
An Open-Source Research Kit for the da Vinci R© Surgical System

Peter Kazanzides† , Zihan Chen, Anton Deguet, Gregory S. Fischer, Russell H. Taylor, and Simon P. DiMaio

Abstract— We present a telerobotics research platform that
provides complete access to all levels of control via open-
source electronics and software. The electronics employs an
FPGA to enable a centralized computation and distributed I/O
architecture in which all control computations are implemented
in a familiar development environment (Linux PC) and low-
latency I/O is performed over an IEEE-1394a (FireWire) bus
at speeds up to 400 Mbits/sec. The mechanical components
are obtained from retired first-generation da Vinci R© Surgical
Systems. This system is currently installed at 11 research
institutions, with additional installations underway, thereby
creating a research community around a common open-source
hardware and software platform.

I. INTRODUCTION

While open-source robot software, such as the Robot

Operating System (ROS) [1], has seen widespread adoption,

there are relatively few open hardware/software platforms

in widespread use within the robotics research community.

We consider a platform to be “open” if it allows researchers

to modify all levels of the control software. We specifically

focus on telesurgical systems, which require master input

devices, preferably with haptic feedback, and slave (or patient-

side) robots with the ability to actuate surgical instruments.

Currently, there are several haptic input devices with open

interfaces, ranging from low-cost systems such as the Phantom

Omni (now Geomagic Touch) and Novint Falcon, to more

costly alternatives. On the slave side, the Raven II research

robot [2] was recently disseminated to several institutions

via support from the National Science Foundation (NSF)

and is available for purchase from Applied Dexterity, Inc.

(Seattle, WA). The Raven II enables researchers to modify the

real-time servo control code, which runs on a Linux PC and

communicates with the hardware (e.g., motors and encoders)

via a USB interface. For research purposes, it is also possible

to employ a non-medical robot with open interfaces, such

as the Whole Arm Manipulator (WAM, Barrett Technology,

Inc., Cambridge, MA). An open telesurgical platform can

be created from these components, but would likely require

significant system integration effort and would not present a

unified control framework.

One alternative is to create a research platform from a

complete telesurgical system, such as the da Vinci Surgical

System R© (Intuitive Surgical, Inc., Sunnyvale, CA). The da

Vinci System, however, is a proprietary product and therefore

provides limited access to researchers. It can be configured (by

†P. Kazanzides, Z. Chen, A. Deguet, and R. Taylor are with the Department
of Computer Science, Johns Hopkins University, Baltimore, MD, USA. P.
Kazanzides can be reached at pkaz@jhu.edu. G.S. Fischer is with the Dept.
of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA,
USA. S. DiMaio is with Intuitive Surgical, Inc., Sunnyvale, CA USA.

da Vinci
Research Kit

FPGA, I/O, and
Amplifiers

Control PC
(Linux)

Proprietary
mechanical

hardware, with
documentation

Open source
electronics

(schematics, PCB
layout, and FPGA

firmware)

Open source
software

IEEE‐1394a
(Firewire)

Motors,
encoders,

pots, switches

Interfaces

ROS

Fig. 1. Overview of telerobotic research platform: Mechanical hardware
provided by da Vinci Surgical System, electronics by open-source IEEE-1394
FPGA board coupled with Quad Linear Amplifier (QLA), and software by
open-source cisst/SAW package with ROS interfaces.

the manufacturer) to provide a read-only research interface to

both the master and slave manipulators [3]. While useful for

some research projects (e.g., skill assessment), this interface

does not enable modification of the control algorithms and

therefore cannot support research in new control methods,

including autonomous or semi-autonomous control.

This paper presents the development of an “open-source

mechatronics” system, consisting of electronics, firmware,

and software (see Fig. 1), that is being used to control

research systems based on the first-generation da Vinci system.

This robot hardware is becoming increasingly available to

researchers via the reuse of retired clinical systems. The

following sections describe the overall design approach,

followed by the da Vinci mechanical components, open-source

control electronics, firmware, and software. The software

is organized into several layers to enable researchers to

integrate with their desired robot framework. We provide

a fully functional component-based system using the open-

source cisst libraries [4], [5], [6]. These libraries support

both real-time device (robot) control and real-time computer

vision, which are necessary components of telesurgical robot

systems. The Surgical Assistant Workstation (SAW) package,

which is built on cisst, includes components that implement

interfaces to many devices, including haptic input devices

and robots [7], [8]. For the research da Vinci System, our

implementation includes SAW components for low-level I/O,

joint-level control, high-level control, and teleoperation. It

also includes components that provide ROS interfaces.

2014 IEEE International Conference on Robotics & Automation (ICRA)

Hong Kong Convention and Exhibition Center

May 31 - June 7, 2014. Hong Kong, China

978-1-4799-3685-4/14/$31.00 ©2014 IEEE 6434

II. SYSTEM DESIGN

The primary design goal is to provide a system that enables

researchers to easily implement new algorithms at any level

of control. We therefore did not use an off-the-shelf motor

controller because it would not allow modification of the low-

level servo control algorithm. We assume that researchers will

be familiar with a Linux development environment, preferably

with either the RT-Preempt patch or a real-time extension

such as Xenomai or RTAI, and therefore focused on a system

architecture that enables all software to be implemented in

this environment.

We considered several design approaches, which can be

categorized based on whether the computation and I/O are

centralized or distributed. Historically, processing and network

limitations favored either centralized computation and I/O,

where all robot cables are connected to I/O boards inside a

central computer, or distributed computation and I/O, where

high-level control is performed on a single computer, with

low-level control performed on embedded microprocessors

connected via a serial network such as Controller Area

Network (CAN), Ethernet, or RS-485. The latter approach

did not require a high-performance (i.e., low latency and high

bandwidth) network because the high-level control typically

executes at hundreds of Hertz and provides setpoints to the

low-level control at this rate. The availability of high-speed

serial networks with real-time performance, such as Ethernet

for Control Automation Technology (EtherCAT), SERCOS

III, and IEEE-1394 (FireWire), has enabled an approach that

can be called centralized computation and distributed I/O

[9]. In this approach, the real-time communication network

allows all control computations to be implemented on a

high-performance computer that contains a familiar software

development environment (e.g., Linux, with or without real-

time extensions), while preserving the advantages of reduced

cabling by distributing the I/O. This allows a researcher to

develop both high-level supervisory control and low-level joint

control in the same development environment, thus enabling

high flexibility in control algorithms while maintaining

precise real-time hardware control. This is particularly useful

for developing haptic interactions and virtual fixtures. We

implemented this architecture by designing custom electronics

that uses a field-programmable gate array (FPGA) to provide

direct, low-latency, interfaces between the high-speed serial

network (IEEE-1394a, in our case) and the I/O hardware. We

chose IEEE-1394a because it is widely available, has high

performance (up to 400 Mbits/sec), supports daisy-chaining at

the physical layer, and there is ample documentation [10] to

enable implementation of the link layer protocol on an FPGA,

as described in Section IV-D. The potential disadvantages of

IEEE-1394a are the lack of high-flex cables and the length

limits that make it difficult to route cables inside a robot arm.

The centralized computation and distributed I/O archi-

tecture has been used in other systems. Pratt reported a

system that uses IEEE-1394a to communicate between a

control PC and distributed FPGA boards in a 12-axis biped

robot system[11]. The MIRO surgical robot developed by the

German Aerospace Center (DLR) uses SpaceWire, a 1 GB/s

full duplex serial link with latency less than 20 µs, to connect

distributed FPGA-based I/O boards to a centralized control

PC, running the QNX real-time operating system [12]. Among

the Ethernet-based real-time protocols, EtherCAT appears to

be gaining the widest deployment. As an example, Willow

Garage uses EtherCAT to close a 1 kHz loop between a

control PC (with real-time operating system) and the encoders

and motors in its two-armed mobile robot system (PR2) [13].

III. MECHANICAL HARDWARE

The mechanical hardware is obtained from retired first-

generation da Vinci Surgical Robot Systems (often called

da Vinci Classic). There are two paths for researchers to

obtain this hardware: (1) by directly acquiring a retired

clinical system (e.g., from a local hospital), or (2) by

obtaining the Research Kit for the da Vinci System from

Intuitive Surgical. The Research Kit consists of the following

components: two Master Tool Manipulators (MTMs), two

Patient Side Manipulators (PSMs), a High Resolution Stereo

Viewer (HRSV), a footpedal tray, and documentation (e.g.,

wiring diagrams, connector pinouts, kinematic parameters).

It does not include the passive Setup Joints that support

the PSMs, the Endoscopic Camera Manipulator (ECM), the

stereo endoscope, control electronics, and software. Because

the electronics and software are either proprietary (closed)

or not included, it motivates the development of a common,

open-source electronics and software platform for the research

community, which is described in the following sections.

IV. ELECTRONICS

The control electronics is based on two custom boards

(Fig. 2): (1) an IEEE-1394 FPGA board, and (2) a Quad

Linear Amplifier (QLA). The schematics, firmware, low-level

software interface, and documentation are available via a

public git repository. These boards were designed for general

mechatronics use, but are well suited for controlling the

da Vinci Surgical System. Although we expect that most

research will be implemented via software on the PC (as

encouraged by the centralized computation and distributed

I/O architecture), the availability of the electronic designs

(Altium Designer format) and FPGA firmware (Verilog source

code) enables researchers to modify any aspect of the system.

Some possibilities include: (1) an alternate FPGA board with

a different interface, such as EtherCAT, that could be used

with the QLA, (2) an I/O board to mate with the IEEE-

1394 FPGA board and interface to different hardware, such

as the da Vinci passive setup joints, and (3) estimation or

closed-loop control in the FPGA firmware.

A. IEEE-1394 FPGA Board

This board contains a Xilinx Spartan-6 XC6SLX45-2

FPGA, configuration PROM, IEEE-1394a physical layer

(PHY), two IEEE-1394a 6-pin connectors, a low-speed USB

interface (virtual COM port), and required power supplies.

It contains two 44-pin connectors that provide power and

FPGA I/O to a companion board, such as the QLA. It also

contains a 16-position rotary switch for board identification.

6435

Fig. 2. IEEE-1394 FPGA board and Quad Linear Amplifier (QLA)

Motor

AmplifierADC

DAC

Filter

Differential
Amplifier

Diff. Receiver

Pot

Enc

Sense
Resistor

Filter

+

Motor current

IEEE 1394
PHY

SPI

SPI
buffers

quad.

FPGA

read

write

Power
Op Amp-

Power
Op Amp

-
ADC

Fig. 3. Block diagram of I/O devices (digital I/O, safety relay, and
temperature sensors not shown)

B. Quad Linear Amplifier (QLA)

The Quad Linear Amplifier attaches to the IEEE-1394

FPGA board and provides all hardware required for current

(torque) control of four DC brush motors, using a bridge

linear amplifier design (Fig. 3). Each of the four channels

contains the following components:

• One 16-bit digital-to-analog converter (DAC) to enable

the FPGA to set the desired motor current.

• Two 16-bit analog-to-digital converters (ADCs) to digi-

tize the measured motor current and an external analog

sensor (e.g., potentiometer).

• Differential receivers for one quadrature encoder with

A, B, and Z (index) channels; these signals are routed

to the FPGA board for quadrature decoding.

• Two OPA-549 power operational amplifiers (op amps) to

provide bi-directional control of a motor from a single

power supply (up to 6.25 Amps at up to 48 Volts).

• Digital inputs for one home and two limit switches;

these can also be used as general-purpose inputs.

• One open-collector digital output with high current drive

(up to 1 Amp).

The board also contains a software-controlled, normally-

open safety relay, which allows the software to disable the

motor power supply, and two heat sink temperature sensors.

C. Controller Packaging

The electronics have been packaged into rackmount en-

closures (see Fig. 4) by the group at Worcester Polytechnic

Institute. Each enclosure contains two sets of FPGA and

da Vinci Patient Side

Manipulators (PSMs)

Stereo Viewer

IEEE-1394 controllers (4

enclosures with 8 nodes) Footpedal Tray

da Vinci Master Tool

Manipulators (MTMs)

Control PC

Fig. 4. da Vinci Research Kit with four enclosures (two MTMs, two PSMs)

QLA boards, which are sufficient to drive a single da Vinci

manipulator (MTM or PSM). The enclosure also contains all

necessary power supplies and a manipulator interface board,

provided by Intuitive Surgical, Inc., that connects the DL-156

Zero Insertion Force (ZIF) connector used by the da Vinci

manipulators to the DB9 and VHDCI68 connectors used by

the QLA for motor power and signals, respectively. This

simplifies the hardware setup, since a researcher must only

connect the da Vinci manipulator cable, one or two FireWire

cables, and a power cord (see accompanying video).

D. FPGA Firmware

The FPGA has three major responsibilities: (1) exchanging

data with the PC via the IEEE-1394 bus, (2) interfacing to

I/O devices, and (3) hardware-level safety checking.

The IEEE-1394 protocol supports two types of services:

isochronous and asynchronous transfers. We selected asyn-

chronous transfers for our application because it was relatively

easy to implement in the FPGA and was sufficient to perform

servo control at a 1 kHz rate. To conserve FPGA resources

and simplify implementation, we implement only a subset of

the IEEE-1394 link-layer protocol. Specifically, our FPGA

nodes are not capable of serving as bus master (we instead

rely on the PC to fulfill this role) and all transfers much be

asynchronous quadlet (32-bit) or block (multiple quadlets)

read or write transactions.

When the FPGA receives a write packet over the IEEE-

1394 bus, it does the following: (1) checks the incoming

packet’s Cyclic Redundancy Check (CRC) and silently drops

the packet if the CRC is invalid, (2) generates and sends an

acknowledgement packet, (3) decodes the destination device

address and data, and (4) writes data to internal registers

and I/O devices. For example, the desired motor current

is shifted out via the Serial Peripheral Interface (SPI) to

the DAC. Similarly, to respond to a read request from the

PC, the FPGA latches various I/O device data and sends all

requested data in a single block transfer. To avoid latency,

the FPGA ensures that all feedback data is available in local

registers. For example, because one ADC conversion cycle

requires 0.7 µs, the FPGA firmware continuously requests

data conversions and stores the results in registers.

6436

This communication protocol is sufficient for implementing

a 1 kHz control loop on a system with two MTMs and two

PSMs (8 FPGA nodes). As we have previously measured, an

IEEE-1394 asynchronous read or write transaction (for a small

number of quadlets) requires approximately 35µs [14]. Thus,

a read and write to each of the 8 boards requires approximately

560µs, which is a little more than half of the available cycle

time. Fortunately, the IEEE-1394 protocol supports broadcast

communication and peer-to-peer transfers, so it is possible to

achieve faster control rates or scale up to more axes by having

the PC broadcast a single control packet to all FPGA nodes

and read a single feedback packet that has been assembled

via peer-to-peer transfers between the FPGA nodes. Our

preliminary testing has indicated that the broadcast write

has a lower overhead (because there is no acknowledgment

packet) and that a peer-to-peer transfer between two FPGA

nodes requires less than 5µs. Experimentally, we have found

that with this protocol, the I/O time on an 8-node system can

be reduced to approximately 100µs.

In addition to the read and write requests to the devices

involved in motor control, the FPGA firmware also supports

reading and writing to the configuration PROM that initializes

the FPGA. It is therefore possible to update the firmware via

the IEEE-1394 interface, which provides several advantages:

(1) no special JTAG programming cable is required, (2)

no special programming software is required, and (3) it

is much faster than the conventional JTAG programming

method (about 20 seconds versus several minutes). There is

no protection, however, against programming failures that

could prevent future firmware updates via the IEEE-1394

interface; in this unlikely case, the JTAG programming cable

would be required.

The firmware currently includes two safety features: a

watchdog timer and a motor current safety check. The

watchdog timer provides a range of timeout periods from 1 to

340 ms (setting the period to 0 disables it). If the watchdog

is not refreshed during this period (by writing to the FPGA),

it trips and disables all power amplifiers. This is especially

useful when the PC control software exits or communication

is lost. The motor current safety module is designed to catch

cases where the absolute value of the measured motor current

is significantly greater than the commanded motor current,

which would indicate a hardware defect.

V. SOFTWARE

In general, telerobotic software can be arranged into the

following functional layers (see Fig. 5): hardware interface

(I/O), low-level control (e.g., PID), high-level control, tele-

operation, and application. Within each of these functional

layers, we provide one or more of the following development

layers: primitive, object-oriented, and component-based. The

primitive layer is so named because it uses only primitive

C/C++ data types and avoids dependencies on external

packages. The object-oriented layer consists of C++ classes

that implement most of the functionality. This layer is

provided for researchers who either do not want to use a

component-based architecture, or prefer to use a different

real-time framework, such as Orocos [15]. The component-

based layer uses the classes from the object-oriented layer to

implement the components, using the cisst component-based

framework. Some components, such as the PID controller, are

reused from the Surgical Assistant Workstation (SAW). Both

packages are available via a public SVN/Trac repository,

https://trac.lcsr.jhu.edu/cisst (soon to be on GitHub). The

following sections describe the functional layers and illustrate

the three development layers that exist within the Hardware

Interface layer.

A. Hardware Interface Layer

The primitive development layer is provided by a C++

library that enables direct access to the raw I/O data via

the IEEE-1394 bus. This library has no external software

dependencies, other than libraw1394, which is a standard

Linux library for communication over IEEE-1394. Other

drivers, such as RT-FireWire [16], could be used to obtain hard

real-time performance. There is also a Microsoft Windows

implemention of libraw1394[17].

The API consists of two main classes: a FirewirePort

class to represent an IEEE-1394 port, and an AmpIO class to

represent one FPGA node on the bus. For a typical system,

one FireWire port will connect to multiple FPGA nodes;

thus the FirewirePort object maintains a list of AmpIO

objects. The FirewirePort class contains two methods,

ReadAllBoards and WriteAllBoards, which read all

feedback data into local buffers and transmit all output data

from local buffers, respectively. This allows the class to

implement more efficient communication mechanisms, such

as the broadcast write and consolidated read described in

Section IV-D. The AmpIO API provides a set of functions

to extract feedback data, such as encoder positions, from the

read buffer, and to write data, such as desired motor currents,

into the write buffer. All data types are unsigned integers

because they are stored as counts (or bits) in FPGA registers.

The objected-oriented development layer provides a

more convenient API because it relies on a vector package

to represent robot data as vectors of meaningful units, such

as radians and millimeters. We use conditional compilation

to select either cisstVector (the vector library within cisst) or

Eigen. This layer also defines data structures for configuration

parameters, such as sensor scale factors and the mapping of

hardware to robot joints. Configuration file parsers can be

created to populate these data structures from any defined

format. Currently, the software includes an XML file parser.

The component-based development layer consists of

the mtsRobotIO1394 component, which is a “wrapper”

around the software libraries provided by the primitive and

object-oriented development layers described above. This

component is specific to the FPGA-1394/QLA board set, but is

not specific to the da Vinci robot. It contains several provided

interfaces: one for each configured robot (4 in the case of

Fig. 5) and one for each configured digital input (e.g., for

the footpedal and PSM buttons, not shown in Fig. 5). Finally,

this layer includes an optional Qt Widget component (Fig. 6)

that provides a convenient interface to mtsRobotIO1394.

6437

Publishers

MTMMTM PSMPSM MTMMTM PSMPSM

mtsTeleoperationmtsTeleoperation

mtsRobotIO1394

Subscribers

sawROS consolesawROS console

sawROS teleoperationsawROS teleoperation

sawROS psmsawROS psm

sawROS mtm

sawROS pid

sawROS iosawROS io

QtConsoleQtConsole

sawQtTeleopsawQtTeleop

QtPSMQtPSM

QtMTM

sawQtPIDsawQtPID

sawQtIOsawQtIO

Single thread SAW componentQtWidget component (optional) ROS component (optional)ROS component (optional)

mtsPID mtsPID mtsPID mtsPID

ConsoleConsole

mtsTeleoperationmtsTeleoperation

PSM1 MTMR PSM2MTML

provided required

Fig. 5. Robot tele-operation control architecture with two MTMs and two PSMs, arranged by functional layers and showing thread boundaries

B. Control and Application Layers

The low-level control layer consists of the PID joint

controllers (one for each manipulator), which are general-

purpose SAW components that are configured via an XML file.

The high-level control is provided by two components that

are specific for the da Vinci MTM and PSM. These provide

the forward and inverse kinematics, trajectory generation, and

gripper control. They also manage the state transitions for

the da Vinci manipulators, such as homing (MTM and PSM),

engaging the sterile adapter plate (PSM), and engaging the

instrument (PSM). The teleoperation layer is provided by two

instances of a general-purpose SAW component that each

connect one MTM to one PSM. Finally, the application layer

is provided by a console application that emulates the master

console environment of a da Vinci system. Each layer also

includes an optional Qt Widget that can be used to visualize

and interact with the corresponding SAW component.

One challenge for such a component-based approach is

data synchronization; this is especially true for servo loop

control running at a high frequency of 1 kHz or greater. If

a separate thread is created for each servo control loop and

the I/O component, it is likely that the feedback data used

in the servo loop control could be out of synchronization

and potentially affect controller performance. As illustrated

in Fig. 5, our solution puts the I/O component and all servo

control (PID) components in one single thread, while keeping

the advantage of a component-based approach.

C. ROS Interfaces

ROS (Robot Operating System) provides a set of libraries

and utility tools and enables communication between different

robot control processes in one computer or across multiple

computers [1]. We developed components that publish the

robot state in ROS messages and accept commands by

subscribing to ROS messages (topics). This is embodied

in the sawROS library, which contains: (1) a set of global

data type conversion functions (e.g., cisst matrix to ROS

geometry msgs::Transform and vice versa), (2) a cisst

publisher that fetches, converts, and then publishes the data,

(3) a cisst subscriber with a ROS subscriber callback function

that converts data and triggers the corresponding cisst write

Fig. 6. Qt Widget interface to Robot I/O component

function, and (4) a cisst-to-ROS bridge component that serves

as a container for cisst publishers and subscribers. Each

bridge runs periodically at the publishers’ desired frequency. A

separate thread is used for the ROS event loop (ros::spin)

that handles the subscribers.

In addition, MTM and PSM models have been generated

in Unified Robot Description Format (URDF) and can be

used for visualization and simulation. Some use cases that

take advantage of the above mentioned ROS interface and

simulation are to use a real MTM and foot pedal as input

devices to tele-operate a simulated PSM or alternate slave

robot, such as the Raven-II[2]. We expect that most ROS

users will interface to the high-level MTM and PSM control

components and implement their own teleoperation control

and applications within ROS.

VI. RESEARCH COMMUNITY

A research community is forming around this common

hardware and software platform. Intuitive Surgical has created

a public wiki page at research.intusurg.com/dvrk. This page

lists all groups that currently have research da Vinci systems,

with links to group pages on that wiki. The group wiki

pages require a login and password, and are used to share

information between the researchers. For example, one group

has uploaded the design files for an aluminum frame that

can be used to mount the MTMs, PSMs, and Stereo Viewer.

There is also a google group, research-kit-for-davinci, that

provides a mailing list for discussion among researchers.

The open source mechatronics and software are not specific

to the da Vinci Research Kit and are hosted in public

6438

Fig. 7. Research da Vinci System at UBC, with 6 controller boxes (and 1
spare) to power 2 MTMs, 3 PSMs, and 1 ECM (functionally compatible
with a PSM). Photo courtesy of Omid Mohareri, UBC.

repositories. The mechatronics is on GitHub, consisting of

a overall project page, jhu-cisst.github.io/mechatronics, with

separate git repositories for the board designs, FPGA firmware,

and low-level software. The cisst/SAW software, including

the ROS bridge, is available via an SVN/Trac server at JHU

(soon to be moved to GitHub).

The mechatronics hardware is built in production batches

to reduce overall cost. The first batch provided hardware for

JHU, WPI, Stanford University, and the University of British

Columbia (UBC). These systems have been installed and are

actively used for research. The system at JHU has been used

to teleoperate other slave robots in ground-based simulations

of satellite servicing [18]. Figure 7 shows the system at UBC,

which uses a retired clinical da Vinci. This system is currently

being used for research in the applicability of an asymmetric

force feedback control framework for bimanual robot-assisted

surgery. The da Vinci Research Kit at Stanford has been used

to study how users modulate their grip force when interacting

with an environment with elastic forces [19]. The second

batch provided systems that were installed at 7 additional

sites, and the third batch is currently underway.

VII. CONCLUSIONS

This paper presented a telerobotics research platform that

is based on the da Vinci Surgical System, with open-source

electronics and software. The software is implemented in a

component-based C++ framework, with ROS interfaces to

facilitate integration with other systems and software packages.

Low-level (primitive) interfaces and object-oriented interfaces

are available for researchers who do not wish to adopt a

component-based architecture or who wish to integrate with

a different component-based framework. The platform has

been replicated at several research institutions – currently

11 sites have acquired the platform, with additional sites in

process. Collaboration tools include wikis and mailing lists,

with the open source hardware and software available via

public git or svn repositories.

ACKNOWLEDGMENTS

This work was supported by National Science Foundation

grants EEC 9731748, EEC 0646678, MRI 0722943, NRI

1208540, and by NASA NNX10AD17A. Paul Thienphrapa,

Simon Leonard, Kwang Young (Eddie) Lee, Jonathan Bohren,

Ravi Gaddipati, Lawton Verner, Ankur Kapoor, and Tian Xia

provided technical assistance at JHU. Gang Li, Nirav Patel,

and Zhixian Zhang contributed at WPI, as did Alex Camilo

from Neuron Robotics. Arpit Mittal, Kollin Tierling, and Dale

Bergman provided assistance at ISI.

REFERENCES

[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[2] B. Hannaford, J. Rosen, D. Friedman, H. King, P. Roan, L. Cheng,
D. Glozman, J. Ma, S. N. Kosari, and L. White, “Raven-II: An open
platform for surgical robotics research,” IEEE Trans. on Biomedical

Engin., vol. 60, no. 4, pp. 954–959, Apr 2013.
[3] S. DiMaio and C. Hasser, “The da Vinci research interface,” in MICCAI

Workshop on Systems and Arch. for Computer Assisted Interventions,
Midas Journal: http://hdl.handle.net/10380/1464, July 2008.

[4] A. Kapoor, A. Deguet, and P. Kazanzides, “Software components and
frameworks for medical robot control,” in IEEE Intl. Conf. on Robotics

and Automation (ICRA), May 2006, pp. 3813–3818.
[5] A. Deguet, R. Kumar, R. Taylor, and P. Kazanzides, “The cisst libraries

for computer assisted intervention systems,” in MICCAI Workshop on

Systems and Arch. for Computer Assisted Interventions, Midas Journal:
http://hdl.handle.net/10380/1465, Sep 2008.

[6] M. Y. Jung, A. Deguet, and P. Kazanzides, “A component-based
architecture for flexible integration of robotic systems,” in IEEE/RSJ

Intl. Conf. on Intell. Robots and Systems (IROS), 2010, pp. 6107–6112.
[7] B. Vagvolgyi, S. DiMaio, A. Deguet, P. Kazanzides, R. Kumar,

C. Hasser, and R. Taylor, “The Surgical Assistant Workstation: a
software framework for telesurgical robotics research,” in MICCAI

Workshop on Systems and Arch. for Computer Assisted Interventions,
Midas Journal: http://hdl.handle.net/10380/1466, Sep 2008.

[8] P. Kazanzides, S. DiMaio, A. Deguet, B. Vagvolgyi, M. Balicki,
C. Schneider, R. Kumar, A. Jog, B. Itkowitz, C. Hasser, and
R. Taylor, “The Surgical Assistant Workstation (SAW) in minimally-
invasive surgery and microsurgery,” in MICCAI Workshop on Sys-

tems and Arch. for Computer Assisted Interventions, Midas Journal:
http://hdl.handle.net/10380/3179, Jun 2010.

[9] P. Kazanzides and P. Thienphrapa, “Centralized processing and
distributed I/O for robot control,” in Technologies for Practical Robot

Applications (TePRA), Woburn, MA, Nov 2008, pp. 84–88.
[10] D. Anderson, FireWire System Architecture, 2nd Edition. MindShare,

Inc., Addison-Wesley, 1999.
[11] G. Pratt, P. Willisson, C. Bolton, and A. Hofman, “Late motor

processing in low-impedance robots: impedance control of series-elastic
actuators,” in American Control Conference, Jun 2004, pp. 3245–3251.

[12] U. Hagn, M. Nickl, S. Jörg, G. Passig, T. Bahls, A. Nothhelfer,
F. Hacker, L. Le-Tien, A. Albu-Schäffer, R. Konietschke, M. Greben-
stein, R. Warpup, R. Haslinger, M. Frommberger, and G. Hirzinger,
“The DLR MIRO: a versatile lightweight robot for surgical applications,”
Industrial Robot: An Intl. Journal, vol. 35, no. 4, pp. 324–336, 2008.

[13] R. Rusu, I. Sucan, B. Gerkey, S. Chitta, M. Beetz, and L. Kavraki,
“Real-time perception-guided motion planning for a personal robot,” in
IEEE/RSJ Intl. Conf. on Intell. Robots and Systems (IROS), 2009, pp.
4245–4252.

[14] P. Thienphrapa and P. Kazanzides, “A scalable system for real-time
control of dexterous surgical robots,” in Technologies for Practical

Robot Applications (TePRA), Nov 2009, pp. 16–22.
[15] H. Bruyninckx, P. Soetens, and B. Koninckx, “The real-time motion

control core of the Orocos project,” in IEEE Intl. Conf. on Robotics

and Automation (ICRA), vol. 2, Sep 2003, pp. 2766–2771.
[16] Y. Zhang, B. Orlic, P. Visser, and J. Broenink, “Hard real-time

networking on FireWire,” in RT Linux Workshop, Nov 2005.
[17] M. A. Tsegaye, “A comparative study of the Linux and Windows device

driver architectures with a focus on IEEE1394 (high speed serial bus)
drivers,” Master’s thesis, Dept. of Computer Science, Rhodes University,
Dec 2002.

[18] T. Xia, S. Leonard, I. Kandaswamy, A. Blank, L. Whitcomb, and
P. Kazanzides, “Model-based telerobotic control with virtual fixtures
for satellite servicing tasks,” in IEEE Intl. Conf. on Robotics and

Automation (ICRA), Karlsruhe, Germany, May 2013.
[19] T. Gibo, D. Deo, Z. Quek, and A. Okamura, “Effect of load force

feedback on grip force control during teleoperation: A preliminary
study,” in IEEE Haptics Symposium, Feb 2014.

6439

