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An open source approach to the design and implementation of Digital Twins for
Smart Manufacturing

Violeta Damjanovic-Behrendt and Wernher Behrendt

The IoT Group, Salzburg Research, Salzburg, Austria

ABSTRACT

This paper discusses the design of a Digital Twin (DT) demonstrator for Smart Manufacturing, following
an open source approach for implementation. Open source technology can comprise of software,
hardware and hybrid solutions that nowadays drive Smart Manufacturing. The major potential of
open source technology in Smart Manufacturing lies in enabling interoperability and in reducing the
capital costs of designing and implementing new manufacturing solutions. After presenting our
motivation to adopt an open source approach for the design of a DT demonstrator, we identify the
major implementation requirements of Smart Cyber Physical Systems (CPSs) and DTs. A conceptualisa-
tion of the core components of a DT demonstrator is provided and three technology building blocks for
the realisation of a DT have been identified. These technology building blocks include components for
the management of data, models and services. From the conceptual model of the DT demonstrator, we
derived a high-level micro-services architecture and provided a case study infrastructure for the
implementation of the DT demonstrator based on available open source technologies. The paper closes
with research questions to be addressed in the future.

ARTICLE HISTORY

Received 31 May 2018
Accepted 13 March 2019

KEYWORDS

Digital Twin; Smart CPS;
open source technology;
micro-services architecture

1. Introduction

Open source software provides the key building blocks for
interoperability and flexibility of Smart Manufacturing solu-
tions (IoT Eclipse.org 2017). When using permissive open
source licences, the technology is freely redistributable and
modifiable, supporting manufacturers in combining older
equipment with modern sensor-based machines and tools
from different vendors. Technical scalability and computa-
tional power for data analytics are major requirements of
manufacturing software solutions and are today dominated
by open source software. Similarly, open source hardware
supports faster prototyping and customisation of reprogram-
mable components of Cyber Physical Systems (CPSs), which
helps manufacturers to accelerate the design and improve
interoperation across actual lifecycle processes. Enhanced
interoperation of cost-effective manufacturing solutions,
based on open source technology, also reduces fragmentation
of supply chains and facilitates collaboration among numer-
ous manufacturing enterprises.

Many open source communities like the Apache Software
Foundation, the Linux Foundation, the Eclipse IoT and others,
have become valuable technology suppliers to the Smart
Manufacturing software industry. For example, the Eclipse
IoT Working Group has 28 projects that target general
Internet of Things (IoT) solutions, with some of them being
applicable to manufacturing (IoT Eclipse.org 2017). Since open
source technology often uses permissive licences and is roy-
alty-free, making use of it reduces the costs of creating new
solutions and enables free participation in the future develop-
ment and quality control of Smart Manufacturing technology.

In parallel with the continuous advancement of open
source technology, the concepts of Smart CPSs and DTs are
undergoing rapid changes addressing a plethora of chal-
lenges, such as multitenancy, data sharing, cybersecurity, gov-
ernance models for manufacturing platforms, data stream
capturing along life-cycle models. While research is still look-
ing for suitable architectures, the next wave of desired fea-
tures for Smart Manufacturing is already being defined:
autonomous decision making, context- and situation-aware
controls, self-adaptation and more.

Yet at present, DT platforms are built as closed systems,
thus limiting the overall advantages of Smart Manufacturing.
Hence, the major motivation for this paper is to design a
flexible, open source solution for DTs and make it accessible
to a wider industrial and research audience. The paper intro-
duces a functional architecture of a DT and explores the
potentials of available open source tools and services to be
composed into such a demonstrator.

The paper is organised as follows. Section 2 presents the
state of practise in Industry 4.0 and Smart Manufacturing, and
discusses current work related to major technology enablers
for CPS, Smart CPSs and DTs. Section 3 defines the conceptual
model of a DT demonstrator and describes its core building
blocks: Data Manager, Models Manager and Services Manager.
An open source software technology for the DT demonstrator,
addressing the high-level requirements of the presented con-
ceptual model of a DT, is elaborated in Section 4. In Section 5,
we firstly explain our motivation to implement DTs as micro-
services. Secondly, we provide a mapping of the DT concep-
tual architecture to the IIRA and RAMI 4.0 reference models.
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Thirdly, we present the design of a DT architecture that fol-
lows new design patterns based on micro-services. Section 6
presents a possible infrastructure for implementing a DT
demonstrator. Section 7 gives lines of future research and
Section 8 concludes the paper.

2. Related work

This section explores related work and current practises in
Industry 4.0 and Smart Manufacturing. The section presents
the major technology enablers for Smart CPSs and DTs,
together with core reference models for interoperation and
standardisation in both domains, Industry 4.0 and Smart
Manufacturing. To illustrate the current state of manufacturing
practises, this section overviews several available examples of
open source and commercially designed DTs.

2.1. State of practise in Industry 4.0 and Smart

Manufacturing

Manufacturing industry is moving towards a new paradigm, with
the objective to increase productivity, efficiency and competitive-
ness through Industry 4.0 and Smart Manufacturing. The idea of
Industry 4.0 came from the German government promoting a
‘High Tech Strategy 2020 Action Plan’ in 2013 (MacDougall 2014),
while the idea of Smart Manufacturing evolved from several
sources, including: (i) computer integrated manufacturing (CIM)
in the 1980s, (ii) Reconfigurable Manufacturing Systems (RMSs)
(Koren et al. 1999; Koren and Shpitalni 2010), (iii) the Smart
Factory initiative proposed in Zuehlke (2010) and (iv) the
Ubiquitous Factory concept from Yoon, Shin, and Suh (2012).
Today, both strands of research and development follow common
manufacturing challenges related to: flexibile andmodular produc-
tion lifecycle and processes to address changing manufacturing
requirements, interoperability to support data exchange between
digital entities and their physical counterparts, optimisation of
processes and infrastructures based on Smart CPSs and DTs, as
well as the ever present cybersecurity and privacy challenges.

Industry 4.0 and Smart Manufacturing rely on technologies
such as IoT, Web of Things (WoT), cloud computing, edge
computing, big data and analytics, smart sensors, CPSs, DTs
and artificial intelligence (AI) (Wang et al. 2016) (Cimini, Pinto,
and Cavalieri 2017). For example, the role of IoT in digital
manufacturing is to create and enable the collection of real-
time sensor data that can be exchanged through the Web
(Sarma, Brock, and Ashton 2000). Edge and cloud computing
technologies further support systems for advanced analysis
and correlation of data; AI technologies enable data mining
and the creation of added value through knowledge discov-
ery. Big data technologies provide systematic analyses of a
variety of data generated along the entire product lifecycle,
and improve productivity of manufacturing systems through
rapid decision making (Davis et al. 2012; Lee, Kao, and Yang
2014). CPS is another key technology that adds intelligence to
traditional production processes (Lee, Bagheri, and Kao 2015;
Jazdi 2014). CPS integrates computational paradigms with the
physical processes (Lee 2008) and supports manufacturing
capabilities such as reliability, interoperability, predictability

and tracking. CPSs are expected to play a major role in the
design and implementation of future software systems with
new capabilities, as noted in Baheti and Gill (2011) and
Rajkumar et al. (2010). Monostori (2014) defines a Cyber
Physical Production System (CPPS) as an interconnected sys-
tem operating ‘. . .across all levels of production, from processes

through machines up to production and logistics networks’. The
term CPPS is often used as a synonym for the Smart Factory,
emphasising the scalable and modular structure of Smart
Manufacturing applications (Weyer et al. 2016). Further
advancements of CPSs are known as Smart CPSs, which are
complex engineering systems that integrate heterogeneous
hardware and software technologies through various analytics
and decision-making mechanisms (Horváth and Gerritsen
2012). Tavčar and Horváth (2018) summarise the core
advancements of Smart CPSs in comparison to CPSs. On the
following scale, the authors consider only CPSs of Level 2 and
above as Smart CPSs:

● Level 1. CPS does not change throughout the system life
span. It has conventional control mechanisms and can
regulate parameters to a known degree.

● Level 2. CPS is designed for alternative modes of control
and for selection of the optimal control mode at run-
time.

● Level 3. A self-learning CPS with the ability to adapt its
pre-defined control algorithms during operation.

● Level 4. A CPS that is designed to react intelligently to
previously not anticipated changes.

The evolution of microchip, sensor and WoT technologies
has opened the way for tracking smart products along their
lifecycle phases, analysing the acquired data and communicat-
ing their production and operating conditions (Schleich et al.
2017). This technology evolution shifted the concept of Digital
Twins from the aerospace industry to Smart Manufacturing
(Rios et al. 2015). The concept of twins in aircraft industries
has been used to support the optimisation and validation
technology of aircraft systems, based on the integration of
sensor data, maintenance data and available historical/fleet
data (Shafto et al. 2010). In 2002, Grieves coined the term DT
that subsequently evolved from ‘conceptual ideal for product
lifecycle management (PLM)’, ‘the mirrored space model’, ‘the
information mirroring model’, to today’s slightly varying defi-
nitions of a DT. For example, Grieves (2014) and Grieves and
Vickers (2017) define a DT as ‘a set of virtual information
constructs that fully describes a potential or actual physical,
manufactured product from the micro-atomic level to the
macro geometrical level’. In addition, a DT is also defined as
a ‘digital counterpart of a physical product’ (Rios et al. 2015)
and the term is also used for simulation and prediction of
future states of the physical product (e.g. Gabor, Belzner, and
Kiermeier 2016). Haag and Anderl (2018) define a DT as a
comprehensive digital representation of an individual product,
its properties, conditions and behaviour. The core functionality
of a DT is to support design tasks and to validate system
properties through multi-domain and multi-level simulations
along lifecycle phases, including operational support (Boschert
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and Rosen 2016). Negri, Fumagalli, and Macchi (2017) give a
comprehensive overview of DT definitions currently available
in the literature.

2.1.1. Industry 4.0 reference architectures

At present, there exist two core reference models for inter-
operation and standardisation in Industry 4.0 and Smart
Manufacturing: the Reference Architecture Model for Industry
4.0 (RAMI 4.0) and the Industrial Internet Reference
Architecture (IIRA). The authors in ZVEI (2015) present the
RAMI 4.0 architecture as a model in a three-dimensional
space: the two horizontal axes represent (i) the value chain
and the lifecycle, and (ii) the different hierarchies of a produc-
tion system (i.e. products, field devices, control devices, sta-
tion, work centres, enterprise, connected world), while the
vertical axis represents the layers that describe the physical
world (asset), the integration of software and hardware com-
ponents, communication capabilities, information creation
through data, functional properties and business processes.

The Industrial Internet Consortium (2017) presents the IIRA
architecture model that maps the five functional domains (e.g.
control, operation, information, application and business)
against system characteristics (e.g. safety, security, privacy,
resilience, scalability, reliability) and cross-cutting functions
(e.g. connectivity, distributed data management, industrial
analytics, intelligent control).

2.1.2. A view of current commercial and open source

Digital Twin solutions

The examples of commercial software solutions that imple-
ment industrial DT technology include General Electric, PTC
Windchill, Dassault Systèmes, DXC, Siemens Simcenter,
Microsoft Azure Digital Twins and Seebo Digital Twin.

● General electric (GE) developed the DT of a jet engine
that enables the configuration of individual wind tur-
bines, prior to their procurement and construction.
Each virtual turbine is then fed with data from its physi-
cal equivalent. GE’s DT is based on the Predix platform
(www.predix.com) that delivers capabilities such as asset
connectivity, edge technologies, analytics and machine
learning (ML), big data processing, asset performance
management (APM) and implements asset-centric DTs
(Predix, 2018). Apart DT, GE’s Digital Twin Starter Kit is
an open source toolset used to teach software engineers
how to build DTs. The DT Starter Kit is based on the
Predix infrastructure that enables constructing and host-
ing DTs (GitHub page: https://github.com/DigitalTwin).

● PTC Windchill (2018) has developed a Smart PLM soft-
ware called Windchill with failure reporting, analysis and
a notification system for corrective actions.

● Dassault Systèmes (DS) has built an aerospace—and
defence—manufacturing management software called
Build to Operate, which enables monitoring, controlling
and validation of all aspects of manufacturing opera-
tions (Grieves 2014).

● DXC has developed a DT for predicting performances of
hybrid cars, before committing the changes in the car
manufacturing process (Overton and Brigham 2017). DXC

has partnered with Microsoft to build ML solutions on an
industrial scale, and used the Microsoft Cortana
Intelligence Suite to run the DT, through continuous
simulation of new ways for creating hybrid cars.

● The authors in Siemens Simcenter (2017) present the
Simcenter 3D for DT. The Simcenter software distin-
guishes between (i) a product DT that allows users to
virtually execute new designs and simulate the effects of
the changes in the digital system, (ii) a production DT
that is used to validate the effectiveness of a manufac-
turing process created for the factory floor assets and (iii)
a performance DT that processes big data from industrial
IoT (IIoT) products in smart plants in order to improve
product and production systems efficiency.

● Bosch IoT (https://www.bosch-iot-suite.com/) is a com-
mercial product that uses the DT approach for asset
management, and sharing device data and functionality
across applications.

● Microsoft Azure Digital Twin (https://docs.microsoft.com/
en-gb/azure/digital-twins/) is one of the recent Microsoft
Azure cloud services used to create comprehensive mod-
els of the physical environment. In the manufacturing
context, it can be used for predicting maintenance
needs for a factory and for analysing real-time energy
requirements for an electrical grid.

● Seebo Digital Twin software (https://www.seebo.com/
digital-twin-software/) provides a visual modelling tool
for the graphical design of digital replicas of production
line processes and assets. A functional DT prototype can
be generated directly from the designed DT model. By
using the Seebo IoT Simulator (https://www.seebo.com/
iot-simulation/), the use cases, data flow human machine
interfaces (HMIs) and predictive quality systems on the
manufacturing assets, can be validated.

The open source community is at the forefront of creating
software and hardware solutions for IoT experimentation in
Industry 4.0 and Smart Manufacturing. However, there are
currently only a few open source DTs solutions available,
among them Eclipse Ditto and CPS Twinning.

● Eclipse Ditto is an open source software solution that
enables the design of DTs in a form of IoT development
patterns. Bosch IoT Things is an example of the commer-
cial product that is based on open source Eclipse Ditto
(GitHub page: https://github.com/eclipse/ditto).

● CPS Twinning is a framework used to automatically gener-
ate virtual environments for DTs from an AutomationML
(AML)-based specification (GitHub page: https://github.
com/sbaresearch/cps-twinning).

2.1.3. Conclusion on practises in Industry 4.0 and Smart

Manufacturing

With the evolution of traditional industrial systems towards
Industry 4.0 and Smart Manufacturing (Kang et al. 2016), it is
expected that manufacturing systems and processes become
more adaptive and flexible through integrated automated
decision-making mechanisms, self-awareness and self-optimi-
sation features (MöLler 2016). New virtual models of real
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factory settings, known as DTs, are expected to be
designed to:

● ensure information exchange throughout the entire life-
cycle (Rosen et al. 2015),

● enable virtualisation of manufacturing systems (Schluse
and Rossmann 2016),

● automate decision making and system behaviour-based
predictions (Kraft 2016).

Currently available DTs are either fully commercial solution,
or built as open source-based commercial solutions (i.e. Bosch
IoT Suite based on Eclipse Ditto).

2.2. Technology enablers for Digital Twins

The ultimate objective of DTs is to improve the operation and
efficiency of manufacturing assets, reduce costs through fore-
casting and predictions of future states and support advanced
decision making through the entire manufacturing lifecycle.
Hence, the following elements need to be considered for the
design of DT (Oracle 2017):

● Asset modelling,
● Predictive analytics and decision-making methods, and
● Lifecycle-oriented knowledge base with historical and

real-time sensor data.

2.2.1. Asset modelling

Asset modelling is about architecting DT through designing
the structure of its assets (physical things) and components,
measurable parameters and manufacturing information about
the assets (e.g. manufacturing date, maintenance history)
(Kucera, Aanenson, and Benson 2017). Asset modelling adds
value to connected sensor data and contributes to a range of
new insights, e.g. obtaining information on asset health
through sensors, which can be performed through inference,
correlation and transformation of measured sensor values and
asset states, conditions and maintenance records. It may also
provide different presentation (visualisation) forms for differ-
ent user groups (stakeholders), e.g. one group of users may
require the insight in only operational data, while others are
more focused on individual devices. Adding information such
as metadata, nearby environmental conditions, maintenance
data, service history, configuration and production data, enter-
prise web services, etc., contributes to a rich representation of
the physical things and further augments the DT.

2.2.2. Predictive analytics for Digital Twins

Predictive analytics comprise a variety of techniques for calcu-
lating future outcomes based on historical and real-time data.
It seeks to uncover patterns and capture relationships in data
through techniques such as (Gandomi and Haider 2015):

● moving averages—discovers the historical patterns in
the outcome variable(s) and extrapolate them to the
future, and

● linear regression—captures the interdependencies
between outcome variable(s) and explanatory variables,
and use them to create predictions.

Based on the underlying techniques, predictive analytics
can be categorised into two groups (Gandomi and Haider
2015):

● regression techniques (e.g. multinomial logit models)
and

● ML techniques (e.g. neural networks, supervised learning,
unsupervised learning, reinforcement learning (Sutton
and Barto 2012)).

Predictive analytics techniques are primarily based on
statistical methods, which often, when applied to massive
data of DTs, do not scale up in terms of computational
efficiency. Big data is characterised by factors such as het-
erogeneity, noise accumulation, spurious correlations, inci-
dental endogeneity (Fan, Han, and Liu 2014) and requires
new statistical techniques to gain insights from predictive
models. Specifically, in Cloud computing, some relevant
approaches are based on task resource consumption pat-
terns (Mishra et al. 2010) and the usage of storage systems
(Aggarwal, Phadke, and Bhandarkar 2010). The analysis of
behaviour patterns and derived models has been discussed
in (Bahga and Madisetti 2011; Chen et al. 2010; Smith and
Sommerville 2011). Yang et al. (2012) presents the principal
component analysis (PCA) technique used to retrieve rela-
tions between configuration and resource usage and perfor-
mances in Cloud computing.

The core predictive models for behavioural analysis can
be also classified in two groups: location detection techni-
ques and temporal behaviour analysis of time series. A
variety of available location detection technologies leads to
the massive accumulation of online data about users/assets
location and their activity/usage histories. Such data are
used for mining knowledge in applications ranging from
location-based recommendation systems to applications for
tracking user/asset movements and activities. For example,
pattern mining of GPS readings is often designed to identify
specific patterns in a users’ movement and behaviour (Geng,
Arimura, and Uno 2012); the k-Means clustering algorithm is
used to learn user’s significant location and daily routines
from his location history (Ashbrook and Starner 2002, 2003);
pattern mining from very large historical spatio-temporal
dataset (Tsoukatos and Gunopulos 2001); mining location
patterns using Hidden Markov Models that can further feed
frequent pattern mining methods, as presented in Qiu and
Bandara (2015).

Regarding temporal behaviour analysis of time series, the
most common approaches to modelling time series are: trend,
seasonal, residual decomposition, frequency-based methods,
auto-regressive methods (AR), moving average (MA). The
Conditional Restricted Boltzmann Machine (CRBM) is a prob-
abilistic model for time series used to solve a range of pro-
blems, from classification tasks to collaborative filtering and
modelling of the motion capture (Mnih, Larochelle, and Hinton
2011; Taylor and Hinton 2009).
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2.2.3. Lifecycle-oriented knowledge base of Digital Twins

The DT knowledge base has to cover a wide range of diverse
data: asset lifecycle data (e.g. location-based and time-series
sensor data), data derived from analytics and decision-making
algorithms, expert data, regulatory data, historical data. The
DT knowledge base is often augmented by adding data from a
variety of third-party data sources, e.g. asset maintenance
history from an enterprise resource planning (ERP) system,
account data from a customer relationship management
(CRM) system, environmental data, etc. One of the critical
prerequisites to the DT knowledge base creation is to have a
proper data integration platform and infrastructure in place,
enabling the integration of multiple data streams through
standards and frameworks (Oracle 2017).

According to the size of a DT knowledge base and its
maturity level, the authors in (Kucera, Aanenson, and Benson
2017) differentiate among:

● a partial DT, with a small number of data sources that
can be combined to infer further data (derivative data),

● a clone DT, with a larger amount of meaningful and
measurable data sources and

● an augmented DT, that enhances connected asset data
with derivative data and correlated data obtained from
analytics tools.

A partial DT is a set of simplistic device models that could be
implemented as JSON documents with a set of observed and
reported attributes (e.g. speed of a machine) and a set of desired
values (e.g. an application is setting the speed of a machine) that
can be correlated to detect operational abnormalities and
instantly generate alerts. A clone DT is typically what is needed
in industry: it is built on top of the product design and manu-
facturing information, and reflects its physical properties and
uses real-time data (Kucera, Aanenson, and Benson 2017).

2.2.4. Conclusion

This section summarises core technology enablers for the
design and implementation of DTs, which include asset mod-
elling, predictive analytics techniques and a lifecycle-oriented
knowledge base with historical and real-time sensor data.
According to the size of the lifecycle-oriented knowledge
base of DTs, they could be designed as partial, clone or
augmented DTs based on the required accuracy of the
domains to be represented by DTs.

3. Conceptual view of a Digital Twin demonstrator
in Smart Manufacturing

One of the desired features of DT technology in Smart
Manufacturing is the ability to accurately simulate, analyse
and predict events and situations from the manufacturing
ecosystem. In order to do so, the high-level DT technology
requirements can be summarised as follows:

● Firstly, the DT technology requires a variety of data to be
collected, analysed and ‘mirrored’ in the form of deci-
sions and feedbacks sent from virtual space back to the
manufacturing ecosystem.

● Secondly, the DT technology requires a collection of
models created with the aim to describe manufacturing
lifecycle phases, e.g. Kiritsis (2011). The DT models vary
from complex models, to simplified ones that include
only the most relevant simulation and predictive models,
and operational data that evolve throughout various life-
cycle phases (Boschert and Rosen 2016). The DT models
exist either as computational models (e.g. statistical
packages for ML, analytics, optimisation) or representa-
tional models (e.g. semantic data models, NoSQL, rela-
tional data models, relational derivatives, rule engines).

● Thirdly, the DT technology needs to be equipped with a
collection of services to effectively monitor and simulate
the physical world and perform computations leading to
decisions and feedbacks.

To reduce the complexity of the DTs technology and to
keep a strong focus on the functionality of DTs, we designed
the conceptual model along the above three design ratio-
nales. As illustrated in Figure 1, the Virtualisation Manager is
at the heart of a DT and comprises of three building blocks:
the Data Manager, the Models Manager and the Services
Manager. Apart from the Virtualisation Manager, the DT
contains another four management components: the
Monitoring Manager, the Decision-Making Manager, the
Simulation Manager and the Interoperation Manager. The
Monitoring Manager provides the connectivity between the
Virtualisation Manager and the assets of the factory shop
floor. The Decision-Making Manager is responsible for the
presentation formats of feedbacks created through analytics
services of the Virtualisation Manager. The Simulation
Manager provides the simulation formats based on visualisa-
tion dashboard services of the Virtualisation Manager.

The rest of this section provides a detailed description of
the three core building blocks of the Virtualisation Manager.

3.1 Data Manager

The Data Manager of the DT demonstrator includes the data
acquisition and the data analytics components (see Figure 1).

● Data acquisition: In DTs, the collected data often com-
prise of real-time (or near real-time) sensor data, expert
knowledge data, historical data and inferred data that
are generated along the entire product lifecycle and
aggregated in big data sets, data integrated from other
enterprise systems and third-party systems. For example,
the data collected from the design lifecycle phase in
Smart Manufacturing include data for model building,
model function, model design, computer-aided design
(CAD), configuration and parameter optimisation, struc-
ture, mechanics, size, material, history, predictions, simu-
lations, processes, environment, faults, redesign
activities, customers reviews and feedback (Tao et al.
2017, 20199). The data collected from the manufacturing
lifecycle encompass manufacturing instructions, casting
and moulding data, computer-aided manufacturing
(CAM) planning data, and more.
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● Data analytics: The collected data of DTs can be either
structured, unstructured or semi-structured. The data can
be ingested as a stream in real-time, or as batch-oriented
data generated from various sources. The data are often
heterogeneous. In DTs, the bigger the diversity of the
collected data that the ML model has to analyse and
learn about the states that matter along the manufactur-
ing path, the better the model will be. For example, the
availability of historical data helps ML models to learn
the maintenance states of assets for predictive mainte-
nance. In addition, the collected data could be used to
predict product and process related behaviour, optimise
manufacturing processes, discover anomalies, perform
MRO (maintenance, repair, and overhaul) processes, etc.

The process of storing and preparing data for processing requires
adequate analytics tools to be put in place, e.g. data can come to
the DT system from Hadoop data clusters, SQL data exports, Kafka
messaging server or other data stream processing engines. Data
storage components and data formats (e.g. SQL, NoSQL, a data
warehouse) can also have a profound impact on the capacity,
performance, long-term reliability and durability of the DT data
storage infrastructure. Finally, data failover and quality check
mechanisms, backup and disaster recovery mechanisms need to
be put in place and linked through data management capabilities
of the DT.

3.2 Models Manager

The Model Manager of a DT includes data representation
models (static, structural models) and data computation mod-
els (dynamic, behaviour models) (see Figure 1).

● Data representation models are used for storing, exchan-
ging and searching data. They include (Schroeder et al.
2016): (i) semantic data models, e.g. ontologies and taxo-
nomies for sharing PLM knowledge (e.g. Young et al. 2007);
(ii) Extensible Markup Language (XML)-based models for
encoding documents in a format that is human- and
machine-readable (e.g. Choi, Yoon, and Noh 2010); (iii)
the STEP model (STandard for the Exchange of Product

data) to describe product lifecycle data (e.g. Pratt 2001);
(iv) the computer-aided engineering exchange (CAEX), a
meta model for the storage and exchange of engineering
data models (e.g. Lüder, Hundt, and Keibel 2010). The list
can be extended to include some emergingmanufacturing
data representational models (Von Euler-Chelpin 2008), e.
g. PLM XML, an open format from Siemens for facilitating
PLM; ASME B5.59-2 standard that addresses performance
and capabilities of machine tools at any time in their life-
cycle phases, e.g. during specification, after acceptance
testing, or during operation; ISO 16739 (IFC) defines a
common data model for building lifecycle support that
can be applied to manufacturing facilities; IEC 62890
defines standards for lifecycle management for systems
and products used in industrial process measurement,
control and automation and many more.

● Data computation models perform analytics and proces-
sing along the product lifecycle phases, supporting, e.g.
system models, functional models, 3D geometric models,
manufacturing computation models, usage models
(Schroeder et al. 2016; Rios et al. 2015). In DTs, the data
computation models need to support continuous learning
and improvement based on run-time data gathered from
the operating CPSs. Practically, the collected data should
be used to further improve simulation quality and adapt
DTs to contextual changes occurring in the system. By
employing model learning algorithms (e.g. Deep
Learning for Neural Networks to learn anomalies of the
system), the inferred data learned during the run time can
be incorporated into the DT knowledge base and contin-
uous learning and improvement features of the DT can be
further experimented to support a range of stakeholders
involved in planning and designing, modifying, optimising
and verifying industrial factory settings and processes.

3.3 Services Manager

The Services Manager of a DT requires a scalable and modular
infrastructure to enable intelligent composition and

Figure 1. Conceptual model of the DT demonstrator.

6 V. DAMJANOVIC-BEHRENDT AND W. BEHRENDT



orchestration of services. DT services may vary significantly,
depending on business models and use cases, desired system
capabilities, the role of stakeholders interacting with the DT.
For example, different stakeholders like operators, engineers,
manufacturers, suppliers, customers, maintainers could all be
interested in exploiting the DT, but each one from a different
perspective.

Examples of DT services related to Smart Manufacturing
domains are:

● production services for real-time state monitoring of the
physical product, its environment and processes; real-time
data management and asset management; real-time user
management and user operations; real-time product fail-
ure analysis and prediction (anomaly detection); real-time
behaviour analysis that can help manufacturers to
improve product and production performances, e.g. con-
dition monitoring, real-time image processing, etc.;

● supply chain control services that need to serve multiple
tenants simultaneously; services that predict supply
chain performances, etc.;

● cybersecurity services application security application
(authentication, authorisation, etc.), maintaining aware-
ness of the security and privacy conditions through con-
tinuous monitoring processes of a DT and more.

4. Open source components for the Digital Twin
demonstrator

In the last 30 years, open source technology has become very
popular and economically important in the software industry.
According to recent statistics on open source tools provided
by DZone (2018), open source initiatives prove their helpful-
ness (with 74% of respondents claiming that), enjoy popularity
with developers in general (with 68%) and are often used
because of the maturity of their solution (with 62%). The
most important reasons for developers to choose open source
tools relate to welcoming communities (for 54%), reduced
development costs (for 80%) and no vendor lock-in solutions
(for 59%). Open source projects generate high-quality code,
enable freedom to adapt and collaboratively improve code,
collaboratively inspect code for security issues, discover and
fix vulnerabilities. When it comes to collaborative develop-
ment and free distribution of code, the risks of creating vul-
nerabilities in the system are constantly present. Hence,
testing for vulnerabilities in open source components at
every release has become one of the best security practises
to keep the system safe and ensure that the code is secure
and will keep any operational data protected. The complexity
of open source tools and mixed licensing obligations (mostly
arising from permissive vs. viral open source offerings) are
some common problems with open source tools (DZone
2018)). It is therefore advisable to either keep to permissive
licences or to be well aware of how and when to use non-
permissive (‘viral’) open source components.

Our description of open source tools follows the concep-
tual view presented in the previous section, i.e. addressing
data management (data acquisition, data exchange, data

streaming); data representation models (e.g. semantic models
or ontologies) and services for analytics, operational optimisa-
tion methods, etc.

4.1. Open source tools for data management of Digital

Twins

Data acquisition systems (DAS) are one of the crucial elements
for the implementation of a DT for manufacturing environ-
ments (Uhlemann et al. 2017)). The data can be collected
through measurements and database queries (e.g. non-volatile
data capturing a specification of equipment on the factory
floor, lists of products and bills of materials, etc.) and through
real-time sensor-based processing systems (e.g. volatile data
capturing movement of objects on the factory floor, human
motion, flow of material, processing time and capacity of
machinery, etc.).

In DTs, an efficient DAS requires high levels of connectivity in
factories, as a prerequisite to enable data exchange. Themost used

Table 1. Open source tools for data exchange and connectivity in Smart
Manufacturing.

Name Description Link

MQTT (Message
Queue Telemetry
Transport)

Machine-to-machine (M2M)/IoT
connectivity protocol and a
publish/subscribe messaging
transport protocol that is
optimised to connect physical
world devices and events with
various enterprise servers.

https://github.
com/mqtt/
mqtt.github.io

AMQP (Advanced
Message Queuing
Protocol)

An OASIS open standard for
passing business messages
between applications and
organisations. It provides a
publish/subscribe architecture
that is similar to MQTT.

https://www.
amqp.org/

CoAP (Constrained
Application
Protocol)

A specialised web transfer
protocol for constrained node
devices and networks in the
IoT.

http://coap.
technology/

OPC UA (OPC Unified
Architecture)

A data exchange standard that
offers a secure data exchange
and allows platform-
independent and vendor-
neutral communication (OPC
Foundation 2016).

http://
open62541.org

OneM2M A global standard created to
reduce the diversity of devices
and legacy systems.

http://www.
onem2m.org/

oneM2M (2018)
Eclipse Mosquitto An open source (EPL/EDL

licenced) message broker that
implements the MQTT protocol
versions 3.1 and 3.1.1.
Mosquitto is suitable for use on
all devices from low power
single board computers to full
servers.

https://mos
quitto.org/

XMPP (Extensible
Messaging and
Present Protocol)

An open XML technology for real-
time communication.

https://xmpp.org/

OpenDDS An open source implementation
of the OMG’s DDS (Data
Distribution Service) for real-
time systems

http://opendds.
org/

OMA LWM2M
(Lightweight M2M)

An open source implementation
for sensor networks and M2M
(Machine to Machine)
communication.

https://www.
omaspecworks.
org/
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open source tools for data exchange and connectivity for Smart
Manufacturing are summarised in Table 1.

Application programme interface (API) technology and data
streaming platforms are often used to connect disparate soft-
ware components. Table 2 presents the most popular open
source middleware platforms for software deployment.

Data streaming systems enable streaming processing and
perform actions on real-time data through the use of contin-
uous queries (Freeman 2016). The most important open
source streaming processing tools are summarised in Table 3.

4.2. Data representation models for Digital Twins

In DTs, domain knowledge about the factory floor processes and
equipment needs to be modelled and integrated into manufac-
turing applications. Here, the ontologies are seen as natural
candidates for implementing knowledge-based systems (KBS),
which formalise knowledge about a domain (Giovannini et al.
2012)). The role of ontologies is to capture a formal and shared
representation of a particular domain of disclosure, which can
be used in a variety of Smart Manufacturing fields.

Some of the best-known ontologies in manufacturing
domains are summarised below:

● Cai, Zhang, and Zhang (2001) present an ontology-based
solution to demonstrate the interoperability between
manufacturing services.

● There have been several ontologies developed to formally
model manufacturing systems. For example, Diep,

Alexakos, and Wagner (2007) present the P2 Ontology,
whose aim it is to allow interoperability between compo-
nents and applications throughout the manufacturing pro-
cess life cycle; Lemaignan et al. (2006) created MASON, an
upper ontology of manufacturing systems; the Process
Specification Language (PSL) Ontology was designed to
facilitate the exchange of process information amongman-
ufacturing systems and has been published as ISO 18629 by
the International Organisation of Standardisation (Menzel
and Gruninger (2001), Schlenoff et al. (2000)).

● Chang, Rai, and Terpenny (2010) present the design for
manufacturing (DFM) Ontology that captures relevant
domain manufacturing knowledge, enhances the knowl-
edge exchange and retrieval of manufacturing design
alternatives from heterogenous data sources and sup-
ports designers in making design decisions.

● To achieve fast and flexible reconfiguration of modular
manufacturing systems, Alsafi and Vyatkin (2010) present
a reconfiguration agent that is based on the MASON
Ontology and designed to infer knowledge about the
manufacturing environment and its requirements.

● Ameri, Urbanovsky, and McArthur (2012) propose a sys-
tematic approach for the development of manufacturing
ontologies based on MSDL (Manufacturing Service
Description Language) and the MSDL Ontology, which
enhances formal representation of manufacturing ser-
vices in mechanical machining domain.

● Kiritsis et al. (2013) designed the LinkedDesign Ontology
that can be adjusted and adopted for different manufac-
turing systems.

● Chungoora et al. (2013) explore the core ontological
concepts encoded in the ECLIF (Extended Common
Logic Interchange Format) (ECLIF (2010)) format for
application configurations of products and information
platforms in manufacturing domains.

● The P-PSO (Politecnico di Milano—Production Systems
Ontology) provides a meta-model of various manufactur-
ing system domains and applications (Garetti and
Fumagalli (2012), Garetti and Fumagalli (2012a), Garetti,
Fumagalli, and Negri (2015)). The P-PSO Ontology has
evolved into the MSO (Manufacturing Systems Ontology)
for logistics, discrete and production manufacturing sys-
tems and processes (Negri et al. 2015a; Negri et al. 2017).

Some of the ontology-based manufacturing applications
have been recently presented in the literature:

● Garetti et al. (2013) discuss the integration of ontologies
and Web Services within the control architecture of auto-
mated manufacturing systems.

● Negri et al. (2015) present the core requirements for the
use of manufacturing domain ontologies in a Web Service
architecture for the control of manufacturing systems.

● To design and implement a flexible architecture for
event-driven manufacturing systems that can be
deployed in multiple industrial cases, Mohammed et al.
(2017) combine the flexibility of knowledge-driven sys-
tems with the vendor-independent properties of RESTful
Web Services.

Table 2. Open source middleware platforms for software deployment.

Name Description Link

Docker A software container management platform. https://docker.
com/

Kubernetes An open source platform for automating
deployment, scaling and management of
containerised applications.

https://kuber
netes.io/

Eclipse
Kapua

A platform for management and integration
of devices and data.

https://www.
eclipse.org/
kapua/

Eclipse
Kura

A connectivity middleware. http://www.
eclipse.org/
kura/

Table 3. Open source streaming processing tools.

Name Description Link

Apache
Spark
Streaming

An extension of the core Apache Spark
API for stream processing of live data
streams.

https://spark.
apache.org/
streaming/

Apache
Storm

An open source real-time distributed
processing platform developed by
Twitter, built without batch processing
capabilities.

http://storm.
apache.org/

Apache
Kafka
Streams

A lightweight library used for streaming
data coming from Apache Kafka.

https://kafka.
apache.org/

Apache
Samza

A full-fledged cluster processing software.
It runs on Apache Hadoop YARN (Yet
Another Resource Negotiator).

http://samza.
apache.org/
http://hadoop.
apache.org/

Apache Flink A framework for unified stream and batch
processing.

https://flink.
apache.org/

Apache
Beam

A unified programming model for stream
and batch use cases.

https://beam.
apache.org
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● Zhang et al. (2012) present the Cloud Recommender
System based on an OWL (Web Ontology Language)
Ontology.

● Afify et al. (2013) discuss a Software-as-a-System discov-
ery and selection system based on the WordNet
ontology.

● Ontology-based service matching in Cloud computing is
also discussed in Liu et al. (2014).

● Rodríguez-García et al. (2014) present an ontology-based
annotation and service retrieval system for the Cloud
environment.

Semantic integration of sensor data has been explored
through many efforts to create sensor taxonomies, ontologies
and standards. Table 4 shows some of the most prominent open
data formats and ontologies of relevance for Smart CPSs and DTs.

4.3. Open source tools and libraries for computational

models of Digital Twins

Computational models are designed either for batch proces-
sing or for real-time data processing. The most important
open source tools for batch-oriented processing are briefly
presented in Table 5.

Oussous et al. (2017) provide a comprehensive comparison
between HDFS and HBase features.

Time-series processing is often used for industrial monitoring
and processing or for tracking corporate business metrics (NIST
Statistics 2012). One of the first challenges to solve when design-
ing a temporal data-generating system is to decide on the right
storage engine to be used for time-series data. Another chal-
lenge is aboutmethods and tools for querying and aggregating a
large amount of sensor data to extract useful information. Some
popular open source tools for the computation of the advanced
time-series data are given in Table 6.

Table 7 summarises some of the most widely used open
source tools for ML and analytics, including statistical
packages for ML, optimisation, etc.

5. Architecture design of a Digital Twin
demonstrator

The proposed design of the DT demonstrator follows the
micro-services architectural paradigm at the implementation
level, and the IIRA and the RAMI 4.0, at the conceptual level.
Firstly, we present the motivation for using a micro-services
architecture. Secondly, the mapping between the proposed
conceptual model defined in Section 3, and IIRA and RAMI 4.0

Table 4. Open data formats and ontologies for Smart Manufacturing.

Name Link and references

W3C SSNO (Semantic Sensor Network Ontology)
created by the W3C Semantic Sensor
Network Incubator group (SSN-XG)

https://www.w3.org/TR/
vocab-ssn/

Ontology for adaptive sensor networks Avancha, Patel, and Joshi
(2004)

SensorML (Sensor Modelling Language) created
under the Open Geospatial Consortium (OGC)
Sensor Web Enablement (SWE) activity

http://opengeospatial.org/
standards/sensorml

OntoSensor ontology with extensions to IEEE
SUMO (Suggested Upper Merged Ontology)

Russomanno, Kothari, and
Thomas (2005)

CESN (Coastal Environment Sensor Network)
ontology

http://www.cesn.umb.edu/
sensor/cesn.owl

CSIRO sensor ontology Neuhaus and Compton
(2009)

W3C SSNO (Semantic Sensor Network Ontology) https://www.w3.org/TR/
vocab-ssn/

W3C SOSA (Sensor, Observation, Sample, and
Actuator)

http://www.w3.org/ns/
sosa/

AutomationML, an open, XML-based and
standardised data format

https://automationml.org

SensorThings API, an international standard for
connecting IoT devices over the Web

http://developers.sensorup.
com/docs/

onem2m Base Ontology for semantic
interoperability between oneM2M-based
systems and external systems

https://git.onem2m.org/
MAS/BaseOntology

oneM2M (2018)

Table 5. Open source tools for batch-oriented processing.

Name Description
Link and
references

Apache Spark An in-memory distributed data
processing platform for large-scale
data processing and batch analysis
jobs.

https://spark.
apache.org/

Apache Hadoop A high-throughput system that can
process large volumes of data using
a distributed parallel processing
paradigm, called MapReduce (for
batch queries).

https://mapr.
com/

HDFS (Hadoop
Distributed File
System)

A data storage system that provides
cost effective and reliable storage
capability. It can handle both
structured and unstructured data.

http://hadoop.
apache.org/
hdfs/
White (2012)

Apache HBase A distributed non-relational database.
It is built on top of HDFS and
designed for low latency operations.

Prasad and
Agarwal
(2016)

Table 6. Open source tools for computation of advanced time-series data.

Name Description Link and references

R project An open source project that is widely
used by many researchers and data
scientists

https://www.r-pro
ject.org/
(McLeod, Yu, and
Mahdi 2011)

InfluxDB A database for storing time series data.
It supports data transformation and
prediction queries. The tools like
Grafana can be used to configure
access to InfluxDB data and support
visualisation.

https://www.influ
xdata.com/

Elastic Stack
(ELK
Stack)

It offers many tools for searching,
analysing and visualising data in real-
time. It comprises of Elasticsearch,
Logstash, Beats and Kibana.

https://www.elastic.
co/elk-stack

Elasticsearch It handles textual data, which is helpful
for analysis of logs that contain
messages, exceptions, and other text-
based information.

https://www.elastic.
com
Berman 2017

Logstash An open source processing pipeline that
is used to import logs from different
sources, transform and output them
to a defined endpoint or data store.

https://www.elastic.
co/products/
logstash

Kibana The ELK Stack’s User Interface that
provides a visual representation of
the stored log files and offers
customisation of dashboards, tables,
etc.

https://www.elastic.
co/products/
kibana

Beats Beats are open source data shippers
used for capturing various data (e.g.
network traffic, metrics, cloud data,
etc.) and sending them to
Elasticsearch.

https://www.elastic.
co/products/beats
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is provided. Thirdly, the specific micro-services architecture for
DTs is presented.

5.1. Motivation for implementing Digital Twins as micro-

services

In contrast to monolithic systems, which are often built as a
massive code base, the micro-service architectural style
enables a single application to be developed as a suite of
relatively small, consistent, isolated and autonomous services,
each performing a specific task (Lewis and Fowler 2014).
Micro-services can be developed and deployed independently
by different teams, and are language agnostic. Taibi,
Lenarduzzi, and Pahl (2017) provide an analysis of the survey
on major motivations for migrating from monoliths to micro-
services. For example, in the survey, software maintenance has
been reported as very important by all the participants.
Scalability of micro-services, delegation of team responsibil-
ities to other teams and the easy support for DevOps were
also highly rated.

In the case of Smart CPSs and DTs, which are complex, non-
linear systems that require a variety of mechanisms to represent
their static artefacts and dynamic capabilities, the adoption of
themodular architecture of micro-services allows the application
complexity to be reduced and code to be better maintained.

However, the research in DT has raised a number of new chal-
lenges, e.g. developing computationally efficient algorithms for
predicting system behaviour in real-time, edge data processing
tools, dealing with uncertainty in the system, etc. Micro-services
as a design choice offer flexibility and offer potential to reduce
the complexity of DT systems.

At the same time, using micro-services can possibly open
security vulnerabilities and threaten the trustworthiness of ser-
vices, and this requires a good design balance between security
and system performance (Esposito, Castiglione, and Choo 2016).

5.2. Mapping of the Digital Twin conceptual architecture

to Smart Manufacturing reference models

As Smart Manufacturing systems are becoming increasingly
interconnected and complex, CPS and DTs must be archi-
tected, designed and implemented to enable integration of
heterogeneous technologies and their effective interopera-
tion. Lin et al. (2017) discuss how the two reference archi-
tectures (models), IIRA and RAMI 4.0 relate to one another.
They show that the two models complement each other
more than they are conflicting, and that they can be
mapped to each other despite each being based on differ-
ent architecture framework standards. The general under-
standing is that IIRA emphasises applicability and
interoperability across industries, while the RAMI 4.0 is
more focused on digitalisation of Smart Manufacturing. In
this section, we provide an alignment of IIRA and RAMI 4.0,
with the proposed DT conceptual architecture from Section
3. The architectural alignment takes IIRA’s cross-cutting func-
tions and RAMI’s layers as reference for the entire DT con-
ceptual architecture as illustrated in Figure 2.

RAMI 4.0 has the following six layers: asset, integration,
communication, information, functional and business layer
(ZVEI 2015). The IIRA cross-cutting functions are: connectivity,
distributed data management, industrial analytics, intelligent
and resilient control (Industrial Internet Consortium 2017). The
mapping of the DT conceptual model with RAMI 4.0 and IIRA
is based on the following facts:

● The asset layer in RAMI 4.0 refers to anything that parti-
cipates in the business processes (sensors, machines, raw
material, software, human actors). The DT conceptual
architecture refers to the real-world assets, e.g. sensor
data, IoT devices, stakeholders, etc., which are monitored
through the Monitoring Manager of the DT Virtualisation
Manager. Hence, the asset layer in RAMI 4.0 can be
directly correlated to the DT real-world assets.

● Both the communication and integration layers of RAMI
4.0 provide communication standards for services, event/
data and control commands that link the physical assets
and their digital capability. In IIRA, the connectivity func-
tion points to standards like DDS, OneM2M, etc. In the
DT conceptual architecture, enabling communication
and integration of various subsystems is a task of the
Interoperability Manager.

● The information layer in RAMI 4.0 describes the services
and data that are offered, used, generated or modified
through the asset. In IIRA, the distributed data

Table 7. Open source tools for ML and analytics.

Name Description
Link and
references

Apache Mahout A framework for creating ML
algorithms and applications.

http://mahout.
apache.org/

Apache OpenNLP An open source Java library for
processing natural language text.

http://opennlp.
apache.org/

Apache Spark
MLlib

An open source library with ML
algorithms

https://spark.
apache.org/
mllib/

Apache Spark
GraphX

An open source library for graph-
based computation

https://spark.
apache.org/
graphx/

SciPy A collection of open source
software for scientific computing
in Python

https://scipy.org/

R project Statistical computing and graphics
in R language

https://www.r-pro
ject.org/

TensorFlow An open source library for
designing, building and training
Deep Learning models and high-
performance numerical
computation and ML.

https://github.
com/tensorflow/
tensorflow
https://www.r-
project.org/

ThingsBoard A platform for data collection,
processing, visualisation, device
management, asset
management, customisation

https://things
board.io/

ML and Deep
Learning
frameworks

Keras
Caffe
Kaggle
PyTorch
Torch/Lua

http://keras.io/
http://caffe.ber
keleyvision.org/
https://www.kag
gle.com/
https://github.
com/pytorch
http://torch.ch/

Notebooks for
customised
data analytics

Apache Zeppelin for analytics in
SQL,
Anaconda Jupyter
CoCalc for mathematical
calculation, statistics and data
science ().

https://zeppelin.
apache.org/
https://ana
conda.org/ana
conda/jupyter
https://cocalc.
com/
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management function is about data management, which
corresponds to the Data Manager and the Models
Manager of the DT concept architecture.

● The functional layer in RAMI 4.0 describes logical func-
tions of an asset that differ according to their role in
Smart Manufacturing. This corresponds to IIRA’s indus-
trial analytics function, and the Services Manager of the
DT concept architecture.

● The business layer in RAMI 4.0 creates business processes
and orchestrates these processes to enable business mod-
els under specific legal and regulatory constraints. In IIRA,
the intelligent and resilient control function enables intel-
ligent controls, which is the main focus of the DT’
Virtualisation Manager and its components for simulation,
decision-making and monitoring (c.f. Simulation Manager,
Decision-Making Manager and Monitoring Manager).

The proposed DT conceptual architecture bears close rela-
tionship to both IIRA and RAMI 4.0 as shown in Figure 2.

5.3. Micro-services architecture of the Digital Twin

demonstrator

The ability of Smart CPSs to interconnect and merge into the
ubiquitousWebof Things (WoT) infrastructure (e.g. Cloud comput-
ing and cloud services, smart gateways and network edge devices)
is one of the critical requirements of Smart Manufacturing. While
the WoT facilitates reuse of current web technologies for future
application development, the challenge is still to create an effec-
tive infrastructure to process data and provide service and applica-
tion flexibility, e.g. to maintain ‘degrees of freedom’ for new
services while the smartness of systems increases their complexity.

The approach presented in this paper follows the micro-ser-
vices architectural style, in order to enable decomposition of the
service- and application-logic and reduce the complexity of DTs

into smaller partitions of flexible, functionally independent and
executable services. The proposed architecture of the DT demon-
strator follows the conceptual model shown in Figure 1. It con-
sists of the following building blocks (Damjanovic-Behrendt
2018): Virtualisation Manager, Data Manager, Models Manager,
ServicesManager and Interoperability Component (see Figure 3),
each of them encompassing a set of defined micro-services.

The rest of this section describes each of the DT micro-
services building blocks.

The Virtualisation Manager is composed of the micro-
services described in Table 8. For example, it enables monitor-
ing of factory floor assets and events through its Monitoring
Manager. Through decision support services and controls, it
detects conflicts and automatically enables their resolution.

The Data Management Component is composed of
micro-services dealing with data acquisition, data analytics
and knowledge discovery (Table 9). Knowledge Discovery
micro-services require various analytics methods to be put in
place. The results of analytics methods need to be further
exposed to simulation and visualisation micro-services.

The Models Manager Component includes services for the
definition, execution and maintenance of data computation and
data representation models (Table 10). Services for data compu-
tation are further coupled with data analytics services. Services
for data representation are maintained either as semantic mod-
els (e.g. described in resource description framework (RDF)) or
relational models (based on relational databases).

The Services Management Component releases IoT/WoT
connectivity services, offers services through notebooks for cus-
tomised analytics and performs cybersecurity tasks that target
data access and usage controls, threat detection service, threat
analysis service, incident sharing and incident response service
(Table 11).

The Interoperability Component of the DT demonstrator
is designed to offer interoperability mechanisms at the data

Figure 2. Architectural alignment between the IIRA reference model, the DT conceptual model and the RAMI 4.0.
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level. In DTs, interoperability services are critically important
for enabling the usage of the factory floor devices (and their
data), produced by different manufacturers. Interoperability
services ensure implementation of DTs, and their simulation
functionalities.

McCool (2017) addresses the following three levels of inter-
operability for WoT:

● semantic interoperability (decoding the meaning of data),
● structural interoperability (decoding the organisation of

data), and
● syntactic interoperability (converting data in a consistent

way between a serialised representation and an internal
data structure (e.g. a parse tree)).

To enhance usability of data and data models in DTs, the
proposed DT demonstrator put its emphasis on semantic data
interoperability, which is supported through the semantic inter-
operability service, and the semantic search and discovery service
(Table 12).

6. Case study infrastructure for the implementation
of the Digital Twin demonstrator

Knowledge of common and distinct features of open source
software is an important factor when deciding which of the
available tools to choose. For example, the process of captur-
ing, storing and managing a large amount of time-series data
requires considerable effort and research on combining open

Figure 3. Micro-services architecture of the DT demonstrator.
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source technologies for the storage mechanisms and the data
analytics engine. For example, Churilo (2018) discusses the
results of recent benchmark for time-series workloads for
InfluxDB 1.4.2, an open source time-series database and
Elasticsearch 5.6.3 (see Table 7 in Section 4.3 for details). The
performed benchmark shows that InfluxDB outperforms
Elasticsearch in two tests:

● write throughput (InfluxDB is 9.9x greater than
Elasticsearch) and

● disc space usage (InfluxDB uses 13.1x less disc space
when compared against Elasticsearch’s time-series opti-
mised configuration).

Table 8. Micro-services of the Virtualisation Manager Component.

Name Description

Front-End Service Establishes the front-end Web components of
micro-services. These are reusable
components that can be imported into Web
apps. The guidelines for creating web
platform compatible Web components are
given in W3C TAG (2018).

Monitoring Services A set of micro-services that helps developers to
understand the system behaviour by breaking
the system down into smaller applications, e.
g. Tracing Service, Metrics Performances
Service, Isolating Alerts, Dashboards Service.

● Tracing Service Supports continuous tracking and tracing of
factory shop floor assets across various
subsystems, e.g. supply chains, ERP,
Manufacturing Execution Systems (MESs), etc.

● Metrics Performances
Service

Measures performance and use of Operational
Technology (OT) assets on the manufacturing
shop floor.

● Isolating Alerts Service Provides controls for detecting and isolating
problems that target specific processes/assets.
It is coupled with Cybersecurity Services (of
the Service Management Component) to
create cross-layer alerts based on
cybersecurity analytics.

● Dashboards Service Enables visualisation dashboards for monitoring
interactions, continuous integration, cross-
service visibility, etc.

Things and Events
Management Services

Enables discovery of things/assets and events,
and the orchestration of events on the
manufacturing shop floor.

● Discover Things/Event
Service

Allows for device functionality to be dynamically
discovered and optimally exploited. It also
supports the running events on the
manufacturing shop floor to be discovered, for
further services and decisions.

● Orchestrate Event
Service

Allows for creating more cooperative
manufacturing models through effective
orchestration.

Simulation Management
Services

A set of micro-services that incorporate
performance measures and observations
received from the physical world in order to
manage simulation inputs for the DT.

● Visualisation Service Enables visualisation of measured performances
of the system, e.g. through dashboards.

● Augmented Reality
Service

Enables simulations using Augmented Reality
technologies.

● Actuation Simulation
Service

Enables simulations of a specific actuation.

● Performance and Fault
Tolerance Service

Measures performances and fault tolerance of
the manufacturing system.

Simulation Services Erforms the simulation based on the formats
defined by the Simulation Management
Services.

Decision-Making and
Control Services

A set of micro-services for specific decision
support and controlling functionalities of DTs.

● Conflict Detection
Service

Enables the identification of assets and events
from the manufacturing shop floor, which
significantly differ from the majority of
relevant data (based on insights and
measurements). Conflicts can be referred to as
noise, or deviations.

● Conflict Resolution
Service

Based on identified conflicts, their nature,
durability and other detected features, this
service is in charge of providing the adequate
resolution strategy.

● Conflict Prevention
Service

Through monitoring and analytics, this service
provides mechanisms to avoid conflicts in the
manufacturing system, caused by noise and
deviation.

● Actuation Service Ensures that feedback created by DT
mechanisms is transmitted to the real
manufacturing environment.

Table 9. Micro-services of the Data Management Component.

Name Description

Data Acquisition
Service

Enables data acquisition for DTs, e.g. data collected
through sensors and from tracking and tracing
technologies needs to be stored and maintained for
warranty and other purposes.

Data Analytics
Services

Enables various data analytics services, e.g. ML-based
analytics for predicting assets’ behaviour within the
changed manufacturing environment.

● Streaming Service Supports streaming process analysis.
● Batch Processing

Service
Supports batch-oriented processing.

● Time Series
Analytics Service

Supports time series-based analysis.

● Security Analytics
Service

Supports security analytics and is further coupled with
Cybersecurity Services of the Service Management
Component.

Knowledge Discovery
Service

The analytics techniques provide feedback
mechanisms that send decisions and responsive
actions back to the DT and physical system.

Table 10. Micro-services of the Models Manager Component.

Name Description

Services for Data
Computation

These services enable the major analytics
processes of DTs.

● Location-Based
Behavioural Analysis

Typical services for location-based behavioural
analysis allow for the factory floor assets to
be identified based on their spatial location.
The location of assets can be shared with
other assets and events in the manufacturing
ecosystem. These services include location
prediction, location-based asset
management, recommender systems, etc.

● Temporal Behaviour
Analysis Service

Ensures temporal localisation of the factory
floor assets and events. Some popular
methods include simulation techniques and
discrete event systems (e.g. Petri nets).

● Performance Modelling
Service

Enables modelling of performances of the
production line processes and assets.

● Behavioural Modelling
Service

Enables modelling of behaviour of the
production line processes and assets under
specific conditions of the manufacturing
environment.

Services for Data
Representation

These services support the inclusion of various
data representation formats in DTs

● Services for Semantic
Models Management

Inclusion of the relevant manufacturing
ontologies in the knowledge base, semantic
services, semantic reasoning, ontology
management for DTs, etc.

● Services for Relational
Models Management

Support of the management of relational data
models; data interfaces and integration
mechanisms for heterogeneous databases, etc.
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On the other hand, InfluxDB delivered 20% slower response
times for tested queries, compared to response time of cached
queries from Elasticsearch (Churilo 2018). In the case of querying
stored log messages, requests, responses and exceptions in the
system, Elasticsearch is a better solution than InfluxDB, because
storing and querying log data on InfluxDB requires adding
another search engine. Therefore, creating an architecture that
includes both InfluxDB and Elasticsearch operating in parallel, is
an option for the implementation of systems based on time
series, that require log data analyses to be performed too.

In situations when large amounts of incoming data are
expected, Apache Kafka is often used as an event store engine
that maintains ordered sequences of entries, allowing multiple
consumers to pull in the data and process it. Dobbelaere and
Esmaili (2017) perform a qualitative and quantitative compar-
ison of the common features of Apache Kafka vs. RabbitMQ,
two popular open-source and commercially supported pub/
sub messaging systems. The best suited use cases for Apache
Kafka are those implementing pub/sub-messaging with simple
routing logic; scalable ingestion systems enabling high
throughput processing of stored data; capturing change feeds
and stream processing (with Kafka Streams). RabbitMQ is often
used as pub/sub-messaging with complex routing logic, or for
operational metrics tracking for real-time processing.

Use cases that combine Apache Kafka and RabbitMQ can
be implemented in two forms:

● RabbitMQ followed by Apache Kafka (offers stronger
latency guarantees) and

● Apache Kafka followed by RabbitMQ (combines the com-
plex routing capabilities of RabbitMQ with the comple-
mentary features of Apache Kafka).

The proposed DT demonstrator is designed to be used by
Docker and Kubernetes (see Table 2 in Section 4.1 for details)
and is configured with the elements as shown in Figure 4.

For example, Apache Kafka (see Table 3 in Section 4.1 for
details) allows developers to integrate multiple data sources
and systems, e.g. web and mobile applications, APIs and other
real-time synchronous and asynchronous systems. The data
from databases can be streamed into Kafka via the Kafka
Connect API, which requires that data filtering and aggregat-
ing are based on KSQL (Kafka SQL) for streaming SQL for
Apache Kafka.

RabbitMQ is added as an open source messaging protocol
that supports AMQP, MQTT, HTTPS, STOMP and WebSockets.
RabbitMQ adds new events in the event stream in real time,
which are further sent to Logstash, the dataflow engine in the
Elastic Stack that performs data ingestion, enriching and
aggregating, regardless of format or schema. Logstash sends
data further to Elasticsearch. Data can be sent to Elasticsearch
using either its API or ingestion tools such as Logstash,
Amazon Kinesis Firehose, Amazon CloudWatch Logs, etc.
Elasticsearch stores the original data and adds a searchable
reference to it. The data can be further visualised using Kibana,
an open-source data visualisation and exploration tool for log
and time-series analytics, application monitoring and opera-
tional intelligence use cases. Kibana is the default choice for
visualising data stored in Elasticsearch.

Table 11. Micro-services of the Services Management Component.

Name Description

Connectivity Service Ensures connectivity with factory floor assets,
products and stakeholders involved through
manufacturing life cycle processes. A
comprehensive and systematic review of the
literature is presented in Liao et al. (2017), the
most widely used standards and protocols for
connectivity between machines in Smart
Manufacturing are OPC, MQTT, IEC 62439, IEEE
1588, IEC 61850.

Notebooks for
Analytics

Services that enable creating of notebook files that
contain Python, Scala, R code and markdown text,
which can be shared with other analytics services
of DTs.

Cybersecurity Services Services that enable cybersecurity analytics and
management, including incident response, threat
analysis, access controls and governance models.

● Incident Response
Service

Enables different levels of security for the DT based
on the sensitivity of data it carries. Smart CPSs are
also vulnerable to security threats and privacy
breaches that stem from (open source)
communication technologies and protocols, and
hence they require the right strategy to be
followed to improve cybersecurity.
Some examples of open source tools in this
category are:

● STIX (Structured Threat Information eXpression)
language and serialisation format for Cyber
Threat Intelligence (CTI) (https://github.com/
STIXProject/)

● MISP (Malware Information Sharing Platform) for
sharing CTI (https://github.com/MISP)

● MAEC (Malware Attribute Enumeration and
Characterisation) language for sharing informa-
tion about malware (https://github.com/
MAECProject/).

● Cyber Threat
Analysis Service

Cybersecurity threat analysis for a DT is based either
on fully automated tools designed to quickly
assess network traffic, file activity, etc. and
contribute to the incident response process, or on
static analysis of malware properties. An examples
of open source tools in this category would be the
Cuckoo Sandbox for automated malware analysis
(https://cuckoosandbox.org/).

● Data Access and
Usage Control

In DTs, cloud service providers, users and often fog
devices as tenants, do not trust each other. Hence,
access and usage controls for data and services in
DTs require well defined access control policies to
preserve user privacy and ensure system security.
Services in this category need to support Virtual
Machines (VMs) e.g. providing an access control
mechanism to avoid side-channel attacks, and to
provide access controls for the fog and cloud,
reciprocally (Zhang et al. 2018).

Table 12. Micro-services of the Interoperability Component.

Name Description

● Semantic Data
Interoperability Service

This service is based on the W3C Web of Things
(https://www.w3.org/WoT/) set of semantics
and metadata standards around IoT. The focus
of this service is on converting WoT
representations that include identifiers,
properties, and relationships into the meaning
of data, through shared contexts, vocabularies,
and ontologies (iot.schema.org, SSNO, SAREF,
and many more.)

● Semantic Search and
Discovery Service

In DTs, apart from ML-based processing of data,
semantic search and reasoning capabilities are
beneficial, too. This service ensures (i) rules and
semantic alignments to transform data to the
declared ontologies, e.g. using JSON-LD for
RDF data serialisation, and (ii) reasoning
engines for inferring associations and links into
the data (Szilagyi and Wira 2016).
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The real-time search and analytics feature of Elasticsearch
are further connected with the massive data storage and
processing power of Apache Hadoop, and the interoperability
between them is currently supported via the Elasticsearch-
Hadoop (ES-Hadoop) connector. One of the main advantages
of Apache Hadoop is its capacity to rapidly process large
datasets, not in memory, but where data are stored (Oussous
et al. 2017), which relieves network and servers from a con-
siderable communication load (Usha and A.P.S. 2014). It allows
users to add modules as needed, according to their applica-
tion requirements. Although Apache Hadoop solves problems
related to deep and extensive analytics with complex big data,
it is not built for real-time processing. Hence, the proposed
infrastructure for implementation of the DT demonstrator
includes TensorFlow, an open source software library for
high performance computation used for ML and Deep
Learning. TensorFlow (see Table 7 in Section 4.3 for details)
can be used for developing distributed ML models, which can
then be trained to offer high performance predictions (e.g.
using a Cloud ML Engine).

In addition to Elasticsearch, the proposed infrastructure
includes InfluxDB to support time-series workloads (application
and performance metrics, network flows and transactional data),
which is further connected to Grafana to support visualisation
needs. Grafana supports visualisation of numerous metrics for
monitoring performance, extracting insights and enabling
forecasts.

7. Future research

Although the presented infrastructure is designed for real-world
applications in Smart Manufacturing, it is at present, still a
research platform that is expected to continuously evolve into
a fully operational technology stack in the future. The DT demon-
strator needs to be complemented with a comprehensive set of
usage methods and validation metrics. In this paper, our work
focused on technology building blocks for an open source DT in
Smart Manufacturing. As for the set of metrics for the validation
of processes and artefacts related to the DT functionality, the

work may need to be carried out separately for different sectors
within manufacturing. More importantly, the variability of
metrics needs to be extended throughout manufacturing life-
cycle phases, including the security and privacy lifecycle.
Tracking data provenance, handling security and privacy of the
data flows through the analysis pipeline and increasing transpar-
ency of algorithmic decision making, are important research
questions to be addressed in the future.

The role of ontologies in structuring the lifecycle-oriented
knowledge base of DTs needs to be further explored, and
performance and security metrics need to be integrated into
the knowledge base. The availability of large amounts of data in
Smart Manufacturing needs to be tested for data quality and
requires data governance mechanisms, in order to identify the
right amount of data to be processed. For example, some data
can be periodically monitored, while others require to be traced
in real time. Some data carry critical details for the system
functionality, while others contain trivial details. More research
is also needed to develop a proper strategy for maintaining the
accuracy of DTs, as their effectiveness in both Cloud computing
and Fog computing is likely to be compromised. Finally, more
research is needed to develop the right synchronisation
mechanisms between the virtual space of DTs and the real
physical manufacturing assets. The changes within real systems
need to be automatically translated to DTs models, and the
effective mechanisms to support change management and
uncertainty need to be created. Schleich et al. (2017) refer to
some additional challenges in DTs, such as currently missing
high-fidelity models for simulation and virtual testing at multiple
scales, difficulties in the prediction of complex systems, etc.

8. Conclusion

The adoption of CPSs and DTs for automating processes in various
domains, ranging from manufacturing to agriculture, is expected
to significantly change traditional business models (Serpanos
2018). For example, DT technologies have strong benefits for
Smart Manufacturing, enabling monitoring of the execution of
simulated lifecycle processes and gaining insights required for

Figure 4. Open source tools composition for the DT demonstrator.
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informed decisions and predictions, asset management andmain-
tenance. Yet there are still many computational and network
challenges to be addressed that relate to the design, operation
and management of complex systems based on CPSs and DTs.

The rapid advances in open source technology for data analy-
tics and visualisation have strong potential in helping Smart
Manufacturing to achieve effective decision-making based on
large amounts of data. Open source software and hardware tech-
nologies are getting collaboratively designed and developed for
solving the industrial and engineering challenges, including those
related to the integration of traditional information technology (IT)
systems with OT systems. For example, Bosch IoT Suite is an
example of a commercial DT technology that is based on open
source software.
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