertino, P. Samarati, S. Jajodia, ”An Extended Authorization Model
for Relational Databases,” in IEEE Transactions on Knowledge and Data
Engineering, vol. 9, no. 1, pp. 85-101, January-February, 1997.

[4] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer, M. Theimer, and
B. W. Welch, ’Session guarantees for weakly consistent replicated data,”
in Proceedings of the Third International Conference on Parallel and
Distributed Information Systems, PDIS *94, (Washington, DC, USA),
pp. 140-149, IEEE Computer Society, 1994.

[5] D. B. Terry, "Replicated data consistency explained through baseball,”
in Communications of the ACM, vol. 56, pp. 82-89, Dec. 2013.

[6] M. Serrano, E. Gallesio, and F. Loitsch. "Hop: a language for
programming the web 2.0,” in OOPSLA Companion. 2006.

