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Abstract

Recent developments in computer science and digital image processing have enabled the extraction of an individual’s heart

pulsations from pixel changes in recorded video images of human skin surfaces. This method is termed remote

photoplethysmography (rPPG) and can be achieved with consumer-level cameras (e.g., a webcam or mobile camera). The goal

of the present publication is two-fold. First, we aim to organize future rPPG software developments in a tractable and nontech-

nical manner, such that the public gains access to a basic open-source rPPG code, comes to understand its utility, and can follow

its most recent progressions. The second goal is to investigate rPPG’s accuracy in detecting heart rates from the skin surfaces of

several body parts after physical exercise and under ambient lighting conditions with a consumer-level camera. We report that

rPPG is highly accurate when the camera is aimed at facial skin tissue, but that the heart rate recordings fromwrist regions are less

reliable, and recordings from the calves are unreliable. Facial rPPG remained accurate despite the high heart rates after exercise.

The proposed research procedures and the experimental findings provide guidelines for future studies on rPPG.
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Imagine a situation in which physical states of people

can be inferred from surveillance camera footage.

Although this may sound like science fiction, the truth

is that cameras can capture subtle cues about a person’s

physiology that are invisible to the human eye. More

specifically, progressions in the field of image process-

ing have led to the development of algorithms that en-

able the extraction of the timing of heart beats from

distant camera recordings of an individual’s skin. This

novel method is termed remote photoplethysmography

(rPPG). Here we describe a study on its accuracy in

detecting heart rates in a variety of conditions and we

provide guidelines for future investigations into rPPG’s

applicability and effectiveness.

Nonremote photoplethysmography (PPG)

Before we explain rPPG mechanisms, we first would like to

give credit to a large body of preceding studies that have

eventually led to the development of remote heart rate record-

ings. It all started with a scientific breakthrough by Hertzman

and Spealman (1937). They discovered that heartbeat-induced

changes in blood perfusion in skin surface can be detected by

measuring changes in both diffuse light reflection off and

transmission through body parts. A year later, Hertzman de-

veloped a photoplethysmograph that could measure changes

in an individual’s heart rate over time (Hertzman, 1938). The

modern variant of photoplethysmography (PPG) consists of a

pulse-oximetry device that is, in most cases, clipped on an

individual’s finger. A standard pulse oximeter probe emits

red and infrared light that is diffusely reflected from and trans-

mitted through skin tissue. The heart stroke volume induced

pulse wave travels along the arterial vascular network, which

causes changes in blood volume, and this in turn causes

changes in blood oxygenation and tissue pulsations in the

capillary beds of skin tissue (Kamshilin et al., 2015; Nijboer,

Dorlas, & Mahieu, 1981). Because these two factors affect

light scatter and absorption, changes in infrared luminance

levels—targeted at capillary beds relatively close to the skin’s

surface—can be used to infer how many heart beats were

present within a certain time window.
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Limitations to the application of PPG

Modern medicine and many other fields rely on PPG in mon-

itoring a patients HR. Photoplethysmography is used to detect

abnormalities in a person’s physiological state—for example,

bymeasuring heart rate or respiration (Allen, 2007). Heart rate

measurements with PPG may also provide information about

a person’s emotional responses (Critchley et al., 2005) or level

of stress (Bousefsaf, Maaoui, & Pruski, 2013; Kranjec, Beguš,

Geršak, & Drnovšek, 2014; McDuff, Gontarek, & Picard,

2014). Although the number of applications is extensive,

PPG’s contact requirements limit its applicability. First, heart

rate can only be measured as long as the person does not move

the PPG device because movement severely distorts measure-

ments. These movement constraints limit PPG’s use during

sports and other activities that require individuals to move

freely. Second, the attachment of a pulse oximeter to a body

part draws attention to the measurement, making users aware

of that they are being monitored. In psychology, it is often

preferred that participants remain naïve about the measure-

ments to prevent that they consciously or unconsciously influ-

ence their heart rate and other outcomes. Luckily, the noncon-

tact, remote version of PPG is not limited by the above-

mentioned issues.

Remote PPG

RPPG, also known as imaging PPG (iPPG or PPGI) or non-

contact PPG (ncPPG), is based on the same principle as PPG.

The difference is that rPPG remotely records changes in blood

perfusion. It basically consists of digital camera recordings of

variations in light reflected from skin tissue. Its first applica-

tion is described in Wieringa, Mastik, and van der Steen

(2005). Using a remote camera and red-to-infrared light-

emitting diodes, they found pulsatile variations in luminance

at the same rate as the heart’s pulse across the recorded image

frames of human skin surface of wrists. A couple of studies

followed rapidly, replicating and improving the method with

relatively complex, custom-made apparatus (Cennini, Arguel,

Akşit, & van Leest, 2010), and infrared-sensitive cameras

(Humphreys, Ward, & Markham, 2007; Zheng, Hu,

Chouliaras, & Summers, 2008). Only after Verkruysse,

Svaasand, and Nelson (2008) had demonstrated that accurate

heart rate measurements can be achieved with an affordable,

consumer-level camera and Bnormal^ ambient light condi-

tions did rPPG become more popular. Frankly, it is an appeal-

ing phenomenon that heart pulsations in the skin are not vis-

ible to the human eye but can be recorded by a simple web-

cam. Since this finding, numerous studies have tested rPPG

under ambient light conditions—for example, showing that

rPPG in combination with face tracking allows heart rate mea-

surements frommultiple people at the same timewithminimal

motion distortions (Poh, McDuff, & Picard, 2010; Wang,

Stuijk, & De Haan, 2015).

rPPG’s underlying physiological mechanism
and algorithms

What does rPPG actually measure? The basis of the signal is

fluctuations over time in reflected luminance from a skin sur-

face. Simply put, the camera-recorded luminance values fluc-

tuate as a function of every heartbeat. Most recent models

suggest that the luminance fluctuations are caused by changes

in capillary tissue movement (Daly & Leahy, 2013; Kamshilin

et al., 2015). These luminance changes are so small that hu-

man perception cannot detect them. Under proper illumination

conditions, a camera sensor can detect these fluctuations,

which can be extracted by the application of several signal-

processing steps, including filtering, independent component

analyses, and other data-processing approaches (for reviews,

see Rouast, Adam, Chiong, Cornforth, & Lux, 2018; Sun &

Thakor, 2016). In many scientific publications about rPPG,

the signal processing steps are described and then

benchmarked on a variety of videos, mostly recorded from

human faces. However, the developed algorithms and soft-

ware codes in which these processing steps are implemented

have so far not beenmade available to the public. Here it is our

main goal to implement the most basic rPPG signal processing

steps in a code that is available to the public.

Present study

To achieve this main goal, we have created rPPG software

available to everyone, to increase the applicability of the

rPPG method by offering this accessible and free software.

The license under which this software is released allows others

to further develop the software for scientific and public use.

Please note that it is not our intention to develop a state-of-the-

art rPPG algorithm that produces better results than previous

algorithms. This means that the here-described processing

steps are standard and described in most rPPG publications.

Our second goal was to write a manuscript for a broad

audience, beyond clinical and technical fields. Although

rPPG is a promising utility in numerous applications, mainly

in clinical settings (Aarts et al., 2013; Klaessens et al., 2014;

Tarassenko et al., 2014), it has not yet been embraced by other

scientific fields that are interested in the relationship between

heart rate, behavior, and cognition (but see Bousefsaf et al.,

2013; Kwon, H. Kim, et al., 2012; McDuff, Estepp, Piasecki,

& Blackford, 2015; McDuff, Gontarek, & Picard, 2014). We

aim to describe the rPPG most basic processing steps in lay-

man terms such that it can also be understood and tried out by
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scientists that work outside the technical areas of computer

science, informatics, and mathematics.

The third goal of this article was to guide rPPG research

toward a standardized procedure to test and report rPPG’s

accuracy in a variety of conditions relevant to most sciences.

We noted that many articles on rPPG use different analyses to

benchmark their algorithms. We therefore aimed to provide

several basic analyses that are needed to provide at least the

most relevant information about an rPPG algorithm’s

accuracy.

In line with our first two goals, we developed a test proce-

dure that assesses rPPG in as broadly applicable a context as

possible. This involves a different approach than previous

studies have pursued, for we prioritized usability over state-

of-the-art methodology:

(i) A consumer-level webcam was used, because this hard-

ware is available to most people.

(ii) The software should be applicable to any type of skin

surface on any part of the body. As far as we know,

rPPG’s accuracy with consumer-level cameras, of which

we define the maximum specifications as 1080p

resolution and 60 frames per second, has only been

reported for video recordings of faces. Verkruysse et al.

(2008) mentioned that they tested rPPG on the legs and

arms, but they did not report any results. Other studies

have tested rPPG with higher-end cameras on the hands

(Kviesis-Kipge & Rubīns, 2016; Marcinkevics et al.,

2016; Rubins, Miscuks, Rubenis, Erts, & Grabovskis,

2010; Sun, Hu, Azorin-Peris, Kalawsky, & Greenwald,

2013) or with a green-colored light source (Teplov,

Nippolainen, Makarenko, Giniatullin, & Kamshilin,

2014). Since it is possible that the facial skin surface is

minimally visible, either due to head orientation or pri-

vacy reasons (e.g., faces are blurred or blocked), it is

important to also examine rPPG’s accuracy on body

parts other than faces. Hence, we tested rPPG’s accuracy

on the skin surface of the arm (wrist and hand palm) and

leg (calf), which both are body parts that are most likely

visible in any type of video recordings of humans.

Furthermore, we expected that the pulse signal would

be weak in the calves, because of the small amount of

superficial blood vessels in the calf’s skin. This would

allow us to benchmark rPPG in a challenging condition.

(iii) Individuals could have variable heart rates during re-

cordings, especially when in a state of arousal due to

stress experiences or other psychological and physical

demands. Because variability might affect rPPG’s accu-

racy, its effects should be taken into account. Recent

studies have tested rPPG accuracy both after and while

participants performed exercise. However, these studies

had several limitations, such as a narrow range of exer-

cise conditions (Sun et al., 2011; Yan et al., 2017), the

absence of statistics comparing accuracies between ex-

ercise conditions (Poh & Poh, 2017; Sun et al., 2011;

Wang, den Brinker, Stuijk, & de Haan, 2017b; Yan

et al., 2017), and the sole focus on facial measurements

(Poh & Poh, 2017; Sun et al., 2011; Wang, Balmaekers,

& de Haan, 2016; Wang et al., 2017b; Yan et al., 2017).

We assessed rPPG’s accuracy under conditions in which

participants either were at rest or had higher and more

variable heart rates, after exercise.

(iv) When participants reach heart rates above approximate-

ly 100 beats per minute (BPM), the respiration rate can

rise to a level that is similar to the heart rate at rest.When

no prior knowledge about the individual’s physical state

is available, it can be difficult to dissociate heart rate

signals from respiration signals, especially when the

breathing rate dominates the signal variance or when

the pulsatile variations are highly distorted by noise.

Studies often report the presence of respiration signals

within the recorded heart rate signals, but no simple and

accessible solution has so far been provided to filter out

the signal and select heart rate rather than respiration for

analysis. Here we implemented a straightforward deci-

sion rule that allowed us to dissociate heart rate and

breathing rate in the signal’s frequency spectrum.

Our third goal, to develop a basic, standardized report pro-

cedure that would assess rPPG accuracy from several perspec-

tives, was achieved by reporting correlations and difference

scores between rPPG and a reference, and by displaying

scatterplots and Bland–Altman plots for qualitative inspection

of rPPG’s accuracy and the linearity of its relationship with the

reference. RPPG’s correlations with the reference are also re-

ported as a function of video length, to inspect how much

recording time was needed to reach a preferred level of accu-

racy (Tulyakov et al., 2016). Finally, rPPG heart rate measure-

ments might correlate with the reference’s measurements, but

the correlations could be too weak to determine whether or not

a person has exercised. Thus, rPPG’s accuracy in dissociating

between exercise-induced differences in heart rates per body

part is reported, in the form of difference scores and signal

detection theory’s calculation of the distinctiveness of distri-

butions (area under the curve, or AUC).

Method

Participants

Twenty-one individuals participated in the experiment (ageM

= 24.24 years, SD = 5.77; 11 male, 10 female). All participants

received study credit or money for participation, were naïve to

the purpose of the experiment, gave informed written consent

before the experiment, and were debriefed after the
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experiment. To ensure good skin visibility, the participants

had no skin makeup and wore loose clothing that could be

easily rolled up for recordings of the legs and arms. The par-

ticipants’ appearances varied considerably. Some of them had

facial hair or wore glasses. Skin tone ranged from pale white

to dark brown. Since the performance of physical exercise was

part of the experiment, individuals could only participate

when they stated that they had no medical heart condition.

The experiments conformed to the ethical principles of the

Declaration of Helsinki and were approved by the local ethics

commission of Utrecht University.

Design and apparatus

The experiment consisted of a repeated two-factor design with

the independent factors of exercise and body part recording.

The exercise conditions consisted of rest, light exercise, and

moderate exercise, and the recorded body parts were full

faces, wrists including the palm of the hand, and calves, cov-

ering the entire backside of the lower leg from ankle to knee

(see Fig. 1a–c).

Videos were recorded in a room with ambient background

lightning by fluorescent TL tubes. Participants sat on a chair in

front of a camera (Fig. 1d). The camera was a low-end

LifeCam HD-3000 webcam manufactured by Microsoft

(Redmond WA, United States) that recorded uncompressed

AVI videos at 30 frames per second with a resolution of

1,280 × 720 pixels at eight-bit quality per RGB channel.

Note that the resolution and frame rate of the camera might

not necessarily affect rPPG’s accuracy (Blackford & Estepp,

2015). Videos were recorded with the open-source program

iSpy (http://www.developerinabox.com/). Default settings for

brightness, contrast, saturation, sharpness, and white balance

were used, and all automated dynamical corrections were

turned off. Exposure, a parameter that sets the duration over

which light is captured by the webcam’s CCD per frame, was

set at – 10. All other amplification and control options in iSpy

were turned off. The camera was placed 20 cm from the body

parts. A light box, placed at the same distance, illuminated the

body parts with 1,370 cd/m2. These settings ensured proper

illumination conditions and prevented saturated regions in the

image frames. Facial pixel values were 208, 150, and 136,

averaged across all facial pixels, then averaged across video

frames, and then averaged across all videos, per RGB channel,

respectively.

A standard pulse oximetry (contact PPG) finger-clip de-

vice, the CMS50E manufactured by Contec (Qinhuangdao,

China), was used for the reference heart rate measurements.

The pulse oximeter was attached to the right index finger and

connected to a desktop computer through an USB cable.

Custom made MATLAB (MathWorks, Natick, MA, USA)

software recorded the heart rate pulses from the oximeter in

parallel with the video recordings. The pulse oximeter was not

attached during exercise.

Procedure

Rest condition Participants first rested for a couple of minutes

in a chair (rest condition). Then, a sequence of three record-

ings were made from the participant’s head, wrist, and calf.

Participants were instructed to position themselves as stable as

possible in front of the camera and to minimize movement

Fig. 1 Snapshots from recordings of the face (a), wrist (b), and calf (c) of author K.v.d.K. The apparatus consisted of a wooden structure that supported

the body parts to minimize movement, a webcam for recordings, and a light box for equal illumination across the surface of the body parts
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during the recordings. The recorded body parts were placed

inside a wooden support structure in front of the camera (see

Fig. 1d). The order of body part recordings was randomized

and counterbalanced across participants. Each recording

lasted approximately 30 s.

Light exerciseNext, participants had to exercise by running on

the spot (i.e., making running motions while staying on the

same exact location). The moment the researcher K.v.d.K.

heard a substantial increase in breathing rate (approximately

after 60 s), the same recording procedure described above was

performed. Participants were asked to exercise for a short

moment between each recording to keep their heart rate at

relatively the same level across recordings.

Moderate exerciseAfter the light exercise and after the second

sequence of recordings, participants performed the running

exercise again, but this time longer than in the previous light

exercise condition (approximately 120 s). If participants re-

ported fatigue after running for a while, they could switch to

performing jumping jacks (i.e., moving both arms and legs in

and out in parallel while jumping). Again, recordings were

made from each body part after the exercise.

Software development

The extraction of the heart rate signal from videos of human

skin surface requires complicated image processing software.

Before we explain how this can be accomplished, we want to

note that we have made our MATLAB software and

supporting details available to the public on https://github.

com/marnixnaber/rPPG. We also invite others to either edit

and improve these scripts or write custom software and send

their scripts to us for benchmark testing. Improved versions of

the algorithm published in this article will fall under an open-

source GNU general public license (see the website above for

details). Either before or after publication of new rPPG soft-

ware, scientists can contact author MN to request to test the

performance of their rPPG software on a set of videos record-

ed under variable conditions. This software remains intellec-

tual property of the owner and it will not be published on the

website without permission. Only the test reports will be pub-

lished on a webpage (http://www.marnixnaber.nl/rPPG/). The

goal is to gradually extend the set of videos in the future by

including more video recordings made with a large variety of

apparatus that differ in cameras, object distance, FPS,

resolution, lighting conditions, skin colors, and so forth.

These videos will not be made publicly available, because of

privacy and to prevent the development of overfitting

algorithms (i.e., generalization errors). In other words, the

precise content of the test videos will remain unknown to

prevent that participants are recognized and that software is

adapted in such a way that it can only measure heart rate

accurately for this set of videos but not for other videos. The

test results will be made available in summary format on the

aforementioned webpage that provides an overview of all

available rPPG software and corresponding heart rate

detection performances.

Analysis

Webcam-based rPPG relies on a series of image-processing

steps to extract blood pulsation from the recorded videos and

to determine the heart’s beating rate (HR). These steps

consisted of (i) spatiotemporal cropping of videos, (ii) facial

skin selection, (iii) averaging and filtering signals, (iv) inde-

pendent component analysis, (v) fast Fourier transform, (vi)

filtering power spectra, and (vii) respiration/movement signal

rejection. Here below we provide detailed information per

individual processing step.

Spatiotemporal cropping Heart beat-induced fluctuations in

reflectance can only be detected at the skin’s surface.

Therefore each video was cropped to a fixed region of interest,

removing irrelevant background objects. Faces were automat-

ically detected with a cascade object detector of MATLAB’s

computer vision system toolbox. Videos were also cropped in

time by removing the first and last 3 s, because the first part of

the video often contained an increase in the camera’s light

sensitivity and the second part tended to contain more body

movements, as participants anticipated the end of recording.

Facial skin selection The background, clothing, teeth, hair, and

other irrelevant parts were filtered out of each frame with a skin

color selection procedure. Our script offers to methods to detect

the skin: (1) automatic selection based on color clusters, and (2)

manual selection of hue and saturation ranges. The automatic

selection consisted of a k-means clustering approach (squared

Euclidean distance, four clusters, maximum of 100 iterations)

on a and b dimensions of CIE LAB color space divided the area

within a bounding box around the face in separate color clus-

ters. The color cluster with the most pixels in the center of the

face was selected as the skin pixels. The manual selection

consisted of the selection of pixels that fell within a range of

skin hues and saturations. This range was set for the first frame

and then used for the following frames of each video. The hue

and saturation ranges were set manually by researcher K.v.d.K.

by adjusting the size and angle of a selection wedge within the

hue–saturation color map (Fig. 2a). For example, see Fig. 2b for

the selected pixels of the first frame of a face with hues and

saturation levels that fell within the wedge.

Averaging and filtering signals The average of all selected

pixels was computed per video frame and RGB color channel.

The resulting average pixel value as a function of time was

noisy (green line in Fig. 3a) and subject to considerable low-
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frequency variations. To remove any influence of movement

and other factors inducing low-frequency changes in the sig-

nal, a zero-phase sixth-order Butterworth filter with a cutoff

frequency setting of 0.04 Hz was applied to the raw signal, to

compute the low-frequency signal (blue line in Fig. 3a). This

signal was computed per RGB channel and subtracted from

the raw signal. The resulting signals fluctuated around zero

and contained no low-frequency fluctuations (Fig. 3b).

Independent component analysis The filtered signals from

each RGB color channel were used as input for an indepen-

dent component analysis (ICA; Comon, 1994), to extract the

most prominent component signal present in all color chan-

nels (i.e., most likely the heart rate), thereby increasing the

signal-to-noise ratio. Performing the ICA is useful for improv-

ing heart rate signal extraction (Holton, Mannapperuma,

Lesniewski, & Thomas, 2013). The ICA looked for three

components, using a maximum of 2,000 iterations, with ver-

bose set off and stabilization turned on.

Fast Fourier transform (FFT) The component signals were fast

Fourier transformed. An FFT converts the component signals

into an estimation of power spectra (squared magnitude) that

indicates which oscillatory sine-wave frequencies were repre-

sented most powerfully in each component signal (Fig. 3c). A

high peak in power at a certain frequency means that the

component was made upmostly of a sine-wave at that specific

frequency. This frequency is in most cases a reflection of the

detected heart rate. For convenience, we represented power as

a function of heart rate rather than frequency. Previous studies

had applied a time–frequency analysis to show how the fre-

quency spectrum changes as a function of recording time (Hu,

Peris, Echiadis, Zheng, & Shi, 2009), but the short-time

Fourier transform provided no clear heart rate signal with

the present data, probably due to the relatively short record-

ings and low signal-to-noise ratio in many videos.

Filtering power spectra Heart rate tends to decrease toward a

baseline rest rate after exercise. This causes the power peak

representing heart rate in the frequency spectra to be smeared

out or appear as small individual peaks in close proximity

around a range of heart rate frequencies. To be able to select

the correct power peak at the average corresponding heart rate,

and not an irrelevant power peak, the power spectra were

filtered with a zero-phase third-order low-pass Butterworth

frequency filter (LFF) with a cutoff frequency setting of

0.2 Hz (see the dotted lines in Fig. 3c and d).

Respiration/movement signal rejection The heart rate at the

highest power peak across components was selected as the

final rPPG heart rate. However, it was noticed that often two

relatively high power peaks were visible in the frequency

spectra of the components after exercise. Often a high power

peak was present below a frequency of 90 beats per minute

(BPM), and a second, lower power peak was present above 90

BPM (see, e.g., Fig. 3d). In such cases, the high peak at the

lower frequency was probably caused by respiration or bodily

movement, while the smaller peak at the higher frequency was

caused by heart pulsations (Hu et al., 2009). To autonomously

extract the heart rate signal rather than other, irrelevant signals,

we implemented a custom power peak selection rule

consisting of two IF/THEN/OTHERWISE statements: (i) If

more than two peaks were present in a single power spec-

trum, including one large peak below and one smaller

peak above the cutoff rate of 90 BPM, and (ii) if the

lower peak was not smaller than 70% of the height of

the highest peak, then select the lower peak’s frequency

as the heart rate. Otherwise, select the frequency of the

Fig. 2 Example color space, showing pixels from a single frame from a

face recording (a). Hue is circularly represented as a function of angle

around the color space center (green circle), and saturation is radially

represented as a function of eccentricity extending from the colorless

center. The blue wedge indicates which pixels in the hue–saturation color

space were selected for rPPG processing. The skin color selection proce-

dure ensured that the processed pixels only represented the skin surface

and not eyes, clothes, or other nonskin areas (b)
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highest power peak for the corresponding heart rate. We

refer to this selection rule as respiration rejection (Resp).

Multiple cutoff rates and minimal peak differences were

explored, and the parameters described above resulted in

the best correspondence between reference pulse oximetry-

based heart rates and rPPG heart rates.

Fig. 3 (a) The jagged solid line represents an example of the original

signal of pixel values of the green channel of a video recording of a

face after moderate exercise. The blue line is a low-pass filter of the

original signal. The low-pass signal was subtracted from the original

signal, to remove slow fluctuations due to movement and other confound-

ing factors. Next an, an independent component analysis (ICA) was per-

formed. (b) The strongest component computed from the ICA. Power

frequency spectra were computed from the resulting component signals.

(c) Example of a frequency spectrum. Fast Fourier transform low-pass

filters (dotted lines) were applied to the spectra, to remove noise and

highlight a multitude of individual power peaks that appeared close to-

gether within a small range of varying heart rates. (d) Sometimes the

respiration signal power was strongly present in the frequency spectrum.

In these cases, the second-highest power peak was selected as the corre-

sponding heart rate. The black dashed lines in panels c and d indicate the

reference heart rate measured with the pulse oximetry device

(2019) 51:2106–2119Behav Res2112



Results

Pulse oximetry and rPPG HR measurements per
exercise and body part condition

We first performed a sanity check to ensure that the exercise

instructions indeed resulted in significant differences in heart rates

across exercise conditions, as measured with the reference pulse

oximeter. As is shown in Fig. 4a–c, light exercise resulted in

higher heart rates than at rest, and moderate exercise resulted in

even higher heart rates than did light exercise. The heart rates

averaged across recording durations (Fig. 4d) differed significant-

ly across the exercise conditions [F(2, 20) = 259.41, p < .001].

Post-hoc t tests comparisons indicated that each exercise condi-

tions differed significantly from the others in heart rate [rest vs.

light: t(20) = 12.63, p < .001; rest vs. moderate: t(20) = 20.79, p <

.001; light vs. moderate: t(20) = 11.16, p < .001]. Thus, the exer-

cise instructions resulted in the expected increases in heart rate.

Comparison between pulse oximetry and rPPG

The varying exercise conditions resulted in a large range of

heart rates, as measured with pulse oximetry across conditions

and participants. Next, we examined whether these heart rates

were comparable to the rates measured with camera-based

rPPG. We calculated and display Spearman correlations in

Fig. 5, per body part recording (rows) and per analysis method

applied (columns). Qualitative assessment of these correla-

tions suggested that the application of an LFF of the spectrum

(see Fig. 3c and d) and respiration rejection filter produced

better correlat ions (for Bland–Altman plots, see

Supplementary Fig. S1). The heart rate measurements of facial

rPPGwere highly comparable to those from pulse oximetry (r =

.97, p < .001), and correlations in the wrist (r = .50, p < .001)

and calf (r = .27, p < .001) measurements were significantly

positive but weak. The correlations between the camera-based

and pulse-oximetry-based heart rate recordings depended on

the amounts of video frames analyzed (Fig. 6). As more frames

were added in the rPPG analysis, the correlations increased.

Next, we quantitatively assessed differences in overlap be-

tween the rPPG and pulse oximetry heart rate measurements

across conditions when all filters were applied (Fig. 5c, f, and

i). We performed a two-way repeated measure analysis of

variance (ANOVA) on the absolute (rectified) difference be-

tween the heart rates of both measures, with the factors exer-

cise and body part condition. A significant main effect of body

Fig. 4 Pulse oximetry-based heart rates, in beats per minute

(reference) as a function of time during rest (red), after light

exercise (green), and after moderate exercise (blue), during facial

(a), wrist (b), and calf (c) recordings. Average pulse oximetry-

based heart rates during recording per exercise condition, pooled

across all body recordings (d). The dotted lines (a–c) and error

bars (d) around the mean indicate standard errors
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part [F(2, 40) = 19.62, p < .001] and an overall inspection of

post-hoc t tests (see Table 1 for the means and standard

deviations, and Table 2 for statistical comparisons) indicated

that facial rPPG was significantly more accurate than rPPG on

the wrists and calves, when assuming that the reference pulse

oximetry measured ground truth. A significant main effect of

exercise [F(2, 40) = 4.54, p = .017] and a significant interac-

tion between exercise and body part [F(4, 80) = 3.46, p = .012]

showed that facial rPPG at rest produced the best heart rate

recordings, whereas the wrist and calf recordings showed no

noteworthy differences across exercise conditions.

Finally, we investigated whether rPPG adequately indicat-

ed which exercise condition was performed, on the basis of

the detected heart rate. The average heart rates measured with

rPPG, with all applied filters, differed significantly across ex-

ercise conditions [F(2, 20) = 29.35, p < .001]. Post-hoc t test

comparisons per body part recording suggested that heart rate

differed significantly across all exercise conditions for the face

Fig. 5 Scatterplots displaying correlations between the average heart rate

(beats/min) measurements of webcam-based remote PPG and pulse

oximetry-based PPG per body part (rows) and per analysis method (col-

umns). A combined procedure of applying an independent component

analysis (ICA), low-pass frequency filtering (LFF) the power spectra, and

rejecting the respiration signal (Resp) provided the best correlations for all

body part recordings (c, f, and i). Videos of the webcam recordings of the

face provided higher correlations with the pulse oximetry recordings than

did the wrist recordings, and wrist recordings were better than the calf

recordings, independent of the applied analyses (compare the rows)
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recordings, and that it differed both between light and moder-

ate exercise and between rest and moderate exercise for the

wrist recordings. However, heart rate did not differ across

exercise conditions for the calf recordings (see Table 3).

Signal detection analysis of the AUCs indicated that the heart

rates measured with face rPPG during rest were 83% (AUC =

0.92) separable from the heart rates measured during light

exercise, and 100% (AUC = 1.00) separable from those re-

corded during moderate exercise. The heart rates measured

with face rPPG during light exercise were 78% (AUC =

0.89) separable from those during moderate exercise. The

AUCs for the same comparisons for wrist rPPG were 32%,

73%, and 57% (AUC = 0.66, 0.87, 0.79), respectively. The

AUCs for the same comparisons for calf rPPG were 5%, 14%,

and 6% (AUC = 0.53, 0.57, 0.53), respectively. In sum, face

rPPG provided good exercise indications, wrist recordings

provided recordings useful to detect whether participants had

exercised moderately versus not at all or lightly, and calf re-

cordings were inaccurate in determining an exercised-induced

increase in heart rate.

Discussion

This study targeted the development and publication of basic

open-source rPPG software and aimed to demonstrate its func-

tionality with two experimental manipulations: (i) to investi-

gate how accurately rPPG can detect heart rates at rest as

compared to heart rates after exercise, and (ii) to examine

whether rPPG targeted on calves and wrists are as accurate

as rPPG targeted on faces under ambient light conditions. As

far as we know, rPPG’s accuracy had not yet been reported by

previous studies with a similar combination of experimental

manipulations, a consumer-level camera, a relatively simple

method, and an open-access rPPG algorithm.

We showed that rPPG can detect heart rates in faces slightly

more accurately when the heart rate is slow (< 90 BPM) than

when it is fast. It is possible that the variation in accuracy

across exercise conditions could be related to signal distor-

tions by breathing-induced movement. A more likely expla-

nation is that exercise induced more variability in heart rates

(compare the blue and red lines in Fig. 4a), and by definition it

is more difficult to detect unstable heart rates, independent of

the applied filteringmethods. Nonetheless, the application of a

low-pass filter on the power frequency spectra of the mea-

sured rPPG signal helped take into account variable heart

rates. Future software improvements could try to cover such

variabilities more accurately bymeasuring heart rate as a func-

tion of recording time with a sliding window over the signal

(e.g., time–frequency analyses). Note that such analyses re-

quire shorter time windows, resulting in less signal power, and

thus lower rPPG accuracies.

Although rPPG was highly accurate for video recordings of

the face, recordings of the wrist diminished accuracy to such a

degree that rPPG could only detect whether a person had per-

formed moderate versus either light or no exercise. RPPG

targeted on the calf was unreliable. An explanation for the dif-

ferences in rPPG’s accuracy across body parts is that faces have

a very high amount of microvascular networks in the superficial

skin layers (Spalteholz, Spanner, Nederveen, & Crawford,

1967). The wrists also have many veins visible at the skin

surface, but the calves lack such anatomical characteristics.

The low accuracy of rPPG measurements on the wrists and

calves could be improved by applying more sophisticated

rPPG algorithms and apparatus that take into account the

distorting effects of bodily movements (van Gastel, Stuijk,

& de Haan, 2016a, 2016b) and apply polarization camera

filters (Kamshilin et al., 2016; Sidorov, Volynsky, &

Kamshilin, 2016; Trumpp, Bauer, Rasche, Malberg, &

Zaunseder, 2017). An interesting option would be to identify

the best angle in color space along which pixel colors change

as a function of heart rate rather than motion (e.g., Bousefsaf

et al., 2013; Wang, den Brinker, Stuijk, & de Haan, 2017a).

Note, however, that the present article’s goal was not to im-

plement such state-of-the-art algorithms but to initiate an

Table 1 Means and standard deviations of absolute difference between

rPPG and pulse oximetry heart rate (beats/min)

Exercise

Body

Part

Rest Light Mod

Face 2.34 ± 1.51 5.91 ± 4.78 5.60 ± 4.00

Wrist 29.75 ± 25.07 16.11 ± 21.03 18.78 ± 17.45

Calf 36.83 ± 24.42 19.47 ± 16.63 29.07 ± 22.63

Fig. 6 Correlations between remote and pulse oximetry-based PPG as a

function of video length per recorded body part (with all filters applied:

ICA + LF + Resp). Video length, on the x-axis, means that the data were

analyzed in the period from the sixth second until the xth second of the

video. Note that the first and last 3 s of the video were not analyzed (see

the Method section), and correlations can only be calculated with a min-

imum of three data points
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open-access collaborative development project that will hope-

fully lead to state-of-the-art algorithms and improved rPPG

accuracies in the future.

One goal of the present article was to provide scientists with

an open-source script that they can use to extract heart rate from

videos of participants. We see several applications of our algo-

rithm in the field of social sciences, including psychology.

Heart rate and heart rate variability (HRV) are indicators of

stress, workload, and emotion processing. For instance, the

heart rate slows down more when people watch unpleasant

stimuli than when they watch neutral or pleasant stimuli

(Appelhans & Luecken, 2006, Greenwald, Cook, & Lang,

1989; Winton, Putnam, & Krauss, 1984). RPPG could thus

potentially be used to determine whether or not people find

advertisements and other media types pleasant. Conversely,

the heart rate tends to accelerate when observing negative as

compared to positive facial expressions (Critchley et al., 2005;

Levenson, Ekman, & Friesen, 1990). Heart rate measurements

with rPPG might thus reveal which emotions were experienced

during interaction without making participants aware of the

measurements. Although these possibilities have not yet been

examined, studies have used rPPG to show that the components

of HRV (e.g., the ratio between low- and high-frequency chang-

es in HRV) change when participants perform a stressful task,

as compared to episodes of relaxation (Bousefsaf et al., 2013;

McDuff et al., 2014). These initial finding suggest that rPPG is

an affordable and accessible tool to measure changes in task

demands in laboratories and work-related environments.

Camera-based systems such as rPPG enable more than just

the detection of heart rates. One interesting development is the

detection of blood oxygen saturation by using a remote SpO2

camera setup that uses multiple wavelengths of light (van

Gastel et al., 2016a;Wieringa et al., 2007). Another possibility

is to record respiration rate with rPPG (van Gastel et al.,

2016b). In the present study, we ignored respiration to accu-

rately detect heart rate. The influence of respiration on the

rPPG power spectra can be a problem when people have

exercised and respiration rate becomes higher than 50 breaths

per minute, therewith entering the range of heart rates. In other

words, we treated the potential influence of respiration on

rPPG purely as a confounding signal. However, it can be of

great value to use rPPG to measure respiration (Sun et al.,

2011; Tarassenko et al., 2014). Although this is out of the

scope of the present study, future work could explore to what

degree respiration is detectable in a variety of conditions.

These studies should include validated measurements of res-

piration rates to confirm that the presence of a low frequency

signal in the data is indeed caused by breathing.

In addition to the experimental investigations described

above, this article was also written with the goal to improve

the quality of scientific investigations into rPPG accuracy by

(i) creating a standardized testing procedure for the assessment

of rPPG’s accuracy and by (ii) describing a standardized report

procedure that assesses rPPG’s accuracy in several manners.

We hope that this article will serve as a guide for future pub-

lications on rPPG. We further would like to extend our video

database of human skin recordings and invite other scientists

to share existing databases with us.

This study focused on the advancement of an affordable,

simple, and accessible rPPG method. However, we do

Table 2 Post-hoc t test comparisons between differences in rPPG and pulse oximetry heart rates (beats/min)

Face Wrist Calf Face Wrist Calf Face Wrist

Rest Rest Rest Light Light Light Mod. Mod.

Wrist Rest 4.53***

Calf Rest 6.61*** 1.14

Face Light 2.28* 3.82** 6.29***

Wrist Light 2.58* 2.01 3.05** 1.89

Calf Light 3.83** 1.54 3.11** 3.40** 0.38

Face Mod. 1.26 4.13*** 5.70*** 1.03 2.37* 3.49**

Wrist Mod. 3.46** 1.57 2.56* 2.71* 0.71 0.13 3.41**

Calf Mod. 4.96*** 0.01 1.05 4.79*** 1.76 2.38 4.58*** 1.71

* p < .05, ** p < .01, *** p < .001

Table 3 Post-hoc t test comparisons between average heart rates (beats/

min) across exercise conditions per body part condition (with all filters

applied)

Body Part Recording Comparison t Value p Value

Face Rest vs. light 10.94 < .001

Rest vs. moderate 8.23 < .001

Light vs. moderate 17.52 < .001

Wrist Rest vs. light 1.32 .200

Rest vs. moderate 3.60 .002

Light vs. moderate 3.69 .002

Calf Rest vs. light 0.13 .895

Rest vs. moderate 0.10 .924

Light vs. moderate 0.05 .964
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acknowledge the importance and relevance of advancing

rPPG methods with both high temporal and spatial resolu-

tions. To facilitate the accuracy of our method, we utilized fast

Fourier analysis (FFA) and other image-processing steps.

However, FFA can potentially be inaccurate when averaging

PPG waveforms across all pixels from the face’s surface, due

to the possibility that not all skin pixels display a signal with

the same phase (Moço, Stuijk, & de Haan, 2016; Teplov et al.,

2014). Despite this limitation, we have shown that the

facial measurements are still close to perfection, thus

indicating that signal averaging across skin surface is

not necessarily detrimental. Nonetheless, future studies

could try to improve the accuracy of wrist and calf

rPPG by synchronizing the phase of the heart rate sig-

nal across the skin’s surface (Kamshilin et al., 2016).

Another solution would be to divide the face in multiple

regions of interest (ROIs) and perform separate signal

analyses per ROI (Kwon, J. Kim, et al., 2015; Po et al.,

2018; Sun et al., 2011) before combining information

from the most relevant ROIs.

Another limitation of the present algorithm is the

setting of several parameters for the respiration rejec-

tion. It is yet unknown whether these parameters are

robust and lead to comparable performances in other

video recordings.

In sum, rPPG with consumer-level cameras is a promising

heart rate measurement tool, at least when targeted on facial

skin surfaces. This study showed that the application of rPPG

on nonfacial skin surfaces is a challenge. However, computer-

imaging science is progressing rapidly. Many solutions that

improve the extraction of the heart rate signal from videos

have recently been discovered, including the tracking of faces,

the use of filters of irrelevant color and motion changes, and

algorithms that detect pulsatile body movements (de Haan &

Jeanne, 2013; de Haan & van Leest, 2014; Wang et al., 2015).

We hope that rPPG imaging experts will continue to improve

rPPG methods to become more affordable and accessible and

to make their software available to the public through https://

github.com/marnixnaber/rPPG.
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