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ABSTRACT Optimal network planning is crucial to ensure viable investments. However, engineering

analysis and cost assessment frequently occur independently of each other. Whereas considerable research

has been undertaken on 5G networks, there is a lack of openly accessible tools that integrate the engineering

and cost aspects, in a techno-economic assessment framework capable of providing geospatially-explicit

network analytics. Consequently, this paper details an open-source python simulator for integrated modelling

of 5G (pysim5G), that enables both engineering and cost metrics to be assessed in a single unified framework.

The tool includes statistical analysis of radio interference to assess the system-level performance of 4G and

5G frequency band coexistence (including millimeter wave), while simultaneously quantifying the costs of

ultra-dense 5G networks. An example application of this framework explores the techno-economics of 5G

infrastructure sharing strategies, finding that total deployment costs can be reduced by 30% using either

passive site sharing, or passive backhaul sharing, or by up to 50% via a multi-operator radio access network.

The key contribution is a fully-tested, open-source software codebase, allowing users to undertake integrated

techno-economic assessment of 5G deployments in a single geospatial framework.

INDEX TERMS 5G, techno-economic analysis, infrastructure sharing, open-source, software.

I. INTRODUCTION

How do we simultaneously assess (i) the engineering

performance capabilities of different network deployments

and (ii) the infrastructure deployment costs? The delivery

of 5G is expected to lead to ultra-dense cellular networks

due to efficiency gains designed to deal with increasingly

large data traffic demands [1], driven predominantly by video

traffic [2]. Existing capacity and coverage of mobile data

services will be significantly expanded through a variety of

means, including the introduction of new sub-6GHz and mil-

limeter wave spectrum bands (>26GHz), increased network

densification, the introduction of novel technologies includ-

ing higher order MIMO and edge compute [3], in addition to

fundamental network architecture changes.

Given that user demand for data continues to grow at a very

fast rate, Mobile Network Operators (MNOs) are searching
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for new technologies which can help lower the cost per

bit of delivering high-capacity data services. Unfortunately,

in many telecommunications markets the Average Revenue

Per User (ARPU) has either been declining or remained static

in real terms, decreasing globally by 1% in 2018 [4]. Hence,

it is desirable that 5G infrastructure investment is carried out

within existing capital expenditure (capex) budgets. Recent

solutions being proposed to help reduce costs range from pas-

sive infrastructure sharing between competitors [5] through to

the use of a ‘neutral host’ business model [6], [7].

Considering these challenges, the motivation for this

research is that (i) relatively little techno-economic

assessment of 5G has taken place [8], [9], (ii) there are

few open-source analytical frameworks available to address

this problem, and (iii) we still lack quantified assessment

of the cost savings resulting from infrastructure sharing

strategies [10].

Three main classes of 5G use cases are envisioned:

Enhanced Mobile Broadband (eMBB), Massive Machine
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Type Communications (mMTC), and Ultra-Reliable and

Low Latency Communications (URLLC). Although 4G LTE

and 4G LTE-Advanced technologies can provide impressive

capacity, over the long-term 5G and further technology gener-

ations will be needed to help meet demand in a broader range

of use cases and industries.

Whereas commercial deployments of 5G infrastructure

have already started around the world, many MNOs have

yet to begin. More importantly, 5G opens the opportunity

for non-MNO roll-out of 5G infrastructure, in infrastructure

sharing or private network deployments. Whilst MNOs will

have their own integrated techno-economic analytical tools

(in-house or through suppliers), many medium or smaller

operators, and new entrants do not. They still rely on ‘siloed’

processes where engineering and cost assessment take place

as distinctly separate phases. Better cellular planning tools

are needed [11] and although many exist, they often focus

more on either the engineering aspects [12]–[16], or the

economic aspects of the planning stage [17], [18]. Further-

more, there is a need for such tools to be also available

to the research community, to better connect the analy-

sis of new technological advances to the engineering costs

involved in deployment. Consequently, the conjecture of this

paper is that integrated techno-economic assessment tools

can help to reduce uncertainty and improve the efficiency of

infrastructure investments.

Although there are many sequential steps to deploying

new 5G infrastructure assets, including planning, design,

migration, operation and maintenance, the planning phase is

one of the most crucial steps to ensure viable investments

which optimize capacity and cost, otherwise the network

operator must resort to overprovisioning [19]. Thus, the key

contributions of this paper include:

1. Creating a unified techno-economic assessment

framework to evaluate the geospatial deployment

of 4G/5G infrastructure coexistence in terms of

capacity, coverage, and cost.

2. Developing a 4G/5G system simulator in Python,

one of the most popular general-purpose programing

languages, allowing engineers, business analysts and

researchers to explore the open-source code, test the

model and make their own additions to the software

capability.

3. Applying this open-source assessment framework to

test the cost efficiency of 5G infrastructure sharing

strategies.

Having articulated the potential contribution, an initial

overview of a system assessment frameworkwill be presented

in Section II, followed in Section III by a capacity assessment

model, and the software architecture in Section IV. Finally,

results are reported in Section V before conclusions are given

in Section VI.

II. SYSTEM ASSESSMENT FRAMEWORK

Private or public infrastructure decisions need to be

supported by quantitative analytics. Although Long Run

Incremental Cost modeling approaches are frequently used in

telecommunications [20], such approaches are usually

spreadsheet-based, not spatially explicit and do not take

advantage of data science techniques. Indeed, there has been

surprisingly little analysis on the national assessment of

digital communications networks, with only a few exam-

ples overcoming these limitations [21]–[23], despite grow-

ing needs in industry and government [24], [25]. Fig-

ure 1 illustrates a national system assessment framework

capable of quantifying the impact of potential infrastructure

decisions.

To enable such a framework, different data inputs are

required for local statistical areas at the level of spatial disag-

gregation desired. This includes geospatially-explicit demo-

graphic forecasts, cell sites data and building information.

The capacity assessment module then requires data on the

number of existing cell sites per area, along with the available

spectrum portfolio. Demand assessment for an area considers

the number of users, individual data demand, the quantity of

data traffic offloaded to Wi-Fi and the market share of the

hypothetical operator being modeled.

For each timestep, the demand assessment module esti-

mates the required average busy hour demand needing to be

met. Likewise, the capacity assessment module estimates the

average capacity able to be provided based on the cell site

density, available spectrum and present technology.

The impact of different decisions can then be simulated

using the decision module, including (i) deploying new

spectrum, (ii) adding new cellular sites, (iii) increasing infras-

tructure sharing, (iv) deregulating planning, (v) adapting

the fiscal environment, (vi) reducing spectrum costs and

finally (vii) testing the impact of coverage obligations. The

results of such decisions provide explicit spatio-temporal

results in terms of area capacity, coverage cost and energy

efficiency. This paper specifically reports the design of the

model in the capacity assessment module highlighted in red

in Fig. 1.

III. CAPACITY ASSESSMENT MODEL

Generally, the further away a user is from a connecting site,

the lower the data transfer rate the user will achieve. This

results from increased path loss between the user and the

site which degrades the level of received signal. Often this

is due to a combination of the propagation characteristics of

the carrier frequency, and the level of environmental clutter

such as buildings, as well as interference and noise from other

sources.

The method presented here concentrates on the key 5G use

case of eMBB, which is the first use case class supported by

the current 3GPP 5G specification [26].

The simulation approach accounts for the three main ways

the capacity of a cellular access network can be enhanced,

including (i) improving spectral efficiency (additional bits per

Hz), (ii) increasing spectral reuse via network densification

(building more sites), and (iii) adding new spectrum bands

(augmenting the total amount of spectrum bandwidth).
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FIGURE 1. System assessment framework.

The aim of the system model is to estimate the mean

Network Spectral Efficiency (η̄area) (bps/Hz/km2) [27].

The quantity of cells per site (η̄cells) and density of co-channel

sites (ρsites) using the same spectrum frequency affects the

Inter-Site Distance (ISD), as detailed in (1).

η̄area = η̄cells � ρsites (1)

For a set number of cells and sites, the Network Spectral

Efficiency (η̄area) can be estimated using a stochastic geom-

etry approach to provide an average value representing the

number of bits per second per Hz (bps/Hz), given a certain

traffic load and current radio channel and interference con-

ditions. Such an approach overcomes the limitations of static

interference assumptions [28], better accounting for poten-

tial interference constraints across space [29]. Decreasing

the ISD, increases the density of network assets per square

kilometer, allowing greater spectral reuse of carrier frequen-

cies, resulting in capacity enhancements. The system model

simulation process is illustrated graphically in Fig. 2.

Network planning has a significant impact on the achieved

spectral efficiency as the level of useful signal obtainable by

the User Equipment (UE), in relation to unwanted interfer-

ence and noise, affects the Signal to Inferences plus Noise

Ratio (SINR). The SINR (SINRj) for the j
th user is estimated

using the level of received signal from the best serving cell,

treated here as a macrocell (Sj), given the sum of the back-

ground interference (
∑
i

Ii,j) from the ith interfering cell at the

jth receiver UE, plus the received background and receiver UE

noise (Nj), as formalized in (2):

SINRj =
Sj∑

i

Ii,j + Nj
(2)

The simulation software tests different spectrum portfo-

lios depending on the user’s preference. In this example,

a broadly representative set of existing 4G LTE and 5G

New Radio (NR) carrier frequencies are used operated in

Frequency Division Duplex mode, consisting of 10 MHz

bandwidth for each of the 700 MHz, 800 MHz, 1.8 GHz

and 2.6 GHz bands, 40 MHz bandwidth for 3.5 GHz, and

100 MHz bandwidth for 26 GHz.

Geometry data for supply-side physical infrastructure

assets is required. In this paper the software is demonstrated

using a test dataset based on a hexagon cellular planning

approach, for a single transmitter and six other interfering

transmitters, generated automatically by the software. The

pysim5G software can either produce GeoJSON hexagon

objects for user defined ISDs or take advantage of real sites

data.

The Monte Carlo simulation functions by generating a

user-defined set of indoor and outdoor receivers, distributed

across a site area. The distance is then calculated between

each receiver and the serving site and used to estimate the

potential path loss, including any building penetration loss if

indoor. The same process is carried out between the receiver
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FIGURE 2. Simulation process.

and other interfering sites, to obtain the sum of the unwanted

interference.

To reduce the general computational cost of looping in

Python, pointer indirection and per-element dynamic type

checking, the simulation efficiency is increased by utilizing

NumPy arrays (capable of being directly implemented in C).

Hence, the user can specify a set number of iterations to

define for each random parameter, with the mean value of

the NumPy array being used to improve loop efficiency.

Propagation effects are accounted for by a path lossmodule

which utilizes the ETSI 5G channel model for frequencies

from 0.5 to 100 GHz [30]. As the purpose here is to develop

an integrated techno-economic assessment model, path loss

estimation focuses on general parameters by using lognor-

mal distributions to capture shadow fading from environ-

mental clutter and building penetration losses. Thus, both

received power and unwanted interference effects can be

estimated.

Modulation and coding rates are calculated based on the

SINR at the UE using 4G and 5G lookup tables [31],

as defined by 3GPP. To statistically ensure certain Quality

of Service (QoS) levels are achieved, the results generated

via the Monte Carlo method for a specific set of simulation

parameters can be extracted based on user-defined summary

statistics. This could either be the mean capacity value for a

network configuration (as demonstrated here), or a specific

percentile value (e.g. 5th) to represent the cell edge rate. The

approach taken focuses only on the downlink because it is

generally the largest bottleneck.

TABLE 1. Simulation parameters.

The propagation environment is represented by

ETSI-defined urban and rural clutter types, leading to use of

different propagation model parameters. Additionally, users

can specify the probability of a UE being indoor, leading to

further building penetration losses, which are modelled using

a lognormal distribution, as per the simulation parameters

in Table 1.

The Total Cost of Ownership (TCO) is estimated for each

asset (AssetNPV ) by calculating the Net Present Value (NPV)

of the initial capital expenditure required in the first year

of deployment (i) as a one-off cost (ci), combined with the

ongoing operating expenditure (opex) over the lifetime of the

asset (ot ) (with opex being 10% of the initial capex value for

all active components, annually). A discount rate of 3.5% (r)

is used over a period (Y ) of 10 years, as illustrated in (3).

AssetNPV = ci +

Y∑

t=0

ot

(1 + r)t
(3)

This calculation does not consider price trend changes and

assumes a 10-year lifespan of macrocells. As shown in Fig.2,

the total cost (̄area) per square kilometer for different network

configurations can then be calculated based on the density of

assets by area. The costs per asset item are stated in Table 2,
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TABLE 2. Equipment costs by deployment strategy.

approximately based on the Mobile Call Termination model

released by UK Ofcom [20].

GSMA has described three types of infrastructure sharing

strategies [5], shown in Table 2. Thus, shared infrastructure

assets take place between 2MNOs, according to the following

strategies:

1. Baseline where no sharing takes place and a dedicated

network is built for a single MNO.

2. Passive site sharing involves sharing a tower, civil

materials, transportation, installation, site rental and

a power system supply (connection, generator and

battery).

3. Passive backhaul sharing involves sharing high-speed

fibre backhaul, an on-site router, site rental and a power

system (connection, generator and battery).

4. A multi-operator radio access network (MORAN)

involves sharing all equipment including three sector

antennas, a single remote radio unit, a single baseband

unit, a tower, civil materials, transportation, installa-

tion, site rental and a power system (connection, gener-

ator and battery), as well as high-speed fibre backhaul

and an on-site router.

IV. PYSIM5G ARCHITECTURE

An object-oriented approach is utilized in Python 3,

combined with the use of gold-standard software design

principles including test-driven development and in-line doc-

umentation. An online repository hosts the pysim5G [32]

source distribution, example data and documentation allow-

ing any user access to run the model described here.

Unit tests provide certainty to current and future model users

that the code carries out the intended purpose, allowing

enhanced validation of individual modules.

A meta-class object called the ‘SimulationManager’ holds

all other asset objects and contains a set of methods for budget

estimation. The ‘Transmitter’, ‘Receiver’ and ‘Interfering-

Transmitter’ objects have a set of attributes required for the

simulation, specifically latitude and longitude coordinates,

and necessary inputs for propagation and system capacity

modeling (including those listed in Table 1, such as power,

gain and height for receivers and transmitters). Additionally,

the ‘SiteArea’ object contains the geometry for the area being

modeled. Fig. 3 illustrates how these classes exist within a set

of interconnected software modules enabling a reproducible

data pipeline.

The software is operated using the simulation runner

script (‘run.py’) which is capable of reading in all required

data and writing out all necessary results and utilized data

layers. The simulation manager (‘simulation_manager.py’)

contains the main model code and is capable of instan-

tiating each of the required objects. For specific steps in

the link budget estimation process, the simulation man-

ager can call the path loss module (‘path_loss.py’) to help

estimate received power and received interference. Once

the engineering simulation model has been run, the results

are passed to the cost module (‘costs.py’), which calculate

the NPV of capital and operational expenditure for each

network configuration, with the results being passed back

to the simulation runner script for writing to desired file

formats.
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FIGURE 3. Model architecture.

The software takes advantage of the Geospatial JavaScript

Object Notation (GeoJSON) data standard defined by the

Internet Engineering Task Force (IETF), which enables both

spatial and non-spatial information to be simultaneously

stored for an entity in a single dictionary [33]. GeoJSON

differs from other formal (and often proprietary) Geographic

Information System standards, in that it is open-source and is

maintained by the internet engineering community. As trans-

mitter and receivers are loaded into the model, they are con-

verted to a GeoJSON format to store all necessary spatial and

non-spatial information.

The results produced can be written in many ways,

including (i) a set of shape files (.shp) containing all trans-

mitters, receivers, site area boundaries, and associated results,

for geospatial plotting, (ii) individual files (.csv ) for each

simulation run for every engineering parameter, and (iii) an

aggregated lookup table containing a single set of engineering

and economic results for each simulation run (given a desired

QoS level such as 50% or 95% cell edge reliability).

The full results contain a row for each receiver latitude and

longitude position, as well as the environment, ISD, site area

(km2), site density (km2), carrier frequency (GHz), carrier

bandwidth (MHz), the number of site sectors, the technol-

ogy generation, antenna height (m), path loss (dB), received

power (dBm), interference (dBm), SINR (dB), spectral effi-

ciency (bps/Hz), link capacity (Mbps) and area capacity

(Mbps/km2). The aggregated results contain the same met-

rics but for a specific reliability level (minus coordinates).

Similarly, the cost results contain a single row for each

iteration based on reliability level, deployment strategy, the

environment, ISD, site area (km2), site density (km2), total

deployment cost ($/km2), and the cost for each individual

component ($/km2). Results will now be presented.

V. RESULTS

This section presents both the engineering and economic

results for a single set of example simulations. Fig. 4

graphically illustrates the site capacity (ISD=1 km),
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FIGURE 4. Simulation results (ISD=1 km) for Crystal Palace, South London.

for Crystal Palace, South London. The area in the immediate

vicinity to the site has much higher capacity, driven by

the availability of millimeter wave, although this capacity

decreases rapidly moving away from the site.

For accurate estimation of network deployment costs, it is

essential that the software produces accurate and coherent

engineering metrics. Thus, Fig. 5 visualizes the average area

results involved in the link budget estimation process, by fre-

quency band and ISD. Then for each plot, multiple y-axis

values for each single value of x are aggregated, allowing

an estimate of the central tendency and suitable confidence

intervals (bootstrapped at 95%), using the default parameters

available in the Python visualization tool Seaborn.

The results presented are logical and coherent with existing

theory. For example, higher building density in urban loca-

tions leads to greater path loss, whereas in contrast rural envi-

ronments experience less path loss, leading to higher received

power for comparable ISD values. Mean path loss ranged

from approximately 100-160 dB over the ISDs tested and

increased with (i) higher carrier frequencies and (ii) at greater

distances from the transmitter. This pattern is reflected in the

estimated received power and interference results, as would

be expected.

The highest SINR recorded is approximately 20 dB

in the densest scenarios, falling beyond the minimum

channel quality threshold (−6.7 dB) after 2.5 km

(for 26 GHz). Other bands, particularly the 3.5 GHz band

function above this threshold, beyond the maximum ISD

tested here.

Spectral Efficiency (SE) results are affected by interfer-

ence, as well as the cellular technology generation deployed

in each frequency. Hence, the highest mean SE results are

at 0.7, 3.5 and 26 GHz (∼4.5 Bps/Hz) for the smallest ISD

values (<1 km) due to the 5G NR interface. Depending on

the band, these 5GNR mean SE values decrease below this

level as the ISD increases. In contrast, legacy 4G resulted

in lower mean SE values (∼3 Bps/Hz) at the smallest ISD

values tested (<1 km), dropping to∼2.5-3 Bps/Hz as the ISD

increases.

For very small ISD values, capacity is, as expected, high-

est in the 26GHz band due to its much wider bandwidth

(100 MHz), followed by 3.5 GHz (40 MHz), where a single

user could achieve maximum link capacity of almost 2 Gbps

and 1 Gbps respectively in line of sight near the serving cell.

However, average capacity decreased quickly, particularly for

millimeter wave, as the ISD increased.
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FIGURE 5. Engineering results by ISD and frequency band.

Fig. 6 illustrates the cost results per operator by area for the

single set of simulation runs, focusing purely on the different

infrastructure sharing strategies.

The mean cost results are discussed focusing on a 1 km

ISD. In the baseline, the mean TCO of $366,000 km2 was

dominated by site rental, accounting for approximately 41%
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FIGURE 6. Cost results per operator by ISD and infrastructure sharing strategy.

($149,090 km2) of required investment over the 10 year

horizon, with the rest of the TCO made up by 24%

RAN ($88,967 km2), 15% civil works ($54,127 km2),

5% power equipment ($16,786 km2) and 15% backhaul

($57,073 km2).

In contrast, the passive site sharing strategy was able to

reduce the TCO ($256,041 km2) by approximately 30%

below the baseline, with the site rental and civil works drop-

ping to 29% and 11% of the cost composition respectively.

Similarly, the passive backhaul sharing strategy also saw

the TCO ($254,568 km2) reduced by approximately 30%

against the baseline, albeit by sharing different equipment.

In this strategy, the site rental was also reduced to 29% of the

TCO, with the shared backhaul dropping to only 11% of the

total cost on average.

Finally, in the multi-operator RAN strategy all passive

and active items were shared leading to an approximate

50% cost saving and a TCO of $183,021 km2. The per-

centage composition of the TCO is the same as in the

baseline, but the raw monetary values per square kilometer

dropped to only $44,483 km2 for RAN, $74,545 km2 for site

rental, $27,063 km2 for civil works, $8,393 km2 for power
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and $28,536 km2 for backhaul. Conclusions will now be

provided.

VI. CONCLUSION AND FURTHER RESEARCH

Delivering 5G will require enhanced network planning meth-

ods to take advantage of improvements in the radio network

and its flexibility, while simultaneously reducing the cost

per bit of data transfer. Frontier MNOs often have their

own integrated network planning tools developed in-house,

however many operators (especially smaller ones, or new

entrants) do not, and often rely on ‘siloed’ network planning,

where engineering assessment and cost evaluation take place

as separate steps.

Motivated by this problem, the general framework

presented and applied in this paper introduces an inte-

grated techno-economic assessment approach for evaluating

the capacity and cost of 5G deployment strategies simul-

taneously, known as the python simulator for integrated

modelling of 5G (pysim5G). Importantly, the codebase is

open-source and available from an online repository [32],

with comprehensive test coverage, and documentation.

Hence, pysim5G is available for immediate use by engi-

neers, business analysts or researchers, either in industry or

academia.

Having applied this framework to assess different infras-

tructure sharing strategies, we were able to simultaneously

present integrated engineering metrics and equipment costs

from a single unified framework. The capacity, coverage and

cost results also accounted for all 4G and 5G co-existing

spectrum bands, including millimeter wave. Findings sug-

gested that passive site sharing, and passive backhaul sharing

strategies, could independently reduce total cost by 30%

based on two MNOs, when compared to a baseline of a

single dedicated network. A multi-operator RAN had the best

cost reduction potential of approximately 50% against the

baseline.

Due to the popularity of Python, and the open-source code-

base offered here, users can relatively easily take advantage

of the pysim5G software, as well as utilize other software

packages for additional development opportunities.

Future research applications can build on the pysim5G

framework. Useful developments include expanding the num-

ber of 5G technologies able to be tested, including beamform-

ing and higher order MIMO for enhanced capacity, and the

use of edge compute for low latency application planning.

Optimization techniques could help to maximize capacity,

coverage and cost, informing future investment decisions.
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