
1

An Open Source Matlab/Simulink Toolbox for

Interval Type-2 Fuzzy Logic Systems

Ahmet Taskin

Department of Software and Electronics

AVL Research and Engineering

Istanbul, Turkey

ahmet.taskin@avl.com

Tufan Kumbasar

Department of Control and Automation Engineering

Istanbul Technical University

Istanbul, Turkey

kumbasart@itu.edu.tr

Abstract—In the last two decades, we have witnessed that Interval Type-2 Fuzzy Logic Systems (IT2-FLSs) have been

successfully implemented in various engineering areas. In this paper, we will introduce a free open source

Matlab/Simulink toolbox for the development of IT2-FLSs for a wider accessibility to users beyond the type-2 fuzzy logic

community. The presented IT2-FLS toolbox allows intuitive implementation of Takagi-Sugeno-Kang (TSK) type IT2-

FLSs where it is capable to cover all the phases of its design. In order to allow users to easily construct IT2-FISs, a GUI is

developed which is similar to that of Matlab® Fuzzy Logic Toolbox. We have embedded various Type Reduction (TR)

methods in the toolbox since the TR method is the most important operation that must be taken into consideration. This

gives the opportunity to the user to examine the performance of his/her IT2-FLS design with respect to the TR methods.

We have also developed an IT2-FLS Simulink library so that the designer can perform various simulation analyses and

can also investigate the effect of TR method on the performance of the IT2-FLS. Moreover, the developed TSK IT2-FLS

Matlab/Simulink toolbox contains an automatic connection between Matlab and Simulink environments. Once the user

has finished the design of the IT2-FLS via the GUI, it is possible to export his/her design directly to Simulink via an

automatic Simulink file generation. We believe that the availability of the developed free and open-source TSK IT2-FLS

Matlab/Simulink toolbox will be an important step for a wider deployment and development of IT2-FLSs.

I. INTRODUCTION

In the last two decades, we have witnessed that Interval Type-2 (IT2) Fuzzy Logic Systems (FLSs) have been
successfully implemented in various engineering areas [1-12]. It has been demonstrated that, in comparison with its
Type-1 (T1) and conventional counterparts, IT2-FLSs resulted with performance improvements due to the additional
degree of freedom provided by the Footprint of Uncertainty (FOU) present in their IT2 Fuzzy Sets (FSs) [10-16]. The
internal structure of the IT2-FLS is similar to its T1 counterpart [15-17]. However, the major difference is that there is
an extra Type Reduction (TR) procedure since IT2-FLSs employ and process IT2-FSs [17]. The widely used TR
method is the Karnik-Mendel (KM) algorithm that calculates the type reduced set in an iterative manner [18-20].
However, due to its iterative nature, the computational cost of the calculation of the IT2-FLS output is relatively big
[19-21]. In this context, several TR methods have been proposed for reducing the computational cost of the IT2 fuzzy
inference mechanism. Wu [14], [20] categorized the TR methods as Enhancements to the KMs, which improved the
computational cost of the KM, and Alternative TR methods, which are closed-form approximations to the KM
algorithm. Nevertheless, the alternative TR methods cannot capture the features of the KM which are namely novelty
and adaptiveness [14].

Toolboxes for the implementation of T1-FLSs are widespread and have led to the application of T1-FLSs in various
engineering applications [22]. In [23], it has been stated that Fuzzy Logic Toolbox provided for Matlab® (The
Mathworks, Inc.) is the highly popular one in engineering and computer science since it allows users to easily construct
T1 Fuzzy Inference Systems (FISs) using a Graphical User Interface (GUI) [24]. On the other hand for IT2-FLSs, there
does exist only few software tools in comparison. Mendel [16] and Wu [20] published various open source codes but
the use of these source codes still requires knowledge about IT2-FLSs and thus they cannot be seen as toolkits in terms
of using the IT2-FLSs relatively easy for researcher especially not with non-Computer Science background. Besides,
researchers developed toolboxes for Matlab® that provides tools for the development of IT2-FLSs, including a GUI
similar to that of Matlab® Fuzzy Logic Toolbox [26-28]. However, these researchers did not make their source code
and toolboxes publicly available. Beyond MATLAB® toolboxes, Java based toolkits have been also presented for the
development of type-2 FLSs [14], [30].

2

In this paper, we will introduce a free open source Matlab/Simulink toolbox for the development of Takagi-Sugeno-
Kang (TSK) type IT2-FLSs for a wider accessibility to users beyond the type-2 fuzzy logic community. The developed
IT2-FLS toolbox allows intuitive implementation of IT2-FLSs where it is capable to cover all the phases of its design.
In order to allow users to easily construct TSK IT2-FISs, a GUI is developed which is similar to that of Matlab® Fuzzy
Logic Toolbox. As it has been asserted above, the TR method is the most important operation that must be taken into
consideration. Therefore, we embedded the most commonly or practically used TR and defuzzification methods (8
methods) in the toolbox so that the user can examine the performance of his/her IT2-FLS design for various TR
methods. We have also developed an IT2-FLS Matlab/ Simulink library so that the designer can perform various
simulation analyses and investigate the effect of TR method on the performance of the IT2-FLS. Moreover, the
developed IT2-FLS Matlab/ Simulink toolbox contains an automatic connection between Matlab and Simulink
environments. Once the user has finished the design of the IT2-FLS via the GUI, it is possible to export his/her design
directly to Simulink where an automatic Simulink file will be generated. We believe that the availability of the
developed free and open-source TSK IT2-FLS software will be an important step for a wider deployment and
development of IT2-FLSs.

The paper organized as follows: Section II briefly presents the IT2-FLSs. Section III presents the developed IT2-
FLS toolbox. Section IV presents an illustrative example done with the IT2-FLSs toolbox. Section V presents
conclusions and future work.

II. INTERVAL TYPE-2 FUZZY LOGIC SYSTEMS

In this section, we will present briefly the internal structure of IT2-FLSs. The internal structure of the IT2-FLS is
similar to its T1 counterpart. However, the major differences are that IT2-FLSs employ and use IT2-FSs (rather than

T1-FSs) and thus the IT2-FLC has the extra type-reduction process [15-17]. An IT2-FS (�̃�) is defined with a type-2

membership function 𝜇�̃�(𝑥, 𝑢) as follows:

�̃� = ∫ ∫ 𝜇�̃�(𝑥, 𝑢)(𝑥, 𝑢)𝑢∈𝐽𝑥𝑥∈𝐷�̃� (1)

where ∬ denotes the union over all admissible x and u, 𝐽𝑥 is referred to as the primary membership of x, while 𝜇�̃�(𝑥, 𝑢) is a T1-FS known as the secondary set [15-17]. The uncertainty in the primary membership of a type-2 fuzzy

set �̃� is defined by a region named Footprint Of Uncertainty (FOU). The FOU can be described in terms of an Upper

Membership Function (UM) 𝜇�̃� and a Lower Membership Function (LMF) 𝜇�̃�. If the primary membership 𝐽𝑥 is an

interval set an IT2-FS is constructed, i.e. 𝜇�̃�(𝑥, 𝑢) = 1 for ∀𝑢 ∈ 𝐽𝑥 [0,1] [15-17].

The block diagram of the IT2-FLS structure is given in Fig. 1. Similar to a T1-FLS, an IT2-FLS includes fuzzifier,
rule-base, inference engine, and substitutes the defuzzifier by the output processor comprising a type-reducer and a
defuzzifier [15-17]. The generic rule structure of TSK type IT2-FLS constructed from N rules is as follows: 𝑅𝑛: If 𝑥1is �̃�1𝑛 and … and 𝑥𝐼is �̃�𝐼𝑛 , Then 𝑦 is 𝑌𝑛 (2)

where �̃�𝑖𝑛 (𝑖 = 1, . . . , 𝐼) are the antecedent IT2-FSs and 𝑌𝑛 = [𝑦𝑛, 𝑦𝑛] are the consequent MFs. Here 𝑦𝑛 and 𝑦𝑛
 can

be crisp consequents or linear functions as follows: 𝑦𝑛 = 𝑎1𝑛𝑥1 + … + 𝑎𝐼𝑛𝑥𝐼 + 𝑏𝑛𝑦𝑛 = 𝑎1𝑛𝑥1 + … + 𝑎𝐼𝑛𝑥𝐼 + 𝑏𝑛 (3)

For a crisp input vector𝒙′ = (𝑥1′ , 𝑥2′ , … , 𝑥𝐼′), the output calculation steps of the IT2-FLS are as below [15-17]:

i. Compute the membership interval of each 𝑥𝑖′ on each �̃�𝑖𝑛, i.e. [𝜇�̃�𝑖𝑛(𝑥𝑖′), 𝜇�̃�𝑖𝑛(𝑥𝑖′)], 𝑖 = 1,2, … 𝐼, 𝑛 = 1,2, … 𝑁.

ii. Calculate the rule firing interval of the n
th
, 𝐹𝑛(𝒙′): 𝐹𝑛(𝒙′) ≡ [𝑓𝑛, 𝑓𝑛] , 𝑛 = 1, … , 𝑁 (4)

where 𝑓𝑛 = [𝜇�̃�1𝑛(𝑥1′) ∗ … × 𝜇�̃�𝐼𝑛(𝑥𝐼′)]𝑓𝑛 = [𝜇�̃�1𝑛(𝑥1′) × … × 𝜇�̃�𝐼𝑛(𝑥𝐼′)] (5)

3

iii. Perform TR to combine 𝐹𝑛(𝒙′) and the corresponding rule consequents. The most commonly used TR is the

center-of-sets type reducer defined as: 𝑌𝑐𝑜𝑠(𝒙′) = ⋃ ∑ 𝑦𝑛𝑓𝑛𝑁𝑛=1∑ 𝑓𝑛𝑁𝑛=1 = [𝑦𝑙 , 𝑦𝑟]𝑓𝑛∈𝐹𝑛(𝒙′)𝑦𝑛∈𝑌𝑛

(6)

where 𝑦𝑙 and 𝑦𝑟 are defined as: 𝑦𝑙 = ∑ 𝑦𝑛𝑓𝑛𝐿𝑛=1 + ∑ 𝑦𝑛𝑓𝑛𝑁𝑛=𝐿+1∑ 𝑓𝑛𝐿𝑛=1 + ∑ 𝑓𝑛𝑁𝑛=𝐿+1 (7)

𝑦𝑟 = ∑ 𝑦𝑛𝑓𝑛𝑅𝑛=1 + ∑ 𝑦𝑛𝑓𝑛𝑁𝑛=𝑅+1∑ 𝑓𝑛𝑅𝑛=1 + ∑ 𝑓𝑛𝑁𝑛=𝑅+1 (8)

Here, R and L are the switching points that can be found via the iterative KM algorithms or its enhancements [15-

17].

iv. Compute the defuzzified (crisp) output as follows: 𝑦 = 𝑦𝑙 + 𝑦𝑟2 (9)

Note that, since the iterative KM algorithms have an iterative nature that makes difficult to analyze and design IT2-

FLSs, various alternative TR and defuzzification methods have been proposed that have closed-form representation

[19], [20].

Fig. 1. Block diagram of an IT2-FLS

III. THE IT2-FLS TOOLBOX

In this section, we will present the fundamental components of the developed IT2-FLS toolbox for

Matlab/Simulink. The IT2-FLS toolbox is constructed by reusing the functions of the Matlab® commercial Fuzzy
Logic Toolbox, adding new functions for TR operations, developing a user interface, creating a Simulink library and

connecting the toolbox to Simulink. The IT2-FLS Matlab/Simulink Toolbox is licensed with GNU general public

license version 3 and available for download together with the presented simulation study from

“http://web.itu.edu.tr/kumbasart/type2fuzzy.htm”.

The heart of the IT2-FLS toolbox is the structure named as the “*.it2fis” that is created in the Matlab workspace.

As shown in Fig.2, the IT2-FIS includes all the information of the user’s design such as MF parameters and types,

rules and TR method. Thus, as the user is designing or updating his/her IT2-FLS, the structure is updated

automatically.

The developed IT2-FLSs toolbox consists of four main user interfaces which are the Main Editor, MF Editor, Rule
Editor and Surface Viewer as shown in Fig.3. It can be seen that the developed user interface is similar to the Matlab®
commercial (T1) Fuzzy Logic Toolbox [24]. Thus, a user familiar with Matlab toolbox can easily operate the
developed IT2-FLS toolbox.

4

A. Main Editor

The main editor tab is the entry point of the developed IT2-FLS Toolbox. The other user interfaces of the IT2-FLSs
toolbox can be accessed directly from the main editor screen. An overview of the main editor is given in the Fig.3a. In
this screen, the basic operations such as saving and loading, exporting to workspace, defining the number of input and
output variables, the implication and aggregation operators. The main editor screen provides also two new useful
features for the designers which are the “Export to Simulink” and “TR method selector”.

The “Export to Simulink” option in the main screen gives the opportunity to export automatically his/her IT2-FLS
design to the Matlab/Simulink environment automatically. Thus, the designer can easily perform and analyze various
simulation studies directly. In this context, an IT2-FLS Simulink library has been developed. The IT2-FLSs Simulink
library is explained in detail in Section IV. It is worth to mention that the Matlab® commercial Fuzzy Logic Toolbox
does not have this property.

The IT2-FLS toolbox gives also the designer to select the TR and defuzzification method. In literature, various TR
and defuzzification methods have been proposed. It has been shown in [19] that the TR method can directly affect the
performance of the IT2-FLSs although it is a structural design parameter like the aggregation and implication
operators.

Fig. 2. The schematic diagram of the IT2-FIS of the toolbox

MFMF

RangeRange

MFMF

RangeRange

NameName

AntecedentAntecedent

ConsequentConsequent

WeightWeight

NameName

ParametersParameters

NameName

TypeType

Input(s)Input(s)

Output(s)Output(s)

Rule(s)Rule(s)

UMF(s)UMF(s)

ParametersParameters

NameName

TypeType

LMF(s)LMF(s)

Type Reduction

Method

Type Reduction

Method

TypeType

NameName

Interval Type-2 Fuzzy

Inference Structure

(IT2-FIS)

Interval Type-2 Fuzzy

Inference Structure

(IT2-FIS)

Rule(s)Rule(s)

Output(s)Output(s)

Input(s)Input(s)

5

Fig. 3. Overview of the GUI of the IT2-FLS toolbox

In this context, we have developed and embedded the most commonly used ones so that the designer can examine the
performance of his/her design for various TR and defuzzification methods. In the current version of the IT2-FLS

toolbox, the designer can choose various methods simply throughout a pop-up screen as illustrated in Fig. 4. In the
current version of the IT2-FLS toolbox, the following TR and defuzzification methods are supported:

1) Karnik-Mendel Algorithm (KM) [16]

2) Enhanced KM Algorithm (EKM) [21]

3) Iterative Algorithm with Stop Condition (IASC) [30], [31]

4) Enhanced IASC (EIASC) [19]

5) Enhanced Opposite Direction Searching Algorithm (EODS) [32], [33]

6) Wu-Mendel Uncertainty Bound Method (WM) [34]

7) Nie-Tan Method (NT) [35]

8) Begian-Melek-Mendel Method (BMM) [36]

Fig. 4. The user interface for the embedded TR Methods

Besides, the IT2-FLS toolbox gives also the opportunity to the designer to use his/her developed TR method by
providing a “custom” function option.

6

B. Membership Function Editor

Membership Function Editor screen can be accessed from the Main Editor Screen by double clicking on of the input
or output variables. An overview of the Membership Function Editor page is given in the Fig.3b. Similar to the Matlab
Fuzzy Logic Toolbox, the user can define the range, type and value of the LMFs and UMFs of the input and output
variables.

In the current version of the IT2-FLS toolbox, the designer can define the antecedent MFs with the MF types that
already exist in the Matlab Fuzzy Logic Toolbox (11 different types of MFs). Thus, the user can use and employ the
Matlab functions of LMF and UMF in a similar manner. However, the only difference, there is an extra parameter for
each type of MFs that defines the height of the corresponding MF. For instance, a triangle MF is defined with the
parameters 𝑙, 𝑐, 𝑟, ℎ that define the left point, the center point, right point and the height of the MF, respectively. The
parameter h is commonly used to create FOU in the IT2-FSs, especially in IT2 fuzzy controller design [7], [10], [13].
Moreover, designing output MFs via the Membership Function Editor page has some features. As shown in Fig. 5, it is
possible to choose the type of the output MFs either as crisp/interval constants or crisp/interval linear functions (as
given in Equation (3)).

One of the developed features of the IT2-FLS toolbox is possibility of designing the antecedent UMFs and LMFs in
either the same type or different type. The only prerequisite is that the membership degree values of the LMFs have to
be smaller than or equal to the UMFs ones, i.e. 𝜇�̃� ≥ 𝜇�̃� . In Fig. 6, various types of IT2-FSs are illustrated.

Fig. 5. Output Membership Function Editor Screen of the IT2-FLS Toolbox

C. Rule Editor

Rule Editor Page is the screen where the users can define or modify the rules of the IT2-FLS. As it can be seen from
Fig.3c, we preserved general structure of the Rule editor of the Matlab® commercial Fuzzy Logic Toolbox for an easy
implementation. Here, to add a new rule, the desired input and output variables are chosen by clicking and then the new
rule is added by clicking the add rule button. It is also possible to modify preexisting rules. All added or modified rule
base information are written or updated to the IT2-FIS that is present in the Matlab workspace automatically, and after
the rule editor page closed, this information are hold within this structure.

D. Surface Viewer

After completing the IT2-FLS design, it is possible to see the surface of the designed IT2-FLS as shown in Fig.3d.
It is possible to edit, save the surface and also employ the plot options of Matlab of the designed IT2-FLS.

7

E. The Simulink Library of the IT2-FLS Toolbox

We have also developed an IT2-FLS Simulink library that is also directly connected to the IT2-FLS Matlab toolbox.
The IT2-FLSs Simulink library consists of two blocks as shown in Fig.7. Both blocks require an “*.it2fis” structure in
Matlab workspace that can be easily created and then exported via the IT2-FLS Matlab toolbox.

The first block is the default library block named “Interval Type-2 Fuzzy Logic Controller” of the IT2-FLSs
toolbox. The second library block named as the “Interval Type-2 Fuzzy Logic Controller with TR selection” has a
feature to choose a TR method. As shown in Fig. 8, the method can be selected in straight forward manner. If the
designer enters “0”, the IT2-FLS will run with the TR method that has been chosen in its “*.it2fis” file. This block
gives the opportunity to the designer to perform simulation studies of the constructed IT2-FLSs where he/she can
examine the performance of IT2-FLSs for various TR and defuzzification methods.

Fig. 6. Input Membership Function Editor Screen of the IT2-FLS Toolbox

Fig. 7. Simulink Library of the IT2-FLS Toolbox

8

Fig. 8. IT2-FLS Toolbox Library Block with TR Selection

Moreover, as it has been asserted subsection 3.A, the developed Simulink library for the IT2-FLS toolbox also
provides a bridge to the IT2-FLS Matlab toolbox. It gives the opportunity to designer for an automatic deployment of
his/her design into Matlab/Simulink environment. Once the user has finished the design of the IT2-FLS, it is possible
to use this feature by just clicking the button ‘Export to Simulink’ in the Main Menu. Then, the current design will be
exported to Simulink automatically. An example Simulink model created via the IT2-FLS Matlab toolbox is given in
the Fig. 9.

Fig. 9. An example Simulink Model that is created via the IT2-FLS Toolbox

IV. SIMULATION STUDIES

In this section, we will present several simulations that have been done via the developed IT2-FLS Matlab/
Simulink Toolbox. The simulations were performed on a personal computer with an Intel Core i5-4300U CPU 2.50
GHz processor, 8.00 GB RAM, and software package MATLAB/Simulink 8.0.0.

We will compare the performances of the IT2-FPID that employ the KM, EKM, IASC, EIASC, EODS, WM, NT
and BMM TR+defuzzification methods. As shown in Fig.10, the IT2-FPID is constructed by choosing the inputs as the
error signal (𝑒) and the change of error signal (�̇�) while the output is the control signal (𝑢) [10]. Here, 𝐾𝑒, 𝐾𝑑 and 𝐾𝑎, 𝐾𝑏 are the input and output scaling factors, respectively. The IT2-FLC is constructed with 𝑁 = 9 rules which are
given in Table 1. The antecedent MFs are defined with the IT2-FSs shown in Fig 11. The consequent MFs are defined
with crisp singletons 𝑁𝐵 = −1, 𝑁𝑀 = −0.8, 𝑍 = 0, 𝑃𝑀 = 0.8 and 𝑃 = 1.

9

TABLE 1. THE RULE BASE OF THE IT2-FPID CONTROLLERS �̇�/𝐸 𝑁 𝑍 𝑃 𝑁 𝑁𝐵 𝑁𝑀 𝑍 𝑍 𝑁𝑀 𝑍 𝑃𝑀 𝑃 𝑍 𝑁𝑀 𝑃𝐵

Fig. 10. Illustration of the IT2-FPID controller structure

We will examine and compare the transient state response of the IT2-FPID controllers on the following process: 𝐺(𝑠) = 𝐾𝑇𝑠 + 1 𝑒−𝐿𝑠 (10)

where K is the process gain, T is the time constant and L is the time delay. The nominal process parameters are set as 𝐾 = 1 , 𝑇 = 1 and 𝐿 = 0.2 (Nominal Process). The robustness against parameter uncertainty of the IT2-FPID
controllers is also investigated. In this context, two more parameter settings are considered; 𝐾 = 1.3, 𝑇 = 1.9, 𝐿 = 0.4
(Perturbed Process-1) and 𝐾 = 1.1, 𝑇 = 1.3, 𝐿 = 0.45 (Perturbed Process-2). We will compare the performances of
the control systems with respect to their Settling Time (Ts), Overshoot (OS%) and Integral Time Absolute Error (IAE)
values. We will also compare their Average (Avg), Maximum (Max) and Minimum (Min) Computational Times (CTs).
For a fair comparison and to show the effect of the TR method on the controller performance, we will set and fix the
scaling factors of IT2-FPID as 𝐾𝑒 = 1, 𝐾𝑑 = 0.5141,𝐾𝑎 = 0.077 and 𝐾𝑏 = 7.336. The constructed block diagram via
the developed IT2-FLS Matlab/Simulink toolbox is given in Fig.12..

Fig. 11. The Inputs MFs used for the IT2-FPID controller

The performance results of the IT2-FPID control systems for the Nominal and Perturbed Process is given in Fig.13
and Fig.14, respectively. The corresponding performance measures are tabulated in Table 1. It can be clearly seen that
the TR method can directly affect the control performance. For instance, from the Nominal Process results, it can be
observed that all four IT2-FPID controllers resulted with identical Ts. On the other hand, the IT2-FPID-WN was able
to reduce the OS to zero but resulted with largest ITAE value. Similar comments can be also made for the results of the
Perturbed Processes. It can be concluded that, although the TR+ defuzzification method is a structural parameter, it has
to be determined with respect to the design criteria. For this specific simulation study, we can see that if the reducing

0.9

0.3

N Z P

µ

𝐸, �̇�

10

the OS value is relatively more important that the WM method should be preferred. Yet, to be able to generalize these
observations, extensive comparative simulation and real-time studies must be performed.

Remark: We have not presented the results of the IT2-FPID structures that employ EKM, IASC, EIASC and EODS
since they only improve the CT of the original KM method [20]. Thus, their results will be identical to IT2-FPID-KM
ones.

Fig. 12. The Simulink block diagram of the IT2-FPID control system

Fig. 13. The closed loop step responses for the Nominal Process.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Time (s)

S
y
s
te

m
 O

u
tp

u
t

Reference

IT2-FPID-KM

IT2-FPID-WM

IT2-FPID-NT

IT2-FPID-BMM

TABLE 2. PERFORMANCE MEASURES OF THE IT2-FPID CONTROLLERS

Process TR Ts
OS

(%)
ITAE

Nominal Process

KM 1.15 2.6 13.938

WM 1.15 0.0 14.059

NT 1.15 2.9 13.840

BMM 1.15 4.3 14.035

Perturbed Process-

1

KM 8.05 61.3 44.737

WM 10.5 57.0 51.875

NT 7.95 61.4 45.578

BMM 8.20 61.7 44.379

Perturbed Process-

2

KM 13.30 76.0 63.358

WM 12.10 71.4 65.594

NT 14.45 76.3 74.995

BMM 11.15 79.2 61.389

Moreover, to establish if the TR methods will cause drastic impact on the controllers CT, we have investigated the
computation time needed by the IT2-FPID structures to map an input to an output for all possible combinations of the
input values in their corresponding universe of discourses, i.e., 𝑒 ∈ [−1, +1] and �̇� ∈ [−1, +1] with a discretization
size of 0.01. This experiment has been run 500 times and the computational costs of the TR methods are measured by
their CTs, obtained from Matlab tic and toc functions. The obtained Avg, Max and Min CTs are tabulated in Table 3. It

11

can be clearly observed that the WM method resulted with lowest CT values. However, although there is some increase
in the CT time of the other methods in comparison to the WM method, the obtained Max CTs are still feasible for
various real-time applications.
Fig. 14. The closed loop step responses for the (a) Perturbed Process-1 and (b) Perturbed Process-2

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (s)

S
y
s
te

m
 O

u
tp

u
ts

Reference

IT2-FPID-KM

IT2-FPID-WM

IT2-FPID-NT

IT2-FPID-BMM

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (s)

Reference

IT2-FPID-KM

IT2-FPID-WM

IT2-FPID-NT

IT2-FPID-BMM

(a) (b)

TABLE 3. COMPARISON OF CTS OF THE TR METHODS

TR Avg CT (s) Min CT (s) Max CT (s)

KM 0.0064 0.0054 0.0215

EKM 0.0060 0.0054 0.0224

IASC 0.0059 0.0053 0.0215

EIASC 0.0058 0.0052 0.0205

EODS 0.0058 0.0053 0.0216

WM 0.0058 0.0051 0.0210

NT 0.0059 0.0051 0.0216

BMM 0.0060 0.0052 0.0226

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an overview of an open source IT2-FLS Matlab/ Simulink toolbox. The toolbox is
free of charge for non-commercial purposes and we only ask authors/developers to cite this paper when using the
toolbox.

The main goal of this paper is to introduce the research community with a free open source Matlab/Simulink
toolbox for the development of IT2-FLSs for a wider accessibility to users beyond the fuzzy logic community. We
have reviewed the main features of the current toolkit, including the support for a GUI for an easy design, various IT2-
FS constructions, 8 TR methods, a Simulink library, an automatic Simulink file generation via the GUI and
visualization features. We have also presented a simulation study which has been conducted via the developed toolbox
and analyzed the control system performance of IT2-FPIDs with respect to their employed TR methods. However, it is
worth to mention that it is not the purpose of this paper to compare the TR methods but only to demonstrate the
features of the Matlab/Simulink toolbox.

We would like to encourage the research community to contribute to the development of the IT2-FLS toolbox
through suggestions, comments or contributions. For our future work, we aim to improve the IT2-FLS toolbox by
providing support for Mamdani type IT2-FLSs and General Type-2 FLSs; and also integrating a learning technique to
develop a toolbox with learning and reasoning capabilities.

12

ACKNOWLEDGMENT

We would like to state that the IT2-FLS toolbox makes use of the Matlab® commercial Fuzzy Logic Toolbox.

REFERENCES

[1] H. Hagras, “A Hierarchical Type-2 Fuzzy Logic Control Architecture for Autonomous Mobile Robots,” IEEE Trans. Fuzzy Syst., vol. 12,
no. 4, pp. 524-539, 2004.

[2] Q. Liang and J. Mendel, “Equalization of nonlinear time-varying channels using type-2 fuzzy adaptive filters,” IEEE Trans. Fuzzy Syst.,
vol. 8, no. 5, pp. 551–563, 2000

[3] A. Bilgin, H. Hagras, A. Malibari, M. J. Alhaddad, D. Alghazzawi, “Towards a linear general type-2 fuzzy logic based approach for
computing with words,” Soft Computing, vol. 17, pp. 2203-2222, 2013.

[4] P. Melin and O. Castillo, “A review on the applications of type-2 fuzzy logic in classification and pattern recognition,” Expert Systems
with Applications, vol. 40, no. 13, pp 5413–5423, 2013.

[5] Q. Liang, N. Karnik, and J. Mendel, “Connection admission control in ATM networks using survey-based type-2 fuzzy logic systems,”
IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 30, pp. 329–339, 2000.

[6] H. Hagras and C. Wagner, “Towards the wide spread use of type-2 fuzzy logic systems in real world applications,” IEEE Computational
Intell. Mag., vol. 7, no. 3, pp. 14–24, 2012.

[7] B. Yao, H. Hagras, M. Alhaddad, and D. Alghazzawi, “A type-2 fuzzy logic based system for linguistic summarization of video
monitoring in indoor intelligent environments,” in Proc. IEEE Int. Conf. Fuzzy Systems, Beijing, China, pp. 1–8, , 2014.

[8] H. B. Mitchell, “Pattern recognition using type-II fuzzy sets,” Inform. Sci., vol. 170, no. 2–4, pp. 409–418, 2005.

[9] J. Zeng and Z.-Q. Liu, “Type-2 fuzzy Markov random fields and their application to handwritten chinese character recognition,” IEEE
Trans. Fuzzy Syst., vol. 16, no. 3, pp. 747–760, 2008.

[10] T. Kumbasar and H. Hagras, “An Overview on Interval Type-2 Fuzzy PID Controllers” in the book entitled Springer Handbook of
Computational Intelligence, Eds. J. Kacprzyk W. Pedrycz, Springer Verlag, 2015.

[11] L. A. Lucas, T. M. Centeno, and M. R. Delgado, “Land cover classification based on general type-2 fuzzy classifiers,” Int. J. Fuzzy Syst.,
vol. 10, no. 3, pp. 207–216, 2008. R. I. John, P. R. Innocent, and

[12] M. R. Barnes, “Neuro-fuzzy clustering of radiographic tibia image data using type-2 fuzzy sets,” Inform. Sci., vol. 125, no. 1–4, pp. 65–82,
2000.

[13] T. Kumbasar, “A Simple Design Method for Interval Type-2 Fuzzy PID Controllers,” Soft Computing, vol. 18, no. 7, pp. 1293-1304, 2014.

[14] D. Wu, “On the Fundamental Differences between Type-1 and Interval Type-2 Fuzzy Logic Controllers,” IEEE Trans. Fuzzy Syst., vol.,
10, no.5, pp. 832- 848, 2012.

[15] Q. Liang and J.M. Mendel, “Interval type-2 fuzzy logic systems: theory and design,” IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp. 535-550,
2000.

[16] J. M. Mendel, Uncertain rule-based fuzzy logic systems: Introduction and new directions. Prentice Hall PTR, Upper Saddle River, NJ,
2001.

[17] J. M. Mendel and X. Liu, “Simplified Interval Type-2 Fuzzy Logic Systems,” IEEE Trans. Fuzzy Syst., vol. 21, no. 6, pp.1056-1069, 2013.

[18] J.M. Mendel and F. Liu, “Super-exponential convergence of the Karnik–Mendel algorithms for computing the centroid of an interval type-
2 fuzzy set,” IEEE Trans. Fuzzy Syst., vol. 15, no. 2, pp. 309–320, 2007.

[19] D. Wu and M. Nie, “Comparison and practical implementation of type reduction algorithms for type-2 fuzzy sets and systems,” in Proc.
IEEE Int. Conf. Fuzzy Systems, Taipei, Taiwan, 2011.

[20] D. Wu, “Approaches for reducing the computational cost of interval type-2 fuzzy logic systems: Overview and comparisons,” IEEE Trans.
Fuzzy Syst., vol. 21, no. 1, pp. 80–99, 2013.

[21] D. Wu and J. M. Mendel, “Enhanced Karnik–Mendel algorithms,” IEEE Trans. Fuzzy Syst., vol. 17, no. 4, pp. 923–934, 2009.

[22] J. Alcala-Fdez and J. M. Alonso, "A Survey of Fuzzy Systems Software: Taxonomy, Current Research Trends and Prospects," IEEE Trans.
Fuzzy Syst., 2015.

[23] C. Wagner, S. Miller, J.M. Garibaldi, "A fuzzy toolbox for the R programming language," in Proc. IEEE Int. Conf. Fuzzy Systems,
pp.1185-1192, 2011, Taipei, Taiwan.

[24] MATLAB® Fuzzy Logic Tool™ 2 Users Guide, The MathWorks, Inc., Natick, USA, 2010.
[25] C. Wagner, “Juzzy-A Java based toolkit for Type-2 Fuzzy Logic Proc. Int. Conference on Fuzzy Systems, pp. 45–52,

[26] O. Castillo, P. Melin, and J. R. Castro, “Computational intelligence software for interval type-2 fuzzy logic,” Computer Applications in
Engineering Education, vol. 21, no. 4, pp. 737–747, 2013.

[27] J. R. Castro, O. Castillo, P. Melin, A. R. Diaz, “Building Fuzzy Inference Systems with a New Interval Type-2 Fuzzy Logic Toolbox”,
Transactions on Computational Science, pp. 104-114, 2008.

[28] M. B. Ozek and Z. H. Akpolat, “A software tool: Type-2 fuzzy logic toolbox,” Computer Applications in Engineering Education, vol. 16,
no. 2, pp. 137–146, 2008.

[29] M. Castanon-Puga, J. Castro, M. Flores-Parra, C. Gaxiola- Pacheco, L. Martiınez-Mendez and L. Palafox-Maestre, “JT2FIS ´ A Java Type-
2 Fuzzy Inference Systems Class Library for Building Object-Oriented Intelligent Applications,” in Advances in Soft Computing and Its
Applications, ser. Lecture Notes in Computer Science, vol. 8266. Berlin Heidelberg: Springer, pp. 204–215, 2013

[30] K. Duran, H. Bernal, and M. Melgarejo, “Improved iterative algorithm for computing the generalized centroid of an interval type-2 fuzzy
set,” in Proc. Annual Meeting of the North American Fuzzy Information Processing Society, New York, pp. 1–5, 2008.

[31] M. Melgarejo, “A fast recursive method to compute the generalized centroid of an interval type-2 fuzzy set,” in Proc. Annual Meeting of
the North American Fuzzy Information Processing Society, San Diego, CA, pp. 190–194, 2007.

[32] H. Z. Hu, G. Zhao, and H. N. Yang, “Fast algorithm to calculate generalized centroid of interval type-2 fuzzy set,” Control Decis., vol. 25,
no. 4, pp. 637–640, 2010.

13

[33] H. Hu, Y.Wang, and Y. Cai, “Advantages of the enhanced opposite direction searching algorithm for computing the centroid of an interval
type-2 fuzzy set,” Asian J. Control, vol. 14, no. 6, pp. 1–9, 2012.

[34] H.Wu and J. M. Mendel, “Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems,” IEEE Trans. Fuzzy Syst.,
vol. 10, no. 5, pp. 622–639, 2002.

[35] M. Nie and W. W. Tan, “Towards an efficient type-reduction method for interval type-2 fuzzy logic systems,” in Proc. IEEE Int. Conf.
Fuzzy Systems, 2008, pp. 1425–1432.

[36] M. Begian, W. Melek, J. Mendel, Stability analysis of type-2 fuzzy systems, in Proc. IEEE Int. Conf. Fuzzy Systems, Hong Kong, pp. 947–
953, 2008.

