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An Open-Source Toolbox for Surrogate Modeling
of Joint Contact Mechanics

Ilan Eskinazi and Benjamin J. Fregly∗

Abstract—Goal: Incorporation of elastic joint contact models
into simulations of human movement could facilitate studying the
interactions between muscles, ligaments, and bones. Unfortunately,
elastic joint contact models are often too expensive computationally
to be used within iterative simulation frameworks. This limitation
can be overcome by using fast and accurate surrogate contact mod-
els that fit or interpolate input–output data sampled from existing
elastic contact models. However, construction of surrogate contact
models remains an arduous task. The aim of this paper is to intro-
duce an open-source program called Surrogate Contact Modeling
Toolbox (SCMT) that facilitates surrogate contact model creation,
evaluation, and use. Methods: SCMT interacts with the third-party
software FEBio to perform elastic contact analyses of finite-element
models and uses MATLAB to train neural networks that fit the
input–output contact data. SCMT features sample point genera-
tion for multiple domains, automated sampling, sample point filter-
ing, and surrogate model training and testing. Results: An overview
of the software is presented along with two example applications.
The first example demonstrates creation of surrogate contact mod-
els of artificial tibiofemoral and patellofemoral joints and evaluates
their computational speed and accuracy, while the second demon-
strates the use of surrogate contact models in a forward dynamic
simulation of an open-chain leg extension–flexion motion. Conclu-
sion: SCMT facilitates the creation of computationally fast and ac-
curate surrogate contact models. Additionally, it serves as a bridge
between FEBio and OpenSim musculoskeletal modeling software.
Significance: Researchers may now create and deploy surrogate
models of elastic joint contact with minimal effort.

Index Terms—Biomechanics, joint contact, musculoskeletal
modeling, surrogate modeling, toolbox.

I. INTRODUCTION

B IOMECHANICS researchers model and simulate joint
mechanics to gain insight into a variety of clinical prob-

lems such as the onset and progression of degenerative joint
disease [1], [2], tissue loading and overloading [3], [4], muscle
force estimation [5], [6], and implant design performance [7],
[8]. Musculoskeletal simulations on the human- and limb-scale
tend to use idealized joint models to approximate the net effect
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of contact and ligaments on the musculoskeletal model’s kine-
matics. Examples include: revolute joints that model the knee
[9]–[12], hinge-matrix formulations that allow rolling and slid-
ing [13], and spherical joints that model the hip [9], [11], [12].
A parallel mechanism is a more complex type of joint model
that can accommodate ligaments and multiple contact regions.
Parallel mechanisms have been used to model the knee [14] and
ankle [15] and to calculate ligament and knee contact forces [16].
Moreover, these mechanisms may also model ligament deforma-
tions by means of constraints [17]. While idealized joint models
and parallel mechanisms are computationally fast and easy to
implement, both suffer from two important limitations. The first
is that the joint model may be unable to capture some variables
of interest. For example, a knee modeled as a pin joint could
not be used to explore the effect of transecting a ligament. The
second limitation is that simplifications could result in nonphys-
iological simulation results. For example, modeling the knee as
a planar mechanism with isometric ligaments may imply that
the ligaments can exert compressive as well as tensile forces.

The disadvantages of simplified joint models necessitate con-
sideration of more realistic joint models that include ligaments
and surface–surface interactions (i.e., between cartilage surfaces
or implant components). These interactions can be simulated
using deformable contact models that output a set of contact
loads given the relative position and orientation of the con-
tacting bodies. Use of explicit contact models in simulations
presents several advantages: 1) ligament and contact forces can
be calculated; 2) no assumptions are made regarding a joint’s
axis of rotation; 3) more inverse dynamics loads can be balanced
during muscle force optimizations, resulting in a tighter solution
space; 4) consequences of injury, surgery, or rehabilitation on
ligaments and contact surfaces can be predicted; and 5) the influ-
ence of articular geometry on joint kinematics can be taken into
account. Despite these advantages, deformable contact models
are rarely incorporated into iterative simulation frameworks due
to their high computational cost [18].

Recent research efforts have overcome the computational cost
issue by mapping computationally “slow” deformable contact
models into computationally “fast” metamodels or surrogate
models [6], [19], [20]. Although these models can replace origi-
nal “slow” contact models within simulations, researchers often
lack the resources and expertise to develop their own surrogate
contact models. To our knowledge, there is no software frame-
work currently available that can streamline the entire surrogate
contact model creation, evaluation, and deployment process.
This situation poses a major barrier to the use of realistic
subject-specific joint contact models in multibody simulations
of human movement. Due to the lack of a software framework
for surrogate contact modeling, researchers have applied general
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surrogate modeling packages to the contact problem. Halloran
et al. [20] used a lazy learning toolbox for MATLAB [21], [22]
to build and use surrogate contact models, while Lin et al. used
the DACE Kriging toolbox for MATLAB [23] to develop a sur-
rogate contact modeling approach [19]. An assortment of other
tools such as the SUMO Toolbox [24] and MATLAB’s Neural
Network Toolbox can also be used for surrogate modeling.
However, none of these programs facilitate the workflow needed
to create surrogate contact models from beginning to end.

We have developed a freely available open-source program
called Surrogate Contact Modeling Toolbox (SCMT) to facil-
itate the development, deployment, and sharing of surrogate
contact models by the research community. SCMT interfaces
with the third-party finite-element analysis software FEBio [25]
which performs “slow” quasi-static analyses of elastic contact
models. SCMT also interfaces with MATLAB’s Neural Net-
work Toolbox and MATLAB Coder to train and deploy neural
networks. FEBio was chosen because it is well suited for solving
biomechanical contact problems, is open source, and is free for
noncommercial use. MATLAB’s toolboxes were chosen mainly
for their neural network training algorithms and ability to export
trained neural networks as dynamic-link libraries (DLLs). We
have also developed a plugin for OpenSim [26] musculoskele-
tal modeling software that allows users to incorporate surrogate
contact models created with SCMT into musculoskeletal models
without having to write any code.

This paper summarizes SCMT’s design, features, and work-
flow. To demonstrate the full spectrum of SCMT’s function-
ality, we provide two examples applications. The first demon-
strates the creation of multidomain surrogate contact models
for artificial tibiofemoral (TF) and patellofemoral (PF) joints
and evaluates their accuracy and computational speed. The sec-
ond example demonstrates a forward dynamic simulation of an
open-chain knee extension–flexion motion where the knee is
modeled as a 12 DOF joint possessing deformable TF and PF
surrogate contact models, seven ligaments, and four muscles.
We hope that making SCMT available to the research commu-
nity will lead to the widespread use of surrogate contact models
in simulations of human motion, ultimately advancing the field
of musculoskeletal simulation.

II. OVERVIEW

SCMT is a software framework that allows users to
generate neural network-based surrogate contact models
from finite-element models. SCMT includes an application
programming interface (API) and a stand-alone graphical user
interface (GUI). The main features of SCMT are a Sample
Point Generator, a Model Sampler, a Sample Point Filter, an
Out-of-Contact sampler, a Surrogate Model Designer, and a
Surrogate Model Tester (see Fig. 1). The GUI allows users to
interact with SCMT’s core functionality with the aid of tooltips
and without having to write code.

SCMT is written in C++ with the GUI designed in
Qt Creator (Digia Plc, Valimotie 21, 00380 Helsinki). The
source code and compiled executable are freely available
(https://simtk.org/home/scmt). The software is designed for use

Fig. 1. SCMT is composed of several tools or modules. The Sample Point
Generator creates sample points which may cluster around reference trajecto-
ries. The Model Sampler performs multiple static analyses by calling FEBio.
The Sample Point Filter removes unwanted sample points. The Out-of-Contact
Sampler creates sample points corresponding to either fully OOC or partly
OOC configurations. The Surrogate Model Designer defines the structure of the
surrogate model and the neural network training criteria. The Surrogate Model
Tester calculates the surrogate model errors.

in Microsoft Windows operating systems. Third-party tools are
used extensively throughout the code. Among these tools are
the Boost serialization library to read and write XML files
and binary files [27], Hammersley libraries for creating low-
discrepancy sequences of sample points [28], and the OpenMP
API for multithreading [29]. SCMT interfaces with FEBio and
MATLAB via command line execution using the Windows Shell
API. A user guide is available online and the code is heavily
commented to allow users with C++ knowledge to explore the
algorithms and to make changes to the code if desired.

The GUI provides a variety of tools for surrogate model cre-
ation that may be used either independently or as part of a struc-
tured workflow. The first tool is a Sample Point Generator that
allows users to specify multiple domains of input space and the
number of sample points desired in each domain. The second
tool is a Model Sampler that interfaces with FEBio by pars-
ing files and executing command line calls in a multithreaded
fashion. The third tool is a Sample Point Filter that eliminates
sample points containing values that exceed user-defined lim-
its. The fourth tool is an Out-of-Contact Sampler which creates
sample points that are in either fully out-of-contact (OOC) or
partly OOC configurations. The fifth tool is a Surrogate Model
Designer that specifies the inputs to and outputs of each artificial
neural network (ANN) and the overall surrogate model. The Sur-
rogate Model Designer also writes the training and testing data
to disk and can launch a MATLAB routine that generates and
compiles the ANNs. The sixth tool is a Surrogate Model Tester
that calculates root-mean-squared (RMS) errors and maximum
absolute errors for the surrogate model outputs in multiple do-
mains of input space. The seventh tool is a set of Utilities that
simplify tasks regarding joining sets of sample points and con-
verting sample point data into different formats. Together, these
tools allow users to generate surrogate contact models easily
and efficiently.
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Fig. 2. Diagram describing the steps required to generate and test surrogate
contact models using SCMT. The letters in parenthesis correspond to the steps
described in the workflow section.

We also produced an OpenSim plugin to support surrogate
contact models created with SCMT. The plugin allows OpenSim
users to incorporate their surrogate contact models into Open-
Sim models as “Force” components. With this plugin, SCMT
effectively provides a bridge between FEBio and OpenSim, two
simulation tools widely used in the biomechanics community.

III. SCMT WORKFLOW

The following section describes the recommended work-
flow to create surrogate contact models with SCMT (see
Fig. 2). All of these steps are illustrated in detail in two
example applications presented in the next section. A more
detailed description is available in the SCMT user guide
(https://simtk.org/home/scmt).

A. Setting up the FEBio Model

The FEBio model must contain one or two fixed rigid bodies
and a single moving rigid body. The fixed bodies should have
fixed constraints on all degrees of freedom while the moving
body should have a combination of prescribed load constraints
and prescribed kinematic constraints. Meshes with deformable
material models should be attached to the rigid bodies. SCMT
captures the reaction forces and torques on the fixed rigid bodies
and the pose of the moving rigid body at the end of each static
analysis.

Each static analysis requires two FEBio analysis steps. The
first step is configured to apply large loads while the prescribed
kinematic constraints are being met. The second step keeps the
kinematics from the end of the first analysis step while trying to
meet prescribed load constraints on the moving body. Step by
step instructions on how to configure the FEBio model for use
with SCMT are provided in the user guide.

B. Setting up Reference Trajectories

SCMT generates sample point inputs that cluster around user-
defined reference trajectories. These trajectories are 6-D repre-
sentations of pose and/or load measures in the six spatial direc-
tions. For example, a point in a trajectory could be described as
(forcex, forcey , translationz , rotationx, torquey , torquez).
The simplest trajectory is composed of two points that define
a 6-D “bounding box” encompassing the desired input space.
The bounding box approach yields a domain of large span and
low sample point density. To improve sample point density,
the user may specify a more detailed trajectory and SCMT
will create multiple small subdomains around it. This approach
mitigates the curse of dimensionality and allows for regions of
high accuracy in the surrogate models.

C. Defining Domains and Generating Sample Point Inputs

Before generating sample points, the user defines the domains
to be sampled using the Sample Point Generator. To create a
domain, the user first loads a reference trajectory. Then, the
user gives a name to the domain and defines several settings
(number of sample points per domain, Hammersely sequence
details, etc.). The user should keep in mind that surrogate model
accuracy decreases with domain size and increases with number
of sample points. Finally, once the Sample Point Generator
settings are defined, sample points populated with inputs may
be created.

D. Sampling FEBio Model to Obtain Outputs

Once the FEBio model is configured and the sample point
inputs are generated, the user performs multiple contact simu-
lations in FEBio with the Model Sampler. The user loads the
sample points previously generated and specifies the name of
the FEBio file, the FEBio executable to be used, the number
of concurrent threads, and the settings required for parsing the
FEBio file. The FEBio model is then sampled via repeated static
analyses and the progress is monitored in the console window.
Alternatively, the user could utilize a contact simulation pro-
gram other than FEBio by manipulating the sample point inputs
and outputs directly with the SCMT API.

E. Filtering Sample Points

Once sampling has been completed, the user inspects how
many sample points converged with the Sample Point Filter. The
user then removes unwanted sample points from the dataset.
This step is necessary because the static analyses sometimes
result in sample points with unrealistic poses or loads.
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Fig. 3. Description of fully OOC sample point generation. (a) Preexisting sam-
ple point configuration. (b) Moving body is translated along a selected direction
by specifying a maximum liftoff value and all contact loads corresponding
to the translated configuration are set to zero. Intermediate translations yield
intermediate poses.

F. Generating OOC Points

SCMT includes a tool for creating sample points in OOC
configurations. There are two types of OOC situations. The first
occurs when there is no contact happening between the fixed
and moving bodies. In this case, the moving body can simply
be translated in a specified direction tx , ty , or tz relative to a
previously sampled configuration to achieve a specific amount of
liftoff (see Fig. 3). Sample points corresponding to intermediate
liftoff values are also created. The sample points generated are
called “fully OOC points” and require no simulations since all
contact loads are known to be zero.

The second situation occurs when one pair of potentially in-
teracting contact surfaces (or contact pair) is OOC yet a second
contact pair is still in contact. These sample points are called
“partly OOC points.” Because these points share similar trans-
lations and rotations to sample points that are fully in contact,
it was convenient to borrow some inputs from these sample
points to be used as initial configurations. SCMT implements
the following method to sample a partly OOC point: A partly
OOC sample point Sooc is created using values from an existing
sample point S where both contact interfaces were in contact.
Three rotations corresponding to S are prescribed to Sooc as
inputs. Two translations from S are prescribed to Sooc as well
as one contact force in the remaining spatial direction. Next, a
user-specified rotation rx , ry , or rz of Sooc is offset to tilt the
moving body. When Sooc is processed with the Model Sampler,
the resulting configuration will be partly OOC (see Fig. 4) and
could be added to the database of sample points to be fitted with
a surrogate model.

G. Designing and Creating Surrogate Model

Once all sample points have been collected, the user proceeds
to define the structure of the surrogate model with the Surrogate
Model Designer. SCMT creates surrogate models composed of
sequential blocks or computational stages. Each stage corre-
sponds to an ANN with multiple inputs and a single output,
where the outputs of earlier blocks can be used as inputs to
the ones that follow. Using the Surrogate Model Designer, the
user specifies the inputs and outputs of the surrogate model and
its stages. The Surrogate Model Designer is also used to write
sample points to file in the proper format for MATLAB to read.

Fig. 4. Description of partly OOC sample point generation. (a) Preexisting
sample point configuration. The user-specified lever arm is the estimated dis-
tance between the two contact patches. (b) Moving body is prescribed to rotate to
a specified angle. (c) Force is applied in a compressive direction yielding a sin-
gle contact patch and the approximate predefined maximum liftoff. Intermediate
rotations yield intermediate poses.

After specifying model stages, the user defines the neural
network architectures and stopping criteria. Each neural network
architecture is defined in terms of number of hidden layers and
number of neurons per layer. The stopping criteria options are
the following: 1) exceeding maximum allotted time for training
of each ANN; 2) meeting goal RMS error for training set; and
3) exceeding maximum number of consecutive epochs with
increasing validation error. Criterion 1 sets a limit of maximum
computation time, Criterion 2 stops the training process when an
ANN is considered “accurate enough,” and Criterion 3 avoids
overfitting the training dataset. The training process for each
ANN is terminated as soon as any of these criteria is met. Other
configuration options can be selected including whether or not
training should be parallelized and the percentage of training
sample points to be used for cross-validation in Criterion 3. Once
all options are specified, the user launches the training process
from the GUI. A MATLAB console window in automation mode
will show the ANN training progress. Upon finishing, all ANNs
are saved to disk as MATLAB workspace files, as MATLAB
functions, and as compiled DLLs. The XML file containing all
surrogate model settings together with the DLLs comprise the
complete surrogate model.

H. Testing Surrogate Contact Model

The Surrogate Model Tester tool allows users to load a surro-
gate model and test it against a separate set of sample points not
used for training. The Surrogate Model Tester outputs the RMS
errors and maximum absolute errors for each of the outputs.
The user also has the option to evaluate errors only in specific
domains. For example, the user may ask for errors only in the
domain corresponding to sample points that are OOC. If the
errors are unacceptably large, the user can revise the settings in
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the previous steps and iterate while keeping all of the sample
points previously generated.

IV. EXAMPLE APPLICATIONS

The two examples presented in this section illustrate: 1)
How SCMT can be used to create multidomain surrogate mod-
els of deformable contact for artificial TF and PF joints; and
2) How surrogate contact models created with SCMT of arti-
ficial TF and PF joints can be used within a forward dynamic
simulation of an open-chain knee extension–flexion motion. All
files required to run both example applications are provided at
https://simtk.org/home/scmt. The knee was selected for both ex-
ample applications because it is a highly complex 12 DOF joint
typically modeled as a 1 DOF joint in musculoskeletal simula-
tions. Being able to model the knee as a 6 DOF TF joint cou-
pled with a 6 DOF PF joint within muscle-actuated simulations
could facilitate improved estimation of joint contact, ligament,
and muscle forces during movement. Moreover, modeling the
knee as a 12 DOF joint eliminates assumptions about the knee
axis of rotation, patellar kinematics, and how contact forces
contribute to the flexion–extension moment. Instrumented im-
plant force data, fluoroscopy data, an OpenSim musculoskeletal
model, and implant geometry for these examples were obtained
from the First Grand Challenge Competition to Predict in vivo
Knee Loads [30].

A. Example 1: Surrogate Model Creation

This example illustrates the creation and testing of surrogate
contact models of TF and PF artificial joints to be used in gait
simulations.

1) Creating TF and PF Finite-Element Models: We created
FEBio finite-element models of TF and PF joints using geomet-
ric models of the implant components. The TF contact model
consisted of single element meshes for the medial and lateral
fixed rigid bodies representing the tibial tray, a deformable mesh
representing the plastic tibial insert with its back surfaces at-
tached to the fixed bodies, and a mesh for the metallic femoral
component condyles modeled as rigid. The PF contact model
consisted of a single element mesh for the fixed rigid body
representing the patella bone, a deformable mesh modeling the
plastic patellar button with its back surface attached to the fixed
body, and a mesh of the femoral component trochlea modeled as
rigid. In both cases, the rigid femoral component served as the
moving body to which a combination of kinematic constraints
and loads were prescribed. The plastic components made of
ultrahigh molecular weight polyethylene were modeled as neo-
hookean solids with their Young’s modulus estimated using ex-
perimental contact force, pressure, and area data collected from
a similar implant [31] (see Supplementary material). The se-
lected Young’s modulus and Poisson’s ratio were 700 MPa and
0.45, respectively, which corresponded to values used in another
study [18].

The implant geometries were meshed using TrueGrid (XYZ
Scientific Applications, Inc., Livermore, CA) and consisted of
2784 and 2000 hexahedral elements for the tibial insert and
patellar button, respectively. These meshes were tested against

Fig. 5. (a) Finite-element model of TF joint contact. The femoral compo-
nent surfaces were modeled as rigid while the tibial insert was modeled as
deformable. Two “fake” rigid bodies below the tibial insert were added such
that their reaction loads could be captured. (b) Finite-element model of PF joint
contact. The femoral component surface was modeled as rigid while the patellar
button was modeled as deformable. One “fake” rigid body was added under the
patellar button to capture the reaction loads.

finer meshes (75 168 elements for tibial insert and 8000 elements
for patellar button) using static analyses, and the discrepancies
were below 12 N/250 N · mm in reaction forces/torques and
below 15 μm/2.5 × 10−2 deg in poses.

The moving bodies for the TF and PF models were translated
to suitable initial configurations where only small penetrations
occurred between the contacting surfaces. The centers of ro-
tation of the moving bodies were translated accordingly. The
deformable meshes were rigidly attached to the fixed bodies
using rigid contact constraints. Sliding contact was defined be-
tween the implant contact surfaces. After we configured the
constraints, load curves, and analysis settings, the models were
ready to be sampled (see Fig. 5). This entire configuration pro-
cedure was performed within the software package Preview [25]
which exported the FEBio models.

2) Setting up Reference Trajectories and Defining Domains:
The surrogate contact models created for this example were in-
tended for use in gait simulations. Therefore, we clustered sam-
ple points along reference envelopes representing walking kine-
matics and loads. For the TF model, we created kinematic and
kinetic envelopes for a variety of walking motions using a single
cycle of fluoroscopic knee motion data (anterior–posterior trans-
lation, medial–lateral translation, internal–external rotation, and
flexion–extension rotation) and multiple cycles of instrumented
implant load data (inferior-superior force and adduction mo-
ment) [30]. Real variability was used to define envelope ranges
for the load data and assumed variability was used for the motion
data. Domain T1 was built along normal walking trajectories,
and domain T2 was built for a series of different walking mo-
tions including normal gait, medial thrust gait, walking pole gait,
and trunk sway gait. Domain T3 encompassed all trajectories
in a bounding box without clustering sample points. Domain
T4 consisted of sample points at the contact boundary for both
medial and lateral sides. Domain T5 covered the configurations
where both condyles were OOC. Domain T6 represented config-
urations where only one condyle was OOC (see Supplementary
material).

We had no reliable experimental data to help define pose/load
trajectories for the PF model. Therefore, we defined a large
bounding box domain named P1 which encompassed estimated
kinematics from cadaver studies [32], [33] and estimated loads
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from simulation studies [6], [34]. We defined another domain
named P2 corresponding to points at the contact boundary. Fi-
nally, we defined domain P3 as OOC configurations.

3) Sampling and Filtering: Sample points were obtained au-
tomatically using the Model Sampler. With 13 parallel threads,
our 3.4 GHz PC workstation was able to perform roughly
one static analysis per second necessitating about two days of
computation per joint. The net number of static analyses per-
formed was 91 263 for the TF joint and 82 126 for the PF
joint.

Sample points in domains T1–T4 were filtered such that the
medial and lateral inferior-superior forces were compressive
(Fmed

y , F lat
y < −1N). Sample points in domain P2 were also

filtered such that the compressive force was in the expected
range (−20N < Fx < 0N). The effects of filtering on the num-
ber of sample points available for training and testing is shown
in the Supplementary material.

4) Designing and Training Surrogate Models: The surrogate
models took pose parameters as inputs and loads as outputs.
The inputs and outputs to the stages of the TF model are shown
in (1)–(7) while the inputs and outputs to the stages of the PF
model are shown in (8)–(13). Translations tx , ty , and tz were
along the global x, y, and z axes while rotations rx , ry , and rz

followed a body-fixed x–y–z Euler sequence. For the TF model,
the global x-axis pointed posteriorly, the y-axis superiorly, and
the z-axis medially. For the PF model, the global x-axis pointed
posteriorly, the y-axis superiorly, and the z-axis medially. Forces
acting on the fixed bodies are denoted as F and torques as T .
The TF model outputs medial and lateral superior-inferior forces
(Fmed

y and F lat
y ) to describe the medial–lateral load split. The

inputs and outputs to each stage were chosen using a previously
defined method [35]. For both models, the contact loads that
were highly sensitive to pose parameter variations were fit as
functions of the pose parameters while the insensitive loads were
fit as functions of the pose parameters and the sensitive loads
calculated in the earlier stages.

For the TF model, each stage consisted of an ANN with four
hidden layers of 30 neurons each. For the PF model, each stage
consisted of an ANN with two hidden layers of 30 neurons each.
The models were trained using 12 MATLAB workers with 20%
of the training data selected randomly for cross-validation. The
stopping criteria for each ANN were set to 6000 s, a training
RMS value of 1 N or 1 N ·mm, and 50 consecutive validation
error increments.

a) Surrogate model stages for TF contact:

Fmed
y = f (tx , ty , tz , rx , ry , rz ) (1)

F lat
y = f (tx , ty , tz , rx , ry , rz ) (2)

Fx = f
(
tx , ty , tz , rx , ry , rz , F

med
y , F lat

y

)
(3)

Fz = f
(
tx , ty , tz , rx , ry , rz , F

med
y , F lat

y

)
(4)

Tx = f
(
tx , ty , tz , rx , ry , rz , F

med
y , F lat

y

)
(5)

Ty = f
(
tx , ty , tz , rx , ry , rz , F

med
y , F lat

y

)
(6)

Tz = f
(
tx , ty , tz , rx , ry , rz , F

med
y , F lat

y

)
. (7)

b) Surrogate model stages for PF contact:

Fx = f (tx , ty , tz , rx , ry , rz ) (8)

Fz = f (tx , ty , tz , rx , ry , rz ) (9)

Fy = f (tx , ty , tz , rx , ry , rz , Fx, Fz ) (10)

Tx = f (tx , ty , tz , rx , ry , rz , Fx, Fz ) (11)

Ty = f (tx , ty , tz , rx , ry , rz , Fx, Fz ) (12)

Tz = f (tx , ty , tz , rx , ry , rz , Fx, Fz ) . (13)

5) Evaluating Errors: The models were tested in all domains
of inputs space (see Supplementary material for details). All
RMS force/torque errors were below 24 N/ 621 N ·mm and
21 N/173 N ·mm for the TF and PF surrogate models, respec-
tively. The RMS and maximum absolute errors for the TF model
were found to be lowest for domain T5 (fully OOC) and highest
for domains T2 (all gait) and T6 (partly OOC). The errors for
the PF surrogate model were also calculated and were similarly
the lowest for domain P3 (fully OOC).

6) Evaluating Computational Speed: Both surrogate mod-
els were subjected to a computational speed test consisting of
10 000 consecutive surrogate model evaluations on a 3.4 GHz
computer without parallelization. The average computation time
for each TF and PF model evaluation was 88.3 and 57.6 μs,
respectively.

B. Example 2: Surrogate Model Utilization

We incorporated TF and PF surrogate contact models into the
preexisting patient-specific pelvis and leg OpenSim model to
perform a forward dynamic simulation of a seated open chain
knee extension–flexion motion. The surrogate TF contact model
encompassed a larger domain than the one generated for gait in
Example 1, allowing for higher flexion. The surrogate PF contact
model was the same one described in Example 1.

1) Creating Realistic Knee Poses: We created realistic static
poses where we applied the estimated contact loads that liga-
ments would impose on the tibial tray and patellar button. We
started by removing all muscles from the model, locking the
pelvis to ground, locking the ankle DOFs, and locking the hip
joint at 90° of flexion to place the model in a “sitting” position.
We removed gravity from the model and added two coordinate
actuators that applied generalized forces of 100 N on the patellar
button and tibial insert to push them into the femoral component
as ligaments would. All TF joint DOFs except for the flexion
angle were free, while for the PF joint the medial–lateral and
anterior–posterior translations were free and all other DOFs
were locked. We then performed static analyses at 0 and 80° of
knee flexion and recorded the coordinates corresponding to the
static poses. We visually compared the resulting static poses to
fluoroscopic images to verify that the patellar location and tilt
were realistic.

2) Adding and Calibrating Ligaments at Knee Poses: Once
we obtained the two static poses, we removed all coordinate ac-
tuators from the model and replaced them with ligament mod-
els. We modeled each ligament as three nearly parallel non-
linear path springs. The following ligaments were added: the
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patellar ligament, the medial collateral ligament (MCL), the lat-
eral collateral ligament, the medial patellofemoral ligament, and
the lateral patellofemoral ligament. The MCL included the deep
MCL, the proximal superficial MCL, and the distal superficial
MCL, each with three bundles. We omitted the anterior cruciate
ligament since the subject had it removed during knee replace-
ment surgery. We also left out the posterior cruciate ligament
since it applies loads only in high flexion [36] at angles be-
yond our simulation. We estimated the stiffness corresponding
to the linear portion of the force–length curve of each ligament
based on literature values [37], [38], and we visually identified
the origin and insertion points of each ligament using anatomy
references [39]–[42].

We performed an optimization to select the resting lengths
of all ligament bundles in the model. The optimization changed
the resting lengths such that the net load in each ligament (i.e.,
the sum of the three bundle loads) was close to 50 N for both
static configurations. The optimization also selected the rest-
ing lengths of the patellar ligament bundles such that each one
applied 100 N of force for the 80° flexion pose.

3) Finding Static Initial Conditions for Simulation: After se-
lecting ligament resting lengths, we performed a series of static
analyses to prepare the model for simulation. We added ideal
path actuators to the model to represent the four quadriceps
muscles, reintroduced gravity, and altered wrapping surfaces to
increase the knee extensor moment arms. For the first static anal-
ysis, we applied constant and equal forces to the four quadriceps
muscles with the knee flexion angle (for the TF joint) locked at
80° and the other 11 knee DOFs freed. This analysis balanced
the ligament, contact, and muscle forces in all DOFs except for
TF flexion. The second static analysis started from the previous
static pose but with the knee flexion angle freed. The resulting
pose yielded a static configuration where muscle, ligament, and
contact forces balanced all 12 DOF in the knee. We repeated
this static analysis multiple times, iterating on quadriceps forces
until the static flexion angle was about 80°.

4) Performing Forward Dynamic Simulation: Once the initial
static pose and muscle forces for simulation were determined,
we added a PD controller to the model to track a desired sinu-
soidal knee flexion curve and added damper forces to the TF
and PF joints to reduce the vibrations introduced by the con-
tact and ligament forces. The controller was modified such that
the force in each muscle could never go below 15 N, the value
in the initial configuration. Using the OpenSim API in C++,
we performed a forward dynamic simulation of a two second
open-chain extension–flexion motion using the CPODES im-
plicit integrator with the order limited to 2 and the accuracy set
to 5 × 10−3. The 12 DOF simulation (see Fig. 6) finished in
4.7 s of CPU time and calculated the TF and PF contact forces
experienced during the motion (see Fig. 7).

V. DISCUSSION

This paper presented SCMT, a new program for generating
surrogate contact models from elastic finite-element models.
The program facilitates sampling finite-element contact mod-
els, fitting ANNs to the collected data, assembling the ANNs

Fig. 6. Snapshots for the first second of the 2-s seated knee extension–flexion
simulation for an OpenSim model with 12 DOF. The model had six DOFs for
the TF joint and six for the PF joint. Ligament bundles were added and their
resting lengths calibrated. A feedback controller was used to apply the path
actuator forces that drove the motion.

Fig. 7. Plot of the forces acting during the OpenSim simulation of knee
extension and flexion. “Tibia Fymed” and “Tibia Fylat” are the superior-inferior
compressive forces acting on the medial and lateral compartment of the tibial
insert. “Patella Fx” is the compressive force acting on the patellar button in the
direction normal to its back surface. “Actuator” stands for the force in each one
of the four path actuators representing the quadriceps femoris muscles. Force
oscillations at 0.6 and 1.5 s are caused by compliant knee ligaments in the leg
model.

into surrogate models, and deploying the surrogate models in
OpenSim or any other program with a C++ interface. SCMT is
meant to be used for research applications involving the mod-
eling and iterative simulation of musculoskeletal models that
incorporate joint contact. The same framework could poten-
tially be used to develop foot-ground or limb-socket surrogate
contact models as well.

Two examples showed how surrogate contact models can be
created with SCMT and used in forward dynamic simulations.
The first example application involving surrogate modeling of
the knee demonstrated the toolbox’s ability to create surrogate
contact models of both the TF and the PF joints with varying
levels of accuracy across different domains of input space. The
ability to fit OOC points was also demonstrated. In the sec-
ond example, the OpenSim simulation showed how surrogate
contact models created with SCMT may be incorporated into
musculoskeletal models possessing ligaments and controlled by
muscle forces. Simulations involving surrogate contact models
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could be used to investigate how muscle, ligament, and joint
contact forces interact to produce the resulting joint kinematics
and loads on each of these anatomic structures.

Though SCMT facilitates surrogate contact model creation
and use, it still possesses several limitations. First, The ANN-
based surrogate models do not provide estimates of prediction
variance, so the user has no knowledge of the error in the surro-
gate model outputs during a simulation. Second, the computing
times required for sampling finite-element models and for train-
ing the ANNs are significant and could range from days to
weeks depending on the available computer hardware. Third,
SCMT can collect reaction forces and torques at the origins of
no more than two fixed rigid bodies. Fourth, the current version
of SCMT does not collect or fit pressure or center of pressure
data from the finite-element simulations, which could be useful
additional outputs for some applications. Fifth, contact loads are
assumed to be functions of pose with no velocity dependence
or permanent deformation, and thus only elastic contact models
can be represented.

VI. CONCLUSION

We have shown that SCMT can produce fast and accurate
surrogate contact models of more computationally expensive
FE contact models. The software can significantly reduce the
time and effort required to create and perform computationally
efficient musculoskeletal simulations incorporating deformable
joint contact models. Our hope is that SCMT will lead to realistic
simulations of joint kinematics, more accurate estimation of
muscle and joint contact forces, and predictive simulations of
rehabilitation and surgical interventions.
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