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Abstract

In human geography and the urban social sciences, the segregation literature typi-
cally engages with five conceptual dimensions along which a given society may be 
considered segregated: evenness, isolation, clustering, concentration and centraliza-
tion (all of which can incorporate or omit spatial context). Over the last several dec-
ades, dozens of segregation indices have been proposed and studied in the literature, 
each of which is designed to focus on the nuances of a particular dimension, or cor-
rect an oversight in earlier work. Despite their increasing proliferation, however, few 
of these indices remain used in practice beyond their original conception, due in part 
to complex formulae and data requirements, particularly for indices that incorporate 
spatial context. Furthermore, existing segregation software typically fails to provide 
inferential frameworks for either single-value or comparative hypothesis testing. To 
fill this gap, we develop an open-source Python package designed as a submodule 
for the Python Spatial Analysis Library, PySAL. This new module tackles the prob-
lem of segregation point estimation for a wide variety of spatial and aspatial segre-
gation indices, while providing a computationally based hypothesis testing frame-
work that relies on simulations under the null hypothesis. We illustrate the use of 
this new library using tract-level census data in two American cities.
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Introduction

Segregation literature is voluminous, decade spanning, and often traces its lineage to 
the pioneering work of Ref. [32]. The traditional antecedant to a discussion of mod-
ern segregation indices is, however, [13], thanks to its introduction of the “segrega-
tion curve”, the quantitative approach that came to dominate segregation measure-
ment methods at the time. Despite the importance of these early contributions, the 
vast majority of the segregation literature in recent decades begins with a discussion 
of Ref. [24], who formalized the concept of segregation as a multidimensional phe-
nomenon, articulating that because the mechanisms that divide people into disparate 
locations of a city can take several forms (namely evenness, isolation, clustering, 
concentration and centralization), so too can segregation indices vary in their abil-
ity to uncover these different dimensions.1 Over the years, each of the dimensions 
in Massey’s taxonomy has developed something of a “champion” index, which is 
used predominantly in the study of that particular dimension, including well-known 
indices such as the Dissimilarity (D), Gini (G), Entropy (H), Isolation (xPx), Rela-
tive Concentration (RCO), Relative Centralization (RCE) and the Relative Cluster-
ing (RCL).

More recently, scholars have questioned the validity of the five dimensional clas-
sification, arguing there may be only two dimensions of segregation in reality, since 
concentration evenness and clustering exposure can each be viewed as a single con-
tinuum with two poles. Meanwhile, these scholars contest the validity of the central-
ization dimension, which relies on a subjective definition of the city center [5, 19, 
38]. While this discussion is lively in the contemporary literature, for the remainder 
of the paper, we adopt the classic conception from Ref. [25].

Literature focused on the methodological aspects of segregation indices and 
their properties, specifically, is extensive.2 Apart from proposing new indices with 
a variety of desirable properties, the literature is rife with discussions both about 
corrections and estimation issues inherent in classical indices, and their proper clas-
sification in the Massey taxonomy. [7], for instance, propose a modification to D 
and G indices designed to overcome overestimation issues that arise specially when 
enumeration units are small. Because most indices are functions of proportions, 
they can suffer bias arising from small samples, thus large sampling variance of the 
denominators. Reference [7] further argue that the G and D indices assess the dis-
tance from evenness rather than randomness. [35] also addresses this upward behav-
ior of classical segregation indices by building a parametric approach, assuming that 
the frequency of a population under study is drawn from a probability distribution 
following a beta mixture.3 Reference [2] also propose a bias-correction approach 
and a density-correction approach for D. In terms of spatial indices, References [30] 

1 For a literature review on segregation, we refer to Ref. [44]. We also refer to Refs. [10] and [18] as 
important literature in segregation.
2 For application examples, see [8, 14, 26, 27, 46].
3 More recently, Ref. [12] addressed this problem assuming a nonparametric binomial mixture of the 
frequencies.
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and [49] propose spatial adaptations for the same classical D index. Recently, Ref. 
[16] also developed two indices, the Concentration Profile and the Spatial Proximity 
Profile (SPP), which similarly attempt to overcome limitations in previous versions 
of spatial and non-spatial segregation measures.

These discussions in the literature make clear the scholarly value inherent in each 
of the various indices and helps elucidate the context for which each is best suited, 
given a set of study parameters. The importance of their contribution to the literature 
notwithstanding, however, the formulaic complexity in dozens of segregation indi-
ces continues to be a major deterrent to their broader adoption in applied settings. 
Currently, there are a small handful of open-source platforms designed for segrega-
tion analysis, but they remain limited in both the variety of indices they can calcu-
late and the inferential frameworks they provide (if any).

Current examples include the seg package of Ref. [15] for the R language [33] 
and the Geo-Segregation Analyzer (GSA) [3].4 The former, comprises 12 measures 
such as the D, three version of modified D, spatial proximity (SP), concentration 
profile, spatial exposure, spatial isolation, spatial information theory, spatial relative 
diversity, spatial dissimilarity (surface based) and the decomposable measure of seg-
regation. All these measures are wrapped in generic functions that produce outputs 
unique to each type of index. The latter has a vast range of 41 indices5 for either one 
group, two groups, multi-group or local indices. Although GSA represents a feasible 
way to estimate these indices, it is less convenient for modern data science work-
flows or the broader ecosystem of spatial analysis, since it is isolated from other 
scientific computing environments and must be downloaded and installed indepen-
dently for the sole purpose of segregation analysis. In addition, this option relies 
exclusively on the use of shapefiles which, despite being one of the most popular 
geographic information systems (GIS) formats for storing spatial data, is a propri-
etary format belonging to the Environmental Systems Research Institute (ESRI), and 
suffers from several well-known drawbacks.6 Shapefiles are being phased out rap-
idly as the format-of-choice for spatial analysts; so reliance on shapefiles is becom-
ing a dated and limiting factor quickly.

More recently, an important open-source contribution was made by Ref. [47] 
with the OasisR package. In this tool, a set of 50 indices is available comprising 
non-spatial and spatial measures, multi-group segregation measures and an infer-
ence framework for single values of segregation. Reference [47] also discusses in 
detail several inconsistencies in classical segregation formulas.7 Due to the vast 

4 Table 2 of [3] cites other options of software that also put effort to calculate these indices such as Refs. 
[36] and [50], but not as open-source.
5 In the original paper, they consider 43 different indices, due to three Atkinson indices versions. How-
ever, these indices only differ in terms of the value of the parameter b; therefore, we consider this index 
only once.
6 Most notably shapefiles are limited to ten character column names and they are difficult to transport 
across computing environments because the specification is actually a minimum of four files, not a single 
file as the name would suggest.
7 One of the most prominent is the indices issues presented in Ref. [49] discussed in the bottom of page 
6 of Ref. [47]. During the construction of the present module, the same problems were identified and the 
default approach of these indices follows actually the latter study for this Python package.
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number of studies and indices that are present in the literature, the OasisR pack-
age has emerged recently as one of the most complete options for R users. To our 
knowledge, this is the only software currently available that provides any form of 
statistical inference framework for single values of segregation.

As data science has risen in prominence over the last decade, the benefits of 
free and open-source software (FOSS) in the academic realm have become clear. 
This is particularly true in collaborative research environments where open-
source platforms allow users full access to underlying algorithmic implementa-
tions, a critical advantage for transparency, reliability, and reproducibility; FOSS 
platforms also promote inclusivity by allowing virtually anyone to get involved 
in the development process. For these reasons, we argue there is a clear need for 
FOSS platforms designed explicitly for the analysis of urban segregation, particu-
larly those that facilitate the generation of a wide variety of segregation statistics, 
hypothesis testing, and comparative analysis.

Toward that end, we introduce the segregation module for the Python 
Spatial Analysis Library (PySAL) that addresses each of the limitations identified 
above. We argue that our current approach has considerable power to broaden 
the use of segregation analysis in regional science since it relies in a fully open-
source approach and can handle multiple types of spatial data input. PySAL [40] 
is a well-established library of the Python programming language [43] for spatial 
analysis. Currently, PySAL has several features and modules comprising explora-
tory spatial data analysis, geospatial distribution dynamics, spatial econometrics, 
spatial network and graph analysis, geoprocessing, and spatial data visualization. 
Since PySAL has a broad scope of use and an active community of users and 
developers, it could be considered an ecosystem itself to perform geospatial data 
science. In this sense, this manuscript intends to fill the of segregation analysis in 
this current library and Python scientific ecosystem.

Apart from allowing users to estimate spatial and non-spatial segregation 
statistics, the segregation package also includes functionality that is con-
spicuously absent in the segregation literature: statistical inference. In terms of 
previous work, Ref. [4] works with simulations to perform inference in a multidi-
mensional version of the classic gini index. Also, Ref. [34] develops a sampling 
exercise of a multinomial distribution for the Dissimilarity Index and Gini Index 
to build asymptotic distribution of the estimators. Reference [2] builds an infer-
ence framework developing a likelihood ratio test for the presence of any system-
atic segregation for a bias-modified D. In addition, like [34], they develop tests 
for this measure relying on the asymptotic distributions. Reference [23] presents 
a Bayesian inference approach for the Dissimilarity Index and Ref. [20] devel-
ops a multilevel inference framework for residential segregation. More recently, 
Refs. [12] and [35] tackle the issue of inference on segregation. Reference [35] 
developed a beta mixture approach for the dissimilarity, Gini and entropy indices 
trying to overcome the small unit problem and a bootstrap and the delta method 
was proposed to provide inference. The more sophisticated approach of Ref. 
[12] assumes a mixture of binomial distributions and build testable assumption, 
bootstrap confidence intervals for the bottom and upper limits of the probability 
parameters of the distributions. Also more recently, Ref. [31] discuss the behavior 



1 3

Journal of Computational Social Science 

of the Dissimilarity Index under uncertainty of American Community Survey 
data under simulations studies.

The segregation module provides an inference framework for segregation 
making use of distributions for these measures under the null hypothesis where seg-
regation does not hold. To perform inference for a single measure, we follow an 
extension of the procedure described in Ref. [2] where we generate the distribution 
of each measure under the null hypothesis of no systematic segregation by creat-
ing multiple samples generated using restricted conditional probabilities (absence 
of systematic segregation). Also, to generalize the use of our inference approach 
for single measures, the PySAL segregation module comprises different 
approaches to the null hypothesis assuming evenness, spatial permutations, absence 
of systematic segregation with permutation and evenness with permutation, which 
we discuss in detail later.

The major contribution of our framework is the ability to perform inference to 
compare more than one segregation measure.8 To do so, we extend [41], who pro-
vide an inferential basis for comparisons of regional statistics. Their approach relies 
on a random labeling approach, where in each permutation, each unit in the data-
set is assigned randomly to a point in time. However, our approach for comparative 
segregation stands as more generic and may be applied in any situation where two 
spatial contexts are compared. For example, a user can compare the evolution of a 
single region between two points in time, two regions in the same point in time, and, 
also, two regions between two points in time.9 The first case is a straightforward 
adaptation of [41], but the second differs, given the possibility that each region may 
have entirely different spatial contexts. To try to provide alternative ways to assess 
the absence of segregation difference, our framework comprises not only a random 
data labeling (“random label” approach), but also a labeling process that randomizes 
observations according to the cumulative distribution function representing the pop-
ulation share for the group of interest in each unit (“counterfactual composition” 
approach).

The PySAL segregation module

The PySAL segregation module (hereafter referred as SM)10 can be divided 
into two frameworks: point estimation and inference wrappers. The first framework 
can be, in turn, subdivided into non-spatial indices and spatial indices. The inference 
wrappers present functions to perform inference through simulations over the null 
hypothesis for a single value or for comparison between two values. Each frame-
work is explained separately below.

8 In terms of software, so far, we are unaware of any that performs inference for comparison between 
them.
9 This last case is unusual, but our framework permits any of these combinations, as presented in Sect. 
??.
10 Available at https ://githu b.com/pysal /segre gatio n.

https://github.com/pysal/segregation
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Point estimation

Originally, SM had 25 segregation indices ranging from non-spatial indices and spa-
tial indices that can be summarized in Table  1.11 ,12 This table presents the main 
information of each function including its nomenclature in the literature, its class/
function name in the segregation package, its input parameters, and whether it 
considers spatial context. A detailed description of each index and respective litera-
ture, presented as a table, can be found in the Appendix A.

All input data for SM rely on pandas DataFrames [28] for the non-spatial meas-
ures and geopandas DataFrames [21]13 for spatial ones. Loosely speaking, the 
user needs to pass the pandas DataFrame as its first argument and then two strings 
that represent the variable name of population frequency of the group of interest 
(variable group_pop_var) and the total population of the unit (variable total_
pop_var). So, for example, if a user would want to fit a Dissimilarity Index (D) 
to a DataFrame called df to a specific group with frequency freq with each total 
population population, a usual SM call would be something like this: 

In addition, every class of SM has a statistic and a core_data attribute. 
The first provides direct access to the point estimate of the segregation measure and 
the second gives access to the input data that SM uses internally to perform the esti-
mates. To see the estimated D in the generic example above, the user would call 
index.statistic to see the fitted value.

Inference wrappers

Once the segregation classes described in “Point estimation” are fitted, a user can 
proceed with hypothesis testing to shed light on the statistical significance of her 
findings. Currently, the module facilitates hypothesis testing using either a single 
measure, or two values of the same measure. The summary of the inference wrap-
pers is presented in Table 2.

A single value

The function SingleValueTest of SM performs inference through simulations 
for a single value of a given segregation index. To do so, a user must provide two fit-
ted segregation statistics to the seg_class argument, the number of iterations to 
simulate under the null hypothesis to the iterations_under_null argument, 

����� = ������(��, "����", "����������")

11 More recently, some other measures were added to SM, but we conducted the current work with the 
original 25.
12 In addition, the module has a function/class named Compute_All_Segregation that performs 
point estimation of several segregation measures at once.
13 It is worth mentioning, that using a geopandas GeoDataFrame for the non-spatial indices is also 
valid since it “behaves” as a usual pandas dataframe.
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which type of null hypothesis the inference will iterate with the null_approach 
argument, and whether the estimated p value will be single-tailed or two-tailed with 
the two_tailed argument. Certain calls can also include additional arguments to 
parameterize the estimate. A typical call for this function might be 

The null_approach argument in this single measure framework includes sev-
eral options. The default “systematic” draws multinomial simulations assuming 
that every group has the same probability with restricted conditional probabilities 

���������_������ = ���������������(

���_����� = �����,

����������_�����_���� = 10000,

����_�

����� = "�����
����",

�	�_������ = ����)

Table 1  Segregation measures available in the PySAL segregation module

Measure Class/function Spatial? Function inputs

Dissimilarity (D) Dissim No –

Gini (G) GiniSeg No –

Entropy (H) Entropy No –

Isolation (xPx) Isolation No –

Exposure (xPy) Exposure No –

Late Atkinson (A) Atkinson No b

Correlation ratio (V) CorrelationR No –

Concentration Profile (R) ConProf No m

Modified Dissimilarity (Dct) ModifiedDissim No Iterations

Modified Gini (Gct) ModifiedGiniSeg No Iterations

Bias-Corrected Dissimilarity (Dbc) BiasCorrectedDissim No B

Density-Corrected Dissimilarity (Ddc) DensityCorrectedDissim No xtol

Spatial Proximity Profile (SPP) SpatialProxProf Yes m

Spatial Dissimilarity (SD) SpatialDissim Yes w, standardize

Boundary Spatial Dissimilarity (BSD) BoundarySpatialDissim Yes Standardize

Perimeter Area Ratio Spatial Dissimilar-
ity (PARD)

PerimeterAreaRatioSpatialDissim Yes Standardize

Distance Decay Isolation (DDxPx) DistanceDecayIsolation Yes Alpha, beta

Distance Decay Exposure (DDxPy) DistanceDecayExposure Yes Alpha, beta

Spatial Proximity (SP) SpatialProximity Yes Alpha, beta

Relative Clustering (RCL) RelativeClustering Yes Alpha, beta

Delta (DEL) Delta Yes –

Absolute Concentration (ACO) AbsoluteConcentration Yes –

Relative Concentration (RCO) RelativeConcentration Yes –

Absolute Centralization (ACE) AbsoluteCentralization Yes –

Relative Centralization (RCE) RelativeCentralization Yes –
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given by the share unit of the the total population [2],14 "evenness" draws inde-
pendent binomial distributions assuming that each unit has the same global prob-
ability of the group under study, "permutation" randomly allocates the units 
over space keeping the original values as proposed by Ref. [39] for regional meas-
ures, the "systematic_permutation" is a combination of "systematic" 
and "permutation" assuming absence of systematic segregation and randomly 
allocates the units over space and, lastly, "even_permutation" is a combina-
tion of "evenness" and "permutation" assuming that each measure have 
same global binomial probability and randomly allocates the units over space.

Beyond simply providing flexibility for end-users, this choice has a critical 
impact on how a user may interpret her results, since the different approaches for 
null hypotheses affect directly the results of the inference test, depending on the 
combination of the index type of seg_class and the null_approach chosen. 
Therefore, the user must be aware of how these approaches affect the data genera-
tion process within the simulations if she means to draw meaningful conclusions 
within the scope of the analysis. More specifically, it is not true that in all cases, the 
null hypothesis represents the absence of segregation.15

Since little in the literature has compared different approaches for statistical infer-
ence in the segregation context, and this is among the primary motivations for for 
our work, it is important to discuss here some details of the inference frameworks 
provided in SM. Usually, in measuring segregation, the variables of concern are 
population counts or compositional ratios with statistical properties different from 
typical variables. Therefore, clarifying how we treat the population in each approach 
is a relevant matter.16

In SM’s single-value inference framework, for the "systematic" approach, 
two multinomial distributions with the same probability parameters are generated 

Table 2  Inference wrappers available in PySAL segregation module

Type Class/function Function main inputs Function outputs

Single value Single value test seg_class, itera-
tions_under_null, null_
approach, two_tailed

p_value, est_sim, statistic

Two values Two value test seg_class_1, seg_class_2, 
iterations_under_null, 
null_approach

p_value, est_sim, est_point_diff

14 Assuming that nij is the population of unit i of group j, this approach assumes that the distribution of 
people from each j group is a multinomial distribution with probabilities given by 

∑

j nij
∑

i

∑

j nij

=

ni.

n
..

.

15 We are aware that for some measures, some approaches would not be appropriate, but we chose to 
allow these combinations, allowing our framework to remain as generic as possible. For example, the 
Modified Dissimilarity (Dct) and Gini (Gct), rely exactly on the distance between evenness through sam-
pling which, therefore, the "evenness" value for null_approach would not be the most appropri-
ate for these indices.
16 We thank a reviewer for drawing attention to this point in the manuscript.
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for the minority group and complementary group (i.e., total population of unit i = 
minority group of unit i + complementary group of unit i) and the total is given 
by their sum. Therefore, the total population of each simulation of this approach 
may differ from the original data. However, this is necessary to prevent unrealis-
tic scenarios where the minority population would be greater than the total popula-
tion in some units. In such a case, the total population of each unit cannot be fixed, 
although the total population of the entire spatial extent is fixed, since each size 
of the multinomial distribution is the original size of the data. The "evenness" 
approach draws from a binomial distribution in each unit with the same probability 
value given by the global proportion of the minority group. In this approach, the 
total population of each unit is fixed, but relaxes the total minority population in the 
units and also in the spatial extent under study. On the other hand, the "permu-
tation" approach fixes the total population and the total minority population of 
the whole spatial extent while allowing spatial randomization and, therefore, letting 
each population of the units vary.

In terms of the software, the user can access the results of the function with the 
p_value and est_sim.17 The first is the pseudo p value estimated from the simu-
lations and the second are the estimates of the segregation measure under the null 
hypothesis previously established.

Comparative inference

To compare two different values, the user can rely on the TwoValueTest function. 
Similar to the previous function, the user needs to pass two segregation SM classes 
(seg_class_1 and seg_class_2) to be compared, establish the number of 
iterations under null hypothesis with iterations_under_null, specify which 
type of null hypothesis the inference will iterate with null_approach argument. 
Optionally, the user may also pass additional parameters for each segregation estima-
tion.18 Therefore, after fitting two measures, a usual call for this function would be: 

Assuming that 1 and 2 are the subindices for two measures, the null hypothesis to 
compare them is

�����_� = ������(���, "����", "����������")

�����_
 = ������(��
, "����", "����������")

�������_������ = �
�	��������(

���_�����_� = �����_�,

���_�����_
 = �����_
,

����������_�����_���� = �����,

����_�������� = "������_�����"

17 There is also a statistic attribute to access the original point estimation of the measure.
18 Note that in this case, each measure has to be the same SM class as it would not make much sense to 
compare, for example, a Gini Index with a Delta (DEL) Index.
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and, therefore, the null_approach plays an important role, once again, in the 
inference framework. The default "random_label" approach follows directly the 
approach of Ref. [41] where SM uses random labeling applied to the data in each 
iteration.

Assuming a scenario with two different maps (regardless of being from the 
same city or different cities), each map has a set of polygons with a pair of val-
ues (freq and population) associated with each polygon. The concept underly-
ing the "random_label" approach is to gather all pairs of values, regardless of 
the pair’s polygon of origin, and randomly allocate each pair to a polygon in both 
maps, assuming a uniform probability among all polygons. Once all value pairs are 
allocated, the segregation measure is recalculated for each map and the difference 
between each map’s segregation index is recorded. This process is repeated a suf-
ficient number of times to build an artificial distribution of the differences of the null 
hypothesis.

The "counterfactual_composition" approach introduced in "Introduc-
tion" tackles the null hypothesis in a different way. In this framework, the population 
of the group of interest in each unit is randomized with a constraint that depends 
on both cumulative density functions (CDF) of the group of interest composition19 
distribution. In each unit of each iteration, there is a probability of 50% of keep-
ing its original value or swapping to its corresponding value according of the other 
composition distribution CDF against which it is being compared20. Thus, we build 
artificial values that can represent what would be the frequency of a specific group 
if it would have presented another CDF for the composition. This latter approach 
can be considered as a special case of a inverse re-sampling [11] where an analyst 
would sub-sample 50%, on average, the existing empirical distribution with the data 
of another distribution according to its CDF.

Lastly, this function also returns a p_value and est_sim attributes. The first 
is the two-tailed p value generated from the simulations and the second is the esti-
mated difference under the null hypothesis (i.e., the divergence from zero in the 
absence of difference between segregation levels). In addition, the user can access 
the est_point_diff attribute which is the point estimate of the difference 
between the two values.

The plot method

The plot method of the SM inference framework is a visual representation of the 
segregation under the null hypothesis confronted with the value under study. It relies 
on matplotlib [17] and seaborn [48] functions.

(1)H0 ∶segregation measure1 − segregation measure2 = 0,

19 We refer the word composition to the group of interest frequency of each unit. For example, if a unit 
has total population of 50 and 5 people belonging to group A, the group A composition of this unit is 
10%.
20 The details of the construction of these counterfactual values are presented in Appendix B.
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For single measures, the distribution is generated from the point estimates among 
all iterations, while a vertical red line represents the actual value. On the other 
hand, for inference comparison, the distribution represents the differences between 
the measures in each iteration, while a vertical red line represent the estimated dif-
ference using the original data. In the latter visual representation, values closer to 
zero indicate an absence of segregation difference. The user can visually inspect the 
results with inference_result.plot() or compare_result.plot().

Performance comparison and reliability study

A very important aspect to investigate in the module is the time necessary for its 
estimations. Since the nature of each index can vary in terms of the mathematical 
operations involved, either due to the dimension of segregation assessed or due to 
internal simulations/optimizations, the difference in time between the indices can 
change drastically.21

Figure  1 depicts a time comparison for a single estimation of each index of 
Table 1 in seconds for a 10 × 10 regular lattice with simulated data.22,23 From this 
figure, it is clear that the Modified Gini (Gct) is the most time-consuming index to 
compute among the set of indices. This is due to the fact that its construction relies 
on a bootstrap simulation of multiple binomial distributions for each unit and also 
because its calculation, given by Eq.  (6) in Appendix A, relies on an outer prod-
uct of vectors which can be computationally expensive depending on the size of the 
data. The second most time expensive index is the Density-Corrected Dissimilarity 
that relies on numerical optimizations to estimate a �j component in its formula. The 
following positions are filled by simulations based indices such as the Modified Dis-
similarity (Dct) and Bias-Corrected Dissimilarity (Dbc). At last, the Boundary Spa-
tial Dissimilarity (BSD) presented a significant value among all the set of indices.

In Table 3, we present the results of a benchmark test that verifies the correct-
ness of the point estimations of SM. Since OasisR has done an extensive compari-
son with different tools showing virtually the same results for all of its indices, this 
package will be mainly our benchmark for the comparisons [47]. We cannot iden-
tify any existing software package that calculates the SPP Index from Ref. [16] and, 
therefore, it is not present in this table due to the lack of a benchmark. Also, since 
SM is open source, the Python code used to calculate the indices is available to the 
public to check in its entirety.

21 We also noticed that for most of the indices, specially the spatial ones, SM was much faster to esti-
mate than the implementation of Ref. [47].
22 We used the total population of 100,000 and generated a random composition for each unit given from 
a Uniform distribution between 0 and 1.
23 The indices were fitted used the default values for input. Although this can be a source for difference 
in the values, we highlight that these default values are roughly comparable since all indices that rely on 
simulations (Dct, Gct, and Dbc) have the same value of 500 for the iterations and indices that rely on 
integration (R and SPP) have the same number of thresholds for integral approximation of 1000. The 
index Ddc has a degree of tolerance in the optimization of 10−5.



 Journal of Computational Social Science

1 3

This table makes clear that each of the implementations in SM generate reliable 
values, as they match their expected values from the benchmark. Specifically, the R 
Index was tested with the seg package; whereas, the Dct, Gct, Dbc, and Ddc were 
checked with the values provided in their respective literature. All of these indices, 
except Ddc, rely on simulations and, therefore, while there is some variance between 
our estimates and their benchmark comparisons, such variance is expected and 
disappears given certain numerical thresholds. One thing to notice is that DDxPx, 
DDxPy and SP resulted in slightly different values since the specification of the dis-
tance of spatial unit i with itself is calculated in SM following exactly [24], unlike 
OasisR.24

Non‑Hispanic Black population in Los Angeles and New York: 
segregation application

Racial segregation in the United States has been a topical focus for a vast literature. 
Recently Ref. [1] used the D Index to study Black–White and Hispanic–White seg-
regation in counties across the US. In another recent contribution, Ref. [27] made a 
vast metropolitan study for a 40-year period on hypersegregation of black popula-
tion. Even more recently, Ref. [9] studied ethnic residential segregation of metro-
politan regions of California using a different type of spatial isolation. Using this 
literature as a backdrop, we use the following sections to present an example study 
of racial segregation in the US to demonstrate the unique functionality now avail-
able to researchers using SM.

In this section, we rely on SM to calculate several segregation measures for Los 
Angeles County, CA, and New York City,25 NY, census data tract level for two 
groups: non-Hispanic black population (nhblk) and others.26 In this example, we 
examine the total measured level of segregation in Los Angeles along all five dimen-
sions (evenness, isolation, clustering, concentration and centralization) using all 
indices available to making point estimates and inference for 2010. For compari-
sons, this section studies the evolution of these estimates for Los Angeles county 
between 2000 and 2010 (two cross sections in two times). We also use these esi-
mates as points of comparison between Los Angeles and New York in 2010 (one 
cross section for two spatial contexts).27

24 The values marked with * are virtually the same although OasisR has a mispecification in d
ii
 that 

does not follow [24]. This difference can be checked in https ://githu b.com/cran/Oasis R/pull/1/commi ts/
cc368 1dae9 61886 63230 cf140 d0cf4 1fd90 e45cd .
25 Composed by five counties: New York County, Bronx County, Kings County, Queens County and 
Richmond County.
26 Both regions are similar in terms of number of spatial units, as Los Angeles County has 2346 census 
tracts in 2010 and New York City has 2168.
27 Once again, all simulation were run using the default values of the input parameters and 500 iterations 
in parallel with 6 cores in a Jupyter Notebook [22] using an Intel (R) Core (TM) i7-8750H CPU with 
2.21 GHz and 16 GB of RAM. It was necessary approximately 34.7 h to run all application results here 
presented.

https://github.com/cran/OasisR/pull/1/commits/cc3681dae96188663230cf140d0cf41fd90e45cd
https://github.com/cran/OasisR/pull/1/commits/cc3681dae96188663230cf140d0cf41fd90e45cd
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Figure 2 displays the clear spatial patterning of nhblk in the Los Angeles metro-
politan region where the color gradient represents the relative share of non-Hispanic 
black residents living in each tract (nhblk divided by total tract population), i. e., 
the composition. The maps show an obvious pattern of spatial concentration and 
unevenness in terms of frequency of the non-Hispanic Black population and, there-
fore, it is reasonable to perform a regional segregation analysis. We also note the 
unusual spatial distribution of census tracts within Los Angeles County, where topo-
graphical features lead to considerable asymmetry of tracts areas. Such a condition 
could affect the spatial estimates as well as the inference for spatial measures.

Figures  3 and 4 present the simulations for each measure under different null 
hypotheses. These graphs display the distribution under the null hypothesis as a blue 
density curve and a vertical red line that represents the point estimate for the meas-
ure. In addition, the value of each segregation measure is highlighted in each title.

In Fig. 3, the simulations were drawn assuming a multinomial distribution with 
no systematic segregation. when comparing the actual value with that estimated 
from the data, the unusual behavior of the distributions becomes clear: all 25 meas-
ures are highly significant, with the exception of the Exposure Index. The majority 
of the distributions present values close to zero, which is in accordance with the 
mathematical property of some measures that assumes zero when there is no sys-
tematic segregation in the data. Figure 4 shows the current 13 spatial segregation 

Fig. 1  Time comparison estimation between all indices of SM for a 10 × 10 regular lattice
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measures under the spatial permutation approach.28 In this case, the statistical sig-
nificance of each measure is not as highlighted as the prior results. Here, the SPP 
(p value ≈ 0.068), the Absolute Concentration (ACO) (p value ≈ 0.272) and the 
Relative Concentration (RCO) (p value ≈ 0.184) present values that may not be sig-
nificant in a statistical perspective. However, it is possible to see that even the dis-
tributions are closer to the original values represented in the red line, all measures, 
except those three previous mentioned, are highly statistically significant (p values 
< 0.001).

One of the major contributions of SM is the ability to assess differences in segre-
gation levels between two distinct measures easily. If Los Angeles county was sta-
tistically segregated in 2010, a natural question that may arise is “Is Los Angeles 

Table 3  Benchmark testing for PySAL segregation module point estimations

Measure Benchmark Result

Dissimilarity (D) OasisR Same value

Gini (G) OasisR Same value

Entropy (H) OasisR Same value

Isolation (xPx) OasisR Same value

Exposure (xPy) OasisR Same value

Atkinson (A) OasisR Same value

Correlation ratio (V) OasisR Same value

Concentration Profile (R) seg Same value

Modified Dissimilarity (Dct) Table 1 of [7] Same value with 2 digits precision

Modified Gini (Gct) Table 1 of [7] Same value with 2 digits precision

Bias-Corrected Dissimilarity (Dbc) Table 1 (a) of [2] Same value with 2 digits precision

Density-Corrected Dissimilarity (Ddc) Table 1 (a) of [2] Same value with 2 digits precision

Spatial Dissimilarity (SD) OasisR Same value

Boundary Spatial Dissimilarity (BSD) OasisR Same value

Perimeter Area Ratio Spatial Dissimilarity 
(PARD)

OasisR Same value

Distance Decay Isolation (DDxPx) OasisR Same value*

Distance Decay Exposure (DDxPy) OasisR Same value*

Spatial Proximity (SP) OasisR Same value*

Relative Clustering (RCL) OasisR Same value

Delta (DEL) OasisR Same value

Absolute Concentration (ACO) OasisR Same value

Relative Concentration (RCO) OasisR Same value

Absolute Centralization (ACE) OasisR Same value

Relative Centralization (RCE) OasisR Same value

28 This approach does not apply to measures that do not take spatial context into consideration since 
each value for the simulations would be the same along the permutations.



1 3

Journal of Computational Social Science 

County more or less segregated in 2010 than in 2000?”.29 Figure 5 depicts the com-
position spatial distribution of this county using census data from 2000. Despite the 
similarities, the graph shows a slightly different conclusion from the one presented 
in Fig. 2 of 2010. The nhblk composition did not change in the most concentrated 
part of the map, but the outskirts of this highlighted region presented changes.

To assess the statistical significance of the evolution of Los Angeles county over 
this decade, we rely on the TwoValueTest function of SM with the random_
label approach. Figure 6 displays the results for the difference between 2000 and 
2010 for each of the measures. In general, it is clear from the graph that 2000 was 
more segregated than 2010, since the majority of vertical red lines are located on 
negative values. Moreover, for almost all segregation measures available, these 

Fig. 2  Non-Hispanic Black population (nhblk) in Los Angeles county composition in 2010

29 H0 ∶Los Angeles segregation2010 − Los Angeles segregation2000 = 0.
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difference values seem to be statistically significant since they are on the far left tail 
of each distribution.30

However, some particularities emerge. For two of the concentration dimensions 
in Los Angeles (ACO and RCO), the measures are not statistically significant.31 
Also, the same non-significant difference was indicated by RCE (p value ≈ 0.136) 
and, in part, by ACE (p value ≈ 0.022). These results are sensible, given the earlier 
discussion comparing the composition spatial distribution of both maps. There was 
no visual difference in terms of concentration and centralization of nhblk as both 
maps presented the same hotspot in 2000 and in 2010. Also, under the same argu-
ment, it is worth mentioning the lack of statistical significance for the SPP (p value 
≈ 0.096), related to the clustering dimension of segregation.

Fig. 5  Non-Hispanic Black population (nhblk) in Los Angeles county composition in 2000

30 With the caveat that the Exposure is inversely proportional of the segregation and, thus, it is located 
on the right-tail of the distribution under null hypothesis.
31 The p value of ACO was ≈ 0.74 and of RCO was ≈ 0.816.
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The ability to make comparisons between regions is also possible with SM. Since 
the TwoValueTest function can handle two classes fitted previously in a generic 
framework, a user can pass two segregation measures from two different spatial con-
texts. Figure 7 present the New York City which is, unlike Los Angeles, located at 
the east coast of US.

The composition of New York has a unique pattern that contrasts with Los Ange-
les. The former presents multiple hotspots of nhblk people, mostly concentrated 
in the Kings County (center of the map), in part of the Queens County (east side 
of the map) and, with less intensity, in the Bronx County (north of the map). With 
these two maps in hand, a natural question in the social sciences might be to assess 
the statistical significance of the difference in measured segregation levels between 
the two metropolitan areas. To shed light on this question, Fig. 8 depicts the com-
parison for both cities32 for 2010 census tract data for all measures using the ran-
dom_label approach.

From this graph, it is clear that all indices (with the exception of ACO, RCO and 
ACE) resulted in significant values. For an expressive number of measures (D, G, 
H, xPx, A, V, R, Dct, Gct, Dbc, SPP, SD, BSD, DDxPx and DEL) New York shows 

Fig. 7  Non-Hispanic Black population (nhblk) in New York composition in 2010

32 H0 ∶Los Angeles segregation − New York segregation = 0.



1 3

Journal of Computational Social Science 

Fi
g

. 8
 

 S
im

ul
at

io
ns

 u
si

ng
 S

M
 fo

r 
L

os
 A

ng
el

es
 a

nd
 N

ew
 Y

or
k 

co
m

pa
ri

so
n 

in
 2

01
0 

us
in

g 
th

e 
r
a
n
d
o
m
_
l
a
b
e
l

 n
ul

l a
pp

ro
ac

h.
 T

he
 p

oi
nt

 e
st

im
at

io
n 

of
 th

e 
di

ff
er

en
ce

 o
f 

ea
ch

 
se

gr
eg

at
io

n 
m

ea
su

re
 in

 p
re

se
nt

ed
 in

 e
ac

h 
tit

le
. H

er
e,

 D
is

ta
nc

e 
D

ec
ay

 I
so

la
tio

n/
E

xp
os

ur
e 

is
 n

am
ed

 S
pa

tia
l I

so
la

tio
n/

E
xp

os
ur

e



 Journal of Computational Social Science

1 3

higher levels of segregation.33 This indicates that, in general, non-Hispanic blacks 
are more segregated in New York than Los Angeles.34 On the other hand, some 
interesting results also emerge from the clustering and centralization dimensions for 
some measures. The results show that Los Angeles is more clustered (in terms of 
SP and RCL) and more centralized (in terms of ACE, which resulted in a p value 
≈ 0.06, and RCE), which is consistent with the discussion comparing maps from 
each city which shows that that the non-Hispanic black population in Los Ange-
les is more concentrated in a single nhblk hotspot, unlike New York has multiple 
hotspots.

This unexpected result highlights the importance of defining the appropriate 
dimension of segregation an analyst wishes to study using comparative inference. 
One might argue that a given city is considerably more segregated than another, but 
this may not be true from the perspective of a different dimension of segregation. 
The same behavior can arise when comparing the same city for two distinct periods 
as what happened with ACO and RCO, for example, for Los Angeles County in 
2010 versus itself in 2000.

Conclusion

Segregation measurements have a vast literature and an extensive use since the first 
half of the twentieth century. This field is constantly under progress with increas-
ingly works discussing the properties of different segregation indices, better ways 
to overcome limitations, illustrate applications, etc. This work is an attempt to 
advance the use of segregation measure through an open-source framework within 
the PySAL ecosystem—the PySAL segregation module (SM). Moreover, our 
contribution is not simply to provide an easy method to estimate a wide variety of 
well-known non-spatial and spatial segregation measures, but also to build a consist-
ent software framework for conducting statistical inference that has not been consid-
ered before.

In so doing, we provide a flexible way to estimate non-spatial and spatial seg-
regation, perform inference for testing the significance of a single value or for 
comparative values. Each measure of SM has its own function that depends on the 
nature of the index for the data type and parameters inputs. Also, two main func-
tions depict the inference for testing framework: the SingleValueTest and 
TwoValueTest. Each one of these represents a wrapper function for the segre-
gation classes fitted previously, where the first is used to perform inference for a 
single measure, while the second allows comparison between two measures. Both 
functions depend on techniques for simulating distributions for the null hypothesis 
chosen.

33 For the xPy and DDxPy, it presented lower values, but the interpretation is the same.
34 However, an unexpected result arose from the fact that for the Ddc Index Los Angeles was, signifi-
cantly, more segregated.
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As an illustration, we used Los Angeles County and New York City to per-
form regional segregation analysis using census tract data. We studied the degree 
to which the non-Hispanic black population in these cities was segregated in 2010 
by inspecting the significance of each of the measures and concluding that it was, 
indeed, statistically significant for all measures, even assuming different approaches 
for the null hypothesis. To illustrate the TwoValueTest, two types of comparisons 
were made: same space between two time periods and two spaces for the same time 
period. The former assesses the evolution of Los Angeles between 2000 and 2010 
concluding that it was statistically more segregated in the past; the latter compared 
Los Angeles and New York and concluded that, in general, the latter city is statisti-
cally more segregated than the former, although some differences might be consid-
ered for specific dimensions of segregation. These illustrations make clear that SM 
can be a powerful tool for further research into the validity of the five dimensions 
taxonomy of Ref. [24].

This PySAL module is under active development and some new features and 
functionalities were developed recently. To cite some of the topics not covered here, 
SM currently has a set of multigroup segregation measures, a set of local segrega-
tion measures, new approaches for the null hypothesis of the inference wrappers, 
a decomposition framework and an innovative street network based segregation 
measures. The first feature is based mostly in Ref. [37], the second draws inspira-
tion from Ref. [47], the new inference approaches include the bootstrap for single 
value measures and different way to generate the counterfactual distributions for 
comparative segregation, the decomposition framework is based on [45] and, finally, 
the street network-based measures draw inspiration from [42] and use a handful of 
libraries from the Urban Data Science Toolkit.35 Given all functionalities present in 
this paper and all these other features mentioned, we are confident that the current 
module is one of the most complete tools currently available for analyzing urban 
segregation.

Additionally, several aspects remain to be explored. Possible extensions comprise 
more measures that can be added such as the Proportion of Central City number 
(PCC) [24], other indices present in Ref. [47] and the parametric and nonparametric 
approach of the class of indices of, respectively, Refs. [12] and [35]. Another land-
scape of opportunity is not only “zone-based” measures, but also “surface-based” 
methods as quoted in Ref. [15]. In this regard, spatial counterfactual approaches [6] 
can be considered to develop alternatives for the inference framework that could rely 
on the counterfactual distribution between two measures. Currently, the street net-
work-based measures already deal with these kinds of data.

Acknowledgements We are grateful for the support of National Science Foundation (NSF) (Award 
1831615) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) foundation (Pro-
cess 88881.170553/2018-01).

35 https ://githu b.com/UDST.

https://github.com/UDST
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A: Point estimation details

Here, we present and explain each formula for the segregation measures presented in 
Table 1 of Section 2.1. The respective literature used for each measure can be found 
in Table 436 ,37 in addition with the respective dimension.

For consistency of notation, we assume that nij is the population of unit 
i ∈ {1,… , I} of group j ∈ {x, y} , also 

∑

j nij = ni. , 
∑

i nij = n
.j , 

∑

i

∑

j nij = n
..

 , 
s̃ij =

nij

ni.

 , ŝij =
nij

n
.j

 . The segregation indices can be build for any group j of the data.

The Dissimilarity Index (D) is given by:

The spatial D (SD) is given by:

where s̃i
1

ij
 and s̃i

2

ij
 are the proportions of the minority population in the units i

1
 and i

2
 , 

respectively and where c
i
1
i
2

 denotes an element at (i1, i2) in a matrix C, which 
becomes one only if i

1
 and i

2
 are considered neighbors.

The boundary spatial D (BSD) is given by:

where

where s̃i
1

ij
 and s̃i

2

ij
 are the proportions of the minority population in the units i

1
 and i

2
 , 

respectively, and cb
i
1
i
2

 is the length of the common boundary of areal units i
1
 and i

2
.

The perimeter/area ratio spatial D (PARD) is a Spatial Dissimilarity Index that 
takes into consideration the perimeter and the area of each unit by adding a specific 
multiplicative term in the second term of BSD (the spatial effect):

(2)D =

I
∑

i=1

ni. ∣ s̃ij −
n
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..

∣

2n
..
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(3)SD = D −
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1
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,

36 This table does not reflect necessarily the original/pioneer paper of each measure, but rather the 
related literature of the formulas presented in this Appendix.
37 We considered to include the mixture of betas approach of Ref. [35] for the D, G and H indices, as the 
author kindly shared the original code. However, due to convergence problems, we chose not to include it 
in the current version of SM.
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where P
i
 and A

i
 are the perimeter and area of unit i, respectively and MAX(P∕A) 

is the maximum perimeter–area ratio or the minimum compactness of an areal unit 
found in the study region.

The Gini coefficient (G) is given by:

The global entropy (E) is given by:

(5)

1

2

[(

Pi

Ai

)

+

(

Pj

Aj

)]

MAX
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P

A

) ,
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∑
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∑
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1
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n
..

) .

Table 4  Segregation measures-related literature for PySAL segregation module point estimations

Measure Related literature Dimension

Dissimilarity (D) [24] Evenness

Gini (G) [24] Evenness

Entropy (H) [24] Evenness

Isolation (xPx) [24] Isolation

Exposure (xPy) [24] Isolation

Atkinson (A) [24] Evenness

Correlation ratio (V) [24] Isolation

Concentration Profile (R) [16] Evenness

Modified Dissimilarity (Dct) [7] Evenness

Modified Gini (Gct) [7] Evenness

Bias-Corrected Dissimilarity (Dbc) [2] Evenness

Density-Corrected Dissimilarity (Ddc) [2] Evenness

Spatial Proximity Profile (SPP) [16] Clustering

Spatial Dissimilarity (SD) [30] Evenness

Boundary Spatial Dissimilarity (BSD) [15] Evenness

Perimeter Area Ratio Spatial Dissimilarity (PARD) [49] Evenness

Distance Decay Isolation (DDxPx) [29] Isolation

Distance Decay Exposure (DDxPy) [29] Isolation

Spatial Proximity (SP) [24] Clustering

Relative Clustering (RCL) [24] Clustering

Delta (DEL) [24] Concentration

Absolute Concentration (ACO) [24] Concentration

Relative Concentration (RCO) [24] Concentration

Absolute Centralization (ACE) [24] Centralization

Relative Centralization (RCE) [24] Centralization
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while the unit’s entropy is analogously:

Therefore, the Entropy Index (H) is given by:

The Atkinson Index (A) is given by:

where b is a shape parameter that determines how to weight the increments to segre-
gation contributed by different portions of the Lorenz curve.

The Concentration Profile (R) measure is discussed in Ref. [16] and tries to inspect 
the evenness aspect of segregation. The threshold proportion t is given by:

In the equation, g(t, i) is a logical function that is defined as:

The Concentration Profile (R) is given by:

The SPP is similar to the Concentration Profile, but with the addition of the spatial 
component in the connecting function:
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where k refers to the sum of g(t, i) for a given t and �ij is the distance between i
1
 and 

i
2
 . One way of determining �

i
1
i
2

 would be to use a spatial structure matrix, W. The 
matrix W present ones if i

1
 and i

2
 are contiguous and zero, otherwise. The distance 

�
i
1
i
2

 between i
1
 and i

2
 is given by is the order of how neighbors is needed to reach 

from i
1
 to i

2
 . For example, two census tracts, x

1
 and x

2
 , that do not have a common 

boundary but both are adjacent to the same unit, x
3
 , are second-order neighbors, so 

�
12

 becomes 2. Like the Concentration Profile, if the number of thresholds used is 
large enough, a smooth curve, or a SPP, can be constructed by plotting and connect-
ing �

t
.

Isolation (xPx) assess how much a minority group is only exposed to the same 
group. In other words, how much they only interact the members of the group that 
they belong. Assuming j = x as the minority group, the isolation of x is giving by:

The Exposure (xPy) of x is giving by

The correlation ratio (V or Eta
2 ) is given by

The SP Index is given by:

where

d
i
1
i
2

 is a pairwise distance measure between area i
1
 and i

2
 and d

ii
 is estimated as 

d
ii
= (�a

i
)� where a

i
 is the area of unit i. The default is � = 0.6 and � = 0.5 and 

(15)xPx =

I
∑
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ŝ
ix

)(

s̃
ix

)

.

(16)xPy =

I
∑
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ŝiy

)(

s̃iy
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.

(17)V = Eta
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n
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n
..

1 −
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..

.

(18)SP =

XPxx + YPyy

TPtt

,
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I
∑

i1=1

I
∑

i2=1

ni1xni2x�i1i2
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for the distance measure, we first extract the centroid of each unit and calculate the 
euclidean distance.

The RCL measure is given by:

The Distance Decay Isolation (DDxPx) is given by:

where

such that

where �
i
1
i
2

 is defined as before. This also could be seen as the probability of contact 
of members of group x to each other weighted by the inverse of distance.

The Distance Decay Exposure (DDxPy) is given by:

where P
i
1
i
2

 is defined as before.
The DEL measure is given by the following equation:

where a
i
 is the area of unit i and A is the total area of the given region A =

∑I

i=1
a

i
.

The ACO Index is given by:

where the units are ordered from smallest to largest in areal size. In this formula, n
1
 

is the rank of the unit where the cumulative total population equal the total minority 
population, n

2
 is the rank of the unit where cumulative total population equal equal 

the total minority population from the largest unit down. In addition,

(19)RCL =

Pxx

Pyy

− 1.

(20)DDxPx =

I
∑

i1=1

(

ŝ
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and

Another measure of concentration is the RCO Index:

where n
1
 , n

2
 , T

1
 and T

2
 are defined as before.

The degree of centralization can be evaluated through the Absolute Centraliza-
tion Index (ACE) or through the RCE:

where A
i
 is the cumulative area proportion through unit i, X

i
 is the cumulative fre-

quency proportion through unit i of group x and Y
i
 is the analogous for group y. 

In this measure, the area units are ordered by increasing distances from the central 
business district, which we assume being located in the average latitude and average 
longitude among all centroid.

The Dct Index based on [7] evaluates the deviation from simulated evenness. This 
measure is estimated by taking the mean of the classical D under several simulations 
under evenness from the global minority proportion.

Let D∗ be the average of the classical D under simulations draw assuming even-
ness from the global minority proportion. The value of Dct can be evaluated with 
the following equation:

Similarly, the Gct based also on Ref. [7] evaluates the deviation from simulated 
evenness. This measure is estimated by taking the mean of the classical G under sev-
eral simulations under evenness from the global minority proportion.
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(27)Dct =
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⎪
⎨
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D−D
∗

1−D∗
if D ≥ D

∗

D−D
∗

D∗
if D < D

∗

.
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Let G∗ be the average of G under simulations draw assuming evenness from the 
global minority proportion. The value of Gct can be evaluated with the following 
equation:

Lastly, the Bias-Corrected (Dbc) and Density-Corrected (Ddc) Dissimilarities indi-
ces are presented in Ref. [2]. The Dbc is given by:

where D̄
b
 is the average of B resampling using the observed conditional probabilities 

for a multinomial distribution for each group independently.
The Ddc measure is given by:

where

and n
(

𝜃̂
i

)

 is the �
i
 that maximizes the folded normal distribution 

𝜙(𝜃̂
i
− 𝜃

i
) + 𝜙(𝜃̂

i
+ 𝜃

i
) where

and � is the standard normal density.

B: Counterfactual composition details

Following the same notation of A and assuming building counterfactual values fro 
two different cities, we form the cumulative distribution functions (CDF) for these 
values taken over all the tracts in City 1: F(1)(s̃

1,t

i,j
) , and City 2: F(2)(s̃

2,t

i,j
) . To create a 

counterfactual distribution that imposes the attribute distribution of City 2 on the 
spatial structure of City 1 we take p

1,t

i,j
= F(1)(s̃

1,t

i,j
) and then generate 

n
1,t

i,j
|attr=2 = F(2)−1

(p
1,t

i,j
)n

1,t

i,.
 , where attr = 2 means that this population is calculated 

given the attributes of City 2. This entire process is done for all tracts of a group in 
City 1 and the majority group population is given by the difference n1,t

i,.
− n

1,t

i,j
|attr=2 . 

The populations for City 2 are generated analogously.
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