
An Open-source Algorithm to Detect Onset of Arterial Blood Pressure Pulses 
W Zong',', T Heldt', GB Moody', RG Mark' 

'Harvard University - MIT Division of Health Sciences and Technology, 
Massachusetts Institute of Technology, USA 

*Beth Israel Deaconess Medical Center, 
Harvard Medical School, Boston, USA 

Abstract 

In  this paper; we present an effective algorithm for 
detecting the onset of anerial blood pressure (ABP) 
pulses. The algorithm employs a windowed and weighted 
slope sum function (SSF) to extract ABP wavefonn 
features. Aahptive thresholding and search strategies are 
applied to the SSF signal to detect ABP pulses and to 
determine their onsets. Two evaluation procedures were 
employed. First, pulse detection accuracy was evaluated by 
comparing the algorithm's pulse detections with reference 
ECG annotations using the MlT-BIH Polysomnographic 
Database. The algorithm detected 99.31 8 ofthe 368,364 
beats annotated in the ECG. Second, the accuracy of 
pulse onset determination was established using a newly 
created, manually-edited reference ABP signal database. 
For 96.41% ofthe 39,848 beats in the reference database, 
the difference between the manually-edited and algorithm- 
determined ABP pulse onset was less than or equal to 
20 ms. The C source code of the algorithm h a s  been 
contributed to PhysioToolkit and is freely available from the 
PhysioNet websire (http:/hw.physioner.org). 

1. Introduction 

The ABP waveform contains rich information about the 
cardiovascular system, such as heart rate, systolic, mean, 
and diastolic arterial pressures, and it can be used to assess 
properties of the arterial vessel wall [ l ,  21. Reliable and 
accurate ABP pulse detection is crucial for beat-by-beat 
extraction and analysis of the information mentioned above. 
This task is rendered difficult, however, since the ABP 
measurement is prone to noise and artifacts (see Figure 
1 (b) and (d)). Furthermore, the waveform morphology 
can change dramatically, even over short periods of time, 
in response to altered pathologic or physiologic stresses 
(Figure 1 (a) and (c)). 

Although it is the ABP pulse onset that denotes the 
arrival of the arterial pressure pulse at the recording site, 
most ABP pulse and pulse-component detection algorithms 
identify the peak of the ABP waveform as the fiducial 

Figure 1.  Examples of ABP waveform signals. (a) and (b) 
are non-invasive (FINAF'RES) recordings; (c) and (d) are 
invasive ABP recordings from the radial artery; IO seconds 
per trace. 

mark of the ABP pulse [3, 4, 51. The strategy of peak 
detection rather than pulse onset detection is inappropriate 
for studying pulse wave velocity [61 and ECG-ABP delay 
time [7] characteristics, as the duration of the upslope 
depends, among other things, on ventricular and valvular 
properties. 

This study presents an algorithm that determines the 
onset of arterial pressure pulses by first converting 
the ABP waveform into a slope sum function (SSF) 
signal. Subsequent adaptive thresholding and local search 
strategies allow for ABP onset annotations to be placed 
in close proximity of the actual pulse onset. We used 
two different databases for performance evaluation. Our 
results show that this algorithm is effective in detecting and 
annotating ABP onsets. 
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2. Methods 

2.1. The algorithm 
AW 

As shown in Figure 2. the algorithm consists of three 7 
components: a low-pass filter, a-windowed and weighted 
slope sum function, and a decision rule. The ABP signal, 

SSF 
. 

xnr is the input of the low-pass filter, and y, is the filtered 
ABP. The slope sum function converts yn to a slope sum 
signal t,. A decision rule is applied to .zn to determine the 
AEJP pulse onsets denoted by t l ,  tz ,  ___. 

Low-pass filter: The purpose of the low pass filter is to 
suppress high frequency noise that might affect the ABP 
onset detection. We use a second order recursive filter [8] 
whose transfer function, frequency response, and difference 
equation are given below for a sampling frequency of 250 
Hz (Le.. a sampling interval T = 4 ms). 

Yn = 2Yn-1 - Yn-z 4- Zn - 2%-s + Zn-io 

The 3 dB cut-off frequency is about 16 Hz and the gain is 
25 at 0 Hz. The phase shift is 20 ms (5 samples at 250 Hz). 

Slope sum function: The purpose of the slope sum 
function is to enhance the upslope of the ABP pulse and 
to suppress the remainder of the pressure waveform. The 
windowed and weighted slope sum function at time i, t i  , is 
defined as follows: 

where w is the length of the analyzing window; 1 + w 5 
i 5 N, N is the total number of ABP samples in the record, 
Ays = yk - yk-1. and yk is the low-pass filtered AEJP 
signal as defined above. To maximize the SSF, w is chosen 
approximately equal to the typical duration of the upslope 
of the ABP pulse. In the present algorithm, w = 128 ms 
or 32 samples for the sampling frequency of 250 Hz. The 
relationship between the AEJP and the SSF signals is shown 
in Figure 3. 

The onset of the SSF pulse generally coincides with the 
onset of the ABP pulse as the SSF signal can only rise when 
the ABP signal (or noise not removed by filtering) rises. 

Since the SSF signal is a simpler signal to process, the pulse 
onset will be detected by processing the SSF signal. 

Decision rule: Finally, we have to establish a decision rule 
that allows for detection of each SSF pulse onset. We split 
this task into two: First, we apply adaptive thresholding 
to the SSF signal to detect SSF pulses of appropriate 
amplitude. Next, we employ a local search strategy m u n d  
the detection point to confirm the detection and to identify 
the likely onset of the pulse. During the thresholding step, 
a threshold base value is established and is initialized at 
three times the mean SSF signal (averaged over the first 
ten seconds of the recording). The threshold base value 
is adaptively updated by the maximum SSF value for each 
SSF pulse detected. The actual threshold is taken to be 60% 
of the threshold base value. When the SSF signal crosses 
this threshold, the algorithm searches for the minimum and 
the maximum SSF values in a 150 ms-window preceding 
and succeeding the threshold-crossing point, respectively. 
The pulse detection is accepted only if the difference 
between the maximum and minimum exceeds a certain 
value; otherwise the pulse detection is rejected. When 
the pulse is accepted, the algorithm searches backward in 
time from the threshold-crossing point for the onset of the 
SSF pulse. The onset point is determined when the SSF 
signal exceeds 1.0% of the maximum SSF value. The 
calculated ABP onset is adjusted by 20 ms. or 5 samples, 
to compensate. for the low-pass filter's phase shift. Finally, 
to avoid double detection of the same pulse, a 300ms eye- 
closing (refractory) period is applied, during which no new 
pulse detection is initiated. Figure 4 illustrates the ABP 
onset annotations. 

2.2. Evaluation procedure 

To evaluate the performance of the algorithm, we first 
assessed the accuracy of pulse detection and subsequently 
evaluated the accuracy of pulse onset detection. 

Pulse detection: The pulse detection accuracy of the 
algorithm was evaluated using the MIT-BIH Polysomno- 

260 



Figure 4. Example of ABP pulse onset detection process. 
Top trace: raw ABP signal; middle trace: filtered ABP 
signal; bottom trace: SSF signal; vertical dashed lines: ABP 
onset annotations. 

graphic Database [9, IO], which consists of 18 recordings 
of variable length, each of which contains, among other 
physiologic signals, an invasively recorded ABP signal. 
Given a relatively constant delay between the QRS complex 
and peripherally recorded ABP signals of about 200 ms, 
we compared the ABP pulse detections with the reference 
ECG-based beat annotations by shifting forward the ECG 
annotations by 200 ins and applying a standard beat 
annotation comparison, bxb [ I  I], freely available from 
PhysioNet. A total of 368,364 ECG-based beat annotations 
are available for comparison. 

Pulse onset detection: To assess the accuracy of the 
pulse onset detection, a reference database was established, 
which includes ten one-hour recordings of ECG and a 
non-invasively measured ABP signal (FINAPRES). The 
details of the database are described elsewhere in these 
proceedings [12]. In a first step, we used the algorithm 
above to annotate the ABP pulses. In the second step, 
a human expert annotator carefully inspected each ABP 
onset detection and, where deemed necessary, manually 
edited the annotation placement. A comparison between 
the location of the manually-edited and algorithm-based 
annotations was then performed using bxb, which allows 
for specification of a match window, i.e., a maximum 
absolute difference in annotation times permitted for 
matching annotations. Only if two annotation times deviate 
by less than the user-specified matching window, is a 
correct annotation declared. A total of 39,848 ABP 
annotations are available in the reference database for 
comparison. This number includes 560 annotated blood 
pressure calibration pulses. 

3. Results 

A high level of concurrence was observed for 
the evaluation of pulse detection using the MIT-BIH 

Polysomnographic Database: 99.31% of the 368,364 beats 
annotated in the ECG were detected by the algorithm, and 
99.14 % of the events detected by the algorithm had been 
annotated as beats in the ECG. Many of the discrepancies 
occur as a result of ECG or ABP signal loss. Table 1 shows 
the summary statistics for the pulse detection evaluation. 

Table 1. Sensitivity and PPA of pulse detection I 
Sen (%) PPA (%) 

Gross 99.31 99.14 
~verage 99.26 99.11 

PPA positive predictive accuracy. 

Similar results were obtained when evaluating the 
performance of pulse detection on the reference database 
described above: 99.11 % of the 39,848 reference ABP 
annotations were detected by the algorithm, and 99.69 % of 
the events detected by the algorithm were in fact annotated 
ABP pulses. Table 2 reports the summary statistics for pulse 
detection using the newly established reference database. 

Table 2. Sensitivity and PPA of pulse detection I1 
Sen (%) PPA (%) 

Gmss 99.11 99.69 
Averaee 99.71 99.12 

We also used the reference database described above to 
assess the accuracy of the ABP pulse onset determination. 
Figures 5 and 6 show the histogram and cumulative 
distribution of matching annotations as a function of At, the 
time difference between the manually and algorithmically 
determined ABP pulse onsets. As can be seen, most 
annotations fall within 8 ms of the reference annotations, 
with outliers tapering off gradually. 

P 29 
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Figure 5. Histogram of matching annotations as a function 
of At. 
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Figure 6. Cumulative distribution of matching annotations 
as a function of At. 

For 96.4 1 % of the 39,848 beats in the reference database, 
the difference between the manually-edited and algorithm- 
determined ABP pulse onset was less than or equal to 20 
ms. 

4. Discussion 

Accurate detection of arterial blood pressure pulse onsets 
enables one to extract physiologic information from arterial 
pressure waveforms on a beat-by-beat basis. 

Our approach to ABP pulse onset detection is based on 
the transformation of a low-pass filtered ABP signal into 
a slope sum function signal, in which the initial upslope of 
the blood pressure waveform is enhanced and the remainder 
is suppressed. The transformation leaves the location of the 
pulse onset unaltered, except for the fixed filter delay, and 
detection of the pulse onset based on the slope sum function 
signal is straight forward. 

Our evaluation results indicate that the vast 'majority of 
algorithm-based blood pressure pulse onset annotations are 
placed within a few samples' distance from annotations 
placed by an expert annotator. 

Finally, we have included the algorithm in the open- 
source WFDB software package, which is freely available 
from PhysioNet (http://www.physionet.orfl 
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