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An open string analogue of Viterbo functoriality

MOHAMMED ABOUZAID
PAUL SEIDEL

Liouville domains are a special type of symplectic manifolds with boundary (they
have an everywhere defined Liouville flow, pointing outwards along the boundary).
Symplectic cohomology for Liouville domains was introduced by Cieliebak—Floer—
Hofer—Wysocki and Viterbo. The latter constructed a restriction (or transfer) map
associated to an embedding of one Liouville domain into another.

In this preprint, we look at exact Lagrangian submanifolds with Legendrian boundary
inside a Liouville domain. The analogue of symplectic cohomology for such sub-
manifolds is called “wrapped Floer cohomology”. We construct an A, —structure
on the underlying wrapped Floer complex, and (under suitable assumptions) an Aeo—
homomorphism realizing the restriction to a Liouville subdomain. The construction
of the A, —structure relies on an implementation of homotopy direct limits, and
involves some new moduli spaces which are solutions of generalized continuation
map equations.

53D40

1 Introduction

Symplectic (co)homology is an invariant of symplectic manifolds with boundary,
introduced by Cieliebak—Floer—Hofer—Wysocki [7; 3; 9; 4] and Viterbo [30; 29]. There
are actually several flavours of the theory, which appear in different contexts; even
when the domains of applicability overlap, their mutual relation is not always clear.
In this paper, the symplectic manifolds we consider are Liouville domains, which are
particularly simple to work with, since they combine two advantageous features (convex
contact type boundary, and exactness of the symplectic form) and we use Viterbo’s
definition (except that we call cohomology what he calls homology). The notation will
be SH*(M) for the symplectic cohomology of a Liouville domain A . Crucially, for
every Liouville subdomain M ™ C M , Viterbo defined a restriction (in his terminology,
transfer) homomorphism

(1) SH*(M) — SH*(M™).
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The original motivation came from the Weinstein conjecture; this Viterbo functoriality
property of symplectic cohomology also has many applications to Lagrangian embed-
ding questions, especially for cotangent bundles. There are several surveys covering
aspects of this material, for instance Oancea [24] and Seidel [26].

Symplectic cohomology has an open string analogue, where one considers a Lagrangian
submanifold L C M (whose boundary is Legendrian, and with suitable exactness
conditions). The special case of cotangent fibres appears in Abbondandolo—Schwartz [1],
and the general construction is known to specialists, even though it has not received
wide attention. Following Fukaya—Seidel-Smith [14] we call the resulting invariant
wrapped Floer cohomology, and denote it by HW*(L). In analogy with (1) one expects,
under suitable assumptions, to have a map

) HW*(L) — HW*(L™™)

where L™ = L N M™; indeed, a fairly straightforward translation of the argument in
Viterbo [30] shows that this can be done. The aim of the present paper is refine that
idea, by first constructing an A,—algebra structure on the chain complex underlying
HW*(L), and then proving that (2) is induced by an As,—homomorphism. In fact,
we also provide an extension to several Lagrangian submanifolds, where wrapped
Floer cohomology turns into the wrapped Fukaya Aso—category W(M ). In that case,
Viterbo functoriality takes on the form of an A, —functor defined on a suitable full
subcategory of W(M ), and mapping that to W(M ™).

We now enter a little more into the details. There are several equivalent versions of
Viterbo’s definition, but we have found one to be particularly effective. Choose a
Hamiltonian function H whose vector field X equals the Reeb vector field along oM .
Then set

3) SH*(M) = limy, HF*(M: wH).

where the right hand side is ordinary (Hamiltonian) Floer cohomology, and the direct
limit, over all w = 1,2,..., is formed with respect to suitable continuation maps.
In parallel, one can define HW* (L) to be the direct limit of Lagrangian Floer coho-
mologies HF*(L; wH). Recall that for each single w, the Floer cochain complex
CF*(L;wH) is generated by chords

@ x: [0, 1] > M satisfying dx/dt = wX and x(0),x(1) € L.

If one chooses H carefully, these generators will be in bijection with critical points of
the Morse function H|L, together with Reeb chords of length < w for the Legendrian
submanifold dL C dM . Hence, wrapped Floer cohomology is a combination of ordinary
Floer cohomology (which is isomorphic to the cohomology of L in the present context)
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and linearized relative SFT (which counts Reeb chords, and sometimes goes under the
name of linear Legendrian contact homology). Since direct limits are exact, one could
in principle define the chain complex underlying HW*(L) to be the direct limit of
the CF*(L; wH). However, a direct limit is in a sense a quotient construction, hence
is unlikely to be strictly compatible with the A.,—structure. Instead, we use a larger
quasi-isomorphic chain complex CW*(L; H), which is the homotopy direct limit (the
algebraic version of the telescope construction in homotopy theory). By definition,
the differential on this complex includes both the ordinary Floer differentials (for all
w), and continuation maps from w to w 4+ 1. When constructing the higher order
components % of the Aoo—structure, one must similarly include terms arising from
solutions to continuation map equations on (d +1)—punctured discs. In order to write
down such an equation, one needs a one-form y on the disc, with suitable behaviour
near the punctures, and which satisfies dy < 0 everywhere. To organize the choices of
one-forms, we introduce the notion of popsicle, which is a punctured disc equipped
with additional geometric data, given by marked points which can move along special
lines on the surface (intuitively, one imagines that dy is a smeared out version of
the §—distribution located at those points). Of course, there is a certain amount of
necessary preliminary work, which concerns the moduli spaces of popsicles and their
compactifications.

The construction of Asc—homomorphisms underlying (2) has two main ingredients.
The first idea, taken from Viterbo [30], is to compress the inner domain M N M by
using the Liouville flow. This shrinks all symplectic areas by some factor p, and thereby
also the values of the action functional on any chord (4) lying inside M ™. Viterbo
exploits this by making a careful choice of p and of the Hamiltonian (both depending
on w), which allows one to define the map HF*(M ;wH) — HF*(M™; wH™) by
projecting to a quotient of the Floer cochain complex. This can be carried out in the
Lagrangian case as well, but it is not really suitable for our purpose since we need to
consider all w simultaneously. The second idea, used to overcome this difficulty, is
adapted from work of Fukaya, Oh, Ohta and Ono [13, Section 19]. In order to prove the
independence of Fukaya-type A —structures from various choices, they considered
parametrized moduli spaces arranged in trees, where the parameter is required to
increase monotonically from the root to the leaves. We adapt their construction to the
setting of popsicles, and call the resulting objects cascades (as far as the authors know,
this is not related to the use of the same term in Frauenfelder [10]). The parameter
is then precisely Viterbo’s rescaling factor p, which we allow to become arbitrarily
small, meaning that it varies freely in (0, 1]. We should point out that the resulting
Aoso—homomorphism has (in general) infinitely many higher order terms, hence is not
a projection in any sense.

Geometry & Topology, Volume 14 (2010)



630 Mohammed Abouzaid and Paul Seidel

The structure of the paper is as follows. Sections 2—5 contain the main thread of
the argument. The first three of these are devoted to, respectively, the discussion
of popsicles and other Riemann surface matters; the definition of the 4,,—algebra
structure; and that of the A,,—homomorphism. Section 5 contains some less central
additional material, among it the extension of the previous constructions to wrapped
Fukaya categories. The second part of the paper (Sections 6-9) is a sequence of
appendices, covering details which were omitted from the main exposition. These
concern the construction of popsicle moduli spaces; a priori estimates that enter into
various compactness arguments; transversality issues; and coherent orientations (with
the resulting signs).

As should be clear from this description, the present paper is entirely foundational. One
could certainly think of applications to the chord conjecture, in line with what has been
done for symplectic cohomology, and also to Lagrangian embeddings, in particular
fleshing out the last part of Fukaya—Seidel-Smith [14]. However, for the authors of this
paper, the main interest lies in potential applications to homological mirror symmetry,
using Mikhalkin’s generalized pair-of-pants decompositions (see Mikhalkin [23] and
Abouzaid [2]). This relies crucially on having the entire A —structure, rather than only
the cohomology level theory HW* (L) (the same is true for [14] as well). Unfortunately,
explaining these ideas is beyond our scope here.

Acknowledgments. We would like to thank Denis Auroux, Ivan Smith, and Katrin
Wehrheim for valuable discussions. This research was conducted during the period
the first author served as a Clay Research Fellow. The second author was partially
supported by NSF grants DMS-0405516 and DMS-0652620.

2 Popsicles

We start this section by recalling one of the fundamental facts underlying the construc-
tion of Fukaya categories, namely the interpretation of Stasheff associahedra as moduli
spaces of Riemann surfaces with boundary (see Fukaya [11]). Our main topic is an
enriched version of this setup, where the Riemann surfaces carry holomorphic functions
with suitable boundary conditions. We will explain the geometry of the resulting moduli
spaces, relegating the more technical details to Section 6. As an important consequence,
there is a natural class of one-forms on our Riemann surfaces, which will be used later
to write down inhomogeneous 5—equati0ns. As a final topic, we introduce yet another
version of decorated Riemann surfaces, which come with additional real parameters
(this time, the parameters have no geometric meaning, and adding them should be
thought of as an abstract operadic-type construction).
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2.1 Discs

Fix d = 0. A disc with d+1 ends is a Riemann surface S isomorphic to the closed
unit disc D minus d+1 boundary points (called points at infinity), together with a
distinguished choice of one of those points (the distinguished point is called negative,
and the others positive). We usually denote the points at infinity by & = {°, ..., ¢4}.
Here, the numbering convention is that £° is the negative point, and that the positive ones
appear in the order determined by the orientation of d.S. The obvious compactification
of S is then writtenas S = SU¢ = D.

Example 2.1 A simple example is the infinite strip Z = R x [0, 1] C C, with points
at infinity {® = —o0, ¢! = 4-00. We usually write the coordinates on Z as z = s +it.
Of course, any other disc with two ends is isomorphic to Z.

The infinite strip is unstable, because it admits an infinite group of translational sym-
metries (s,7) — (s + o,¢). Discs with d+1 > 3 ends are automatically stable, and in
fact have no nontrivial automorphisms (preserving the distinguished point at infinity).
In this stable range, it is easy to construct a universal family of discs, which we denote
by §4+1 5 R4+1 The base (the moduli space of stable discs) is a smooth manifold
diffeomorphic to R92.

Consider a ribbon tree 7" with d+1 semi-infinite edges, together with a preferred
choice of one such edge (the preferred one is called the root, and the others the leaves).
A broken disc modelled on T is a disjoint union

(5) S:U&

indexed by vertices v of T', where each component S, is a disc whose number of ends
is given by the valency |v| of the vertex. We assume from now on that stability holds,
which means that |v| > 3 for all vertices of T'. Let R+ 1T be the moduli space of
broken discs modelled on 7. If the tree has a single vertex, this just agrees with RA+L
while in all other cases, it is a product of lower-dimensional moduli spaces RVl Take
the disjoint union over all stable trees 7" with d+1 semi-infinite edges:

6) RIF =[] RI+LT.
T

This can be equipped with a natural topology, and indeed the structure of a manifold
with corners, which is such that the stratification (6) is the one into boundary and
corner strata of various codimensions. In particular, the interior of R4+ is precisely
R4+ We call these compactifications the moduli spaces of stable broken discs (they
are homeomorphic to the classical Stasheff associahedra).
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At this point, it is convenient to introduce some more combinatorial terminology. Take
atree T as before. A flag (sometimes also called a half-edge) in 7 is a pair consisting
of a vertex and an adjacent edge. In our case, there is a preferred way of numbering
the flags adjacent to any given vertex by {0,...,|v|}. Namely, one starts with the
unique flag (called negative) which points towards the root, and continues with the
other ones (called positive) according to the ribbon structure. Hence, if S is a broken
disc modelled on 7', there is a natural correspondence between flags (adjacent to v)
and points at infinity (belonging to the component S ). Note also that the semi-infinite
edges of 7' can be numbered in a preferred way by {0, ..., d}, by starting with the root
and proceeding in accordance with the cyclic ordering given by any plane embedding
T — R? compatible with the ribbon structure. Since each semi-infinite edge gives rise
to a unique flag, we have d+1 distinguished points at infinity in S'.

With this in mind, one defines the compactification S of a broken disc by first tak-
ing the compactifications S, of all components, and then identifying those pairs of
points at infinity which correspond to flags belonging to the same interior edge of 7.
Equivalently, one takes the disjoint union of the discs S, and adds to that d+1 points
at infinity (corresponding to the semi-infinite edges of 7") as well as singular points
(corresponding to the finite edges). We call the added points of both type special points
of S. There is a natural compactification 84+ of the universal family 84+, coming
with a map

%) gd+1 __, Rd+1

such that the fibre over any point of RAHL s precisely the compactification of the
broken disc corresponding to that point. Everywhere except at the singular points of
compactified broken discs, 84+1 is a manifold with corners. At those singular points,
we have a different local model, namely

@)  RFx[0,00) x {(64,6-) € C? : im(84) > 0,im(5_) = 0,845_ € [0, 00)}

where of course, k +/ = d — 3 for dimension reasons. Still, the transition functions be-
tween these local models are differentiable (more precisely, restrictions of differentiable
maps, in the coordinates given above). Using that, one can make sense of the notion of
smooth map from a manifold into §d+1 , and also in the inverse direction. For instance,
the projection map in (7) is smooth; and the distinguished points at infinity give rise to
a set of d+1 smooth, pairwise disjoint sections of that map. We will encounter the
same situation again later on, see Section 2.3, and return to the details in Section 6.4.

Example 2.2 Figure 1 shows the three-dimensional space 8*. By definition, points
of this space are pairs (S, z), where z € S is arbitrary. The picture shows what such
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Figure 1

E3]

pairs look like on each of the five boundary faces of §*. In the case of the “biggest
face, z can lie anywhere on 35 (over the main stratum R* 2 R, where S is smooth,
one gets a circle bundle; and as one gets to the limits, where the disc degenerates to a
broken one, 3.5 turns into a figure-eight).

2.2 Parametrizing the ends

Let Z_ ={s <0}, Z4 = {s > 0} C Z be the half-infinite strips. Take a disc S with
d+1 ends. A strip-like end around a point at infinity ¢¥ is a holomorphic embedding

©)

e: Z_— S ifk=0, or
€: Zy— S ifk>0,

satisfying € "1(3S) = Z+ N Z and limg_, +o0 €(s, ) = ¢X. As usual, the first kind
of end is called negative, and the other positive. A set of strip-like ends for S is a
collection € = {€°, ..., €%}, where each €X is an end around ¢ .

Strip-like ends are an auxiliary technical device, which enters into the standard gluing
(or end connected sum) construction. To be specific, suppose that we have two discs S+,
a positive end €4+: Z4+ — S+, anegative end e_: Z_ — S_, and a gluing parameter
8 € (—1,0). The associated gluing length is set to be 0 = —log(—34). One then defines
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another disc
(10) S =84#S_

by first removing € ([0, +00) X [0, 1]) as well as e_((—o0, —a] x [0, 1]) from S LI
S_, and then identifying the remaining finite pieces of the ends through the formula
€4+(s,t) ~ e_(s —a,t). The distinguished negative point at infinity in S is the one
inherited from Sy .

This gluing process generalizes to families, and can be used to obtain collar neighbour-
hoods around the boundary strata of the compactified moduli space (6). Fix some tree
T subject to the stability condition. Next, for each vertex v of that tree, choose a set of
strip-like ends for the universal family 8!’ — Rl (this means a set of strip-like ends
on each fibre of that family, varying smoothly over the base). Every finite edge e of
the tree designates two vertices v and the associated flags (vE, ), which in view of
the considerations above, correspond to points at infinity in 8Vl One can then glue
together the associated ends with some gluing parameter (say 6, < 0), or else leave
them alone (which is the degenerate case 8, = 0). This gives rise to a gluing map on
moduli spaces, of the form

(11) :RTx(]_[(—l,O])DuT—>9_zd+1.

Here UT is a subset where the gluing parameters are small, which means a neigh-
bourhood of RT x {0,...,0} (smallness of the parameter ensures that the various
gluing processes don’t interfere with each other). The main property of (11) is that it is
smooth and, after shrinking U7 if necessary, a diffeomorphism onto a neighbourhood
of RT c R4+1 Thisis proved for instance in Seidel [27, Section 9].

A universal choice of strip-like ends (for discs) is the choice of a set €5 = {elg} of
ends for every stable disc S, which is compatible with isomorphisms of such discs,
and smooth with respect to deformations. In practice, this means that one chooses ends
for the universal family 89!, varying smoothly over R*1, and then obtains ends
for any S by identifying it with a fibre of the universal family. It is useful to impose
an additional consistency requirement, which makes such a choice compatible with
gluing processes. Namely, assume that a universal choice has been made, and take the
situation from (10), where both S4 are assumed stable. As part of our global choice,
these two surfaces come with sets of strip-like ends; and if the gluing parameter is
small, S inherits a set of strip-like ends from that (basically, those ends which are not
used up in the gluing process). The consistency condition says that for small values
of the gluing parameter, these induced strip-like ends should be equivalent to those
which are assigned to S as part of the universal choice. The existence of consistent
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choices can be proved by an elementary inductive process, using coordinates (11) near
the boundary strata (see [27, Section 9]; we will be using the same kind of construction
repeatedly later on).

Addendum 2.3 The space of all possible strip-like ends around any point at infinity
is contractible (in an appropriate topology) but infinite-dimensional, and this can be
occasionally awkward to work with. To cut down on the amount of choice, one
can restrict attention to rational strip-like ends Z+ — S, which are the ones that
extend to an isomorphism Z 2 S. The rational strip-like ends around a given point
at infinity form a principal homogeneous space over the contractible group Aut(D, 1)
of holomorphic automorphisms fixing a point. Since the gluing process preserves
rationality, consistency still makes sense in this more restrictive context. The same
argument as before can then be used to produce consistent choices of rational strip-like
ends.

Addendum 2.4 The unstable case is problematic because strip-like ends cannot be
made invariant under automorphisms of the Riemann surface. However, we can weaken
the definition slightly, and then include at least the infinite strip. Call two strip-like ends
equivalent if they differ by a translation of the domain Z . Equip Z itself with the
tautological ends, which are the inclusions Z4 < Z. From that, any S =~ Z inherits
a set of strip-like ends which are unique up to equivalence. Moreover, if we take a
given consistent universal choice and enlarge it to d = 1 in this way, the compatibility
with the gluing process is maintained (up to equivalence, of course).

2.3 The definition

Fix d > 1 and in addition, labels ps € {1,...,d} indexed by some finite set F'. We
write p = {pr} for a collection of such labels. A p—flavoured popsicle is a disc S
with d+1 ends, together with a collection ¢ = {¢} of holomorphic maps

12) ¢r: S — Z,

each of which extends to an isomorphism S = Z, taking £° to —oo and ¢? to +oc.
If we fix S, then the group R¥ of translations acts simply transitively on the set of
all possible popsicle structures ¢ . Additionally, one can permute the ¢, within each
subset where py is constant, and that gives rise to an action of

(13) SymP = {permutations of F stabilizing p}.

Remark 2.5 One way to represent the additional data geometrically is as follows.
Take some k € {l,...,d}, and any holomorphic map ¢: S — Z which extends to
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an isomorphism of compactifications, sending {° to —oo and é‘k to +o00. Consider
the infinite line in S which is the preimage of {t = %} C Z. This line is obviously
the same for all maps, but a specific choice of ¢ singles out a point on it, namely the
preimage of (0, %) € Z. In this way, a p—flavoured popsicle structure can be encoded
in a collection of points on S indexed by F (some of the points may coincide, and of
course their position is not free, each being constrained to the infinite line determined
by k = pyr). The group (13) acts by permuting those points.

Popsicles are stable, and in fact have no nontrivial automorphisms (compatible with the
given structure), if and only if d + | F| > 2. In that range we have a universal family
of popsicles, denoted by 8¢+1:P — RI+1.P whose base has dimension d —2 + | F|.
The structure of these moduli space is actually quite easy to understand. Assume first
that d > 2. In that case, each fibre of the forgetful map

(14) Rd-l—l,p_)yd-i—l

can be identified with R, This identification depends on a choice of origin in the fibre,
but that can be chosen to vary smoothly with RZ*+1 | giving rise to a non-canonical
diffeomorphism RET1P = RITIxRF ~ R4=2+F  The action of RF is just translation
on the fibres of (14), and (if one picks the origin to be invariant, which is always possible)
SymP acts by permuting coordinates. In the remaining case d = 1, one can identify
RATLP with the quotient RF /R (where R acts diagonally by translation on all factors).
Note that in either case, any transposition in SymP acts orientation-reversingly.

Addendum 2.6 Suppose that we have a partition P of F' into subsets { Py, }, such that
the map f + py is constant on each subset. The permutations of F which preserve
P form a subgroup Sym* C SymP. These are precisely the subgroups appearing as
isotropy groups for the action of (13). The corresponding fixed point set in RA+1Lp
is the set of those (S, ¢) such that for any two f belonging to the same Py, the
associated maps ¢y coincide.

Take a tree T of the same kind as before, and a decomposition F = {F,} of F
into subsets labeled by vertices of that tree. Moreover, the decomposition needs to
be compatible with p in the following sense: for each f € F,, the vertex v must
lie on the path from the root to the p,th leaf. Note that p and the decomposition
F determine numbers p, = {p,, r} for each vertex, where f runs through F, and
Dv,r €11,...,|v|}. This is because the path mentioned above leaves v in the direction
of a specific flag, whose number is taken to be p,, r. For instance, if T is the tree with
just one vertex v, the compatibility condition implies that we necessarily have p, = p.
Then, a broken popsicle is a disjoint union (5), together with a p,—flavoured popsicle
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structure ¢, on each S, . This time, the stability condition is that two-valent vertices v
are allowed as long as Fy # @. The moduli space of stable broken popsicles modelled
on (7, F) is a product

(15) REF = T RIbee,
v

Take the disjoint union of those spaces,

(16) RIHIP = [T RTF.
(T)F)

We will see later (Corollary 6.5) that RA+1LP carries a canonical structure of a smooth
manifold with corners, such that (16) is the associated standard stratification, general-
izing the corresponding statement for (6) (which would be the special case F = &).
The forgetful map (14) (defined if d > 2), as well as the actions of R¥ and SymP,
extend smoothly to the compactification. However, their geometry becomes a little
more complicated: the compactified forgetful map is no longer a submersion, and the
action of R on the compactification is not free for any value of d (both phenomena
are due to the appearance of unstable components S, = Z in the boundary strata).
Finally, we should point out that on the closure of a stratum (15), the action of SymP
embeds into one of a potentially larger group, namely [ [, SymP?.

Examples 2.7

(i) Take d =2, F ={1,2}, and p; = p, = 1. Then the compactified moduli
space is a hexagon (Figure 2). The group of symmetries SymP = Z /2 acts by
reflection along the vertical axis.
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(ii) Take the same d and F, but now with p; =1, p, = 2. Then the compactified

moduli space is a pentagon (Figure 3). Note that while SymP is trivial in this case,
one of the boundary edges (the bottom one in our picture) carries a nontrivial
symmetry group [ [, SymP* = Z /2. In particular, the two corners adjacent to
this edge are isomorphic moduli spaces. By this, we mean that the product
expressions (15) for these two corner strata consist of the same factors, even
though the strata themselves are distinguished by how the given F is partitioned
into Fy.

It is also instructive to consider the RZ—action on this moduli space. The orbits
of the two vector fields generating the action are (schematically) drawn in Figure
4. Note that where orbits appear to be transverse to the boundary, their speed
actually slows down to zero, and the limiting boundary edge consists of stationary
points.
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In exactly the same way as in (7), one can define compactifications of the universal
families of popsicles,

(17) gd-ﬁ-l,p_)g_zd-‘rl,p'

The total space has the same geometry as before, meaning that the local models are either
the standard corners or (8). In addition to the d+1 canonical sections, the compactified
family now comes with a collections of smooth maps to Z . If we consider the fibre
over a boundary point, which is the compactification of a broken popsicle, then each of
these maps af: S — Z is constant and equal to +oc0 on all components except one
(the non-constant component S, being precisely the one such that f € F,).

2.4 Popsicle sticks

The gluing process for popsicles is a little less straightforward than that for pointed
discs. It seems difficult to work directly on the level of maps (12). We will therefore
adapt the idea from Remark 2.5, replacing these maps by additional marked points
lying on certain infinite lines. However, instead of taking those lines to be preimages
of the line {t = 1/2} C Z, we will bend them slightly to achieve better compatibility
with the strip-like ends, and hence with the gluing process.

Concretely, let S be a disc with d+1 ends, which comes equipped with a set € of
strip-like ends. Fix some k € {1,...,d}. A popsicle stick connecting ¢° to ¢¥ is an
infinite line R = Q C S satisfying

¢ (Q) ={t = t(s)} for some 7: R — (0, 1),
(18) 0=t = %}) in a neighbourhood of ¢°,
0=é{t= %}) in a neighbourhood of £¥.

Here, ¢p: S — Z is any map as in Remark 2.5. To see that the three conditions in (18)
are not mutually contradictory, one looks at the compositions p_ = ¢ o0e®: Z_ — Z
and py =¢o A + — Z. Either of these can be written as the sum of a translation
and a remainder term which decays exponentially as s — £o00. Therefore, the image
of {t = 1/2,+s > 0} under p4 is of the form {t = 7 (s)}. To build a popsicle
stick, it is then sufficient to choose a function 7 which at infinity agrees with the given
74+ . The particular choice of ¢ is irrelevant for the definition of popsicle stick (and,
incidentally, only the equivalence class of the strip-like ends matters). However, given
0, any choice of ¢ singles out a point ¢ € Q, namely the one which satisfies

(19) ¢(q) € {0} x (0, 1),
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or equivalently in terms of (18), ¢(¢) = (0, t(0)). This sets up a bijection between
choices of ¢ and points ¢. We call those points sprinkles.

Define a set of popsicle sticks for S to be a collection Q = {Q', ..., Qd} where
each Qk connects 0 to ¢ k. Clearly, given a set of popsicle sticks, there is a bijection
between p—flavoured popsicle structures and collections q = {¢y} of sprinkles, such
that g € Q#f forall f € F.

With this at hand, we return to the gluing construction. Take discs S+, which come
with sets of strip-like ends and popsicle sticks. For small values of the gluing parameter,
the surface S defined as in (10) inherits the same additional structures. Moreover, if S+
have p+—flavoured popsicle structures, then S inherits a p—flavoured one, provided
that p is related to p+ in a suitable way (which is straightforward to infer from our
prescription for gluing popsicle sticks). As before, this process can be applied to
families, and in particular to the boundary strata in (16). Pick a pair (7, F) describing
such a stratum. Assume that for each vertex v, we have chosen strip-like ends and
popsicle sticks for the family 8!?lPv — RIVl:Pv The resulting gluing map has the form

(20) RTF (1_[(—1, 01) SUTF _, Rid+1.p,
e

As in the previous case (10), it will turn out that this is smooth, and a diffeomorphism
onto a neighbourhood of RT°F. Strictly speaking, we will prove this only under the
additional assumption that the strip-like ends used are rational ones (Corollary 6.4).
However, the general case is only slightly more involved, and interested readers (if
any) should be easily able to extend the given argument.

Still proceeding in parallel with the previous discussion, we now introduce the relevant
notions of universal choices. Suppose first that we have made a universal choice of
strip-like ends for pointed discs, which should be consistent. Then, a universal choice
of popsicle sticks is a choice of a set Qg for every stable pointed disc S, varying
smoothly over the moduli space. There is an appropriate notion of consistency, which
as before means that the popsicle sticks are compatible with the gluing construction, for
small values of the gluing parameter. Consistent choices can be constructed inductively.
Moreover, there is an obvious way to include the case d = 1 as well: for § =~ Z,
take the popsicle stick to be {r = %} The final step is to pick, for every stable
popsicle (S, ¢) of some flavour p, a set of strip-like ends € g ¢, which are equivalent
to those previously chosen for the underlying pointed disc S if d > 2, and which in
the remaining case d = 1 lie in the equivalence class from Addendum 2.4. As usual,
the new ends should vary smoothly over the relevant moduli spaces. Additionally,
they should be invariant under the action of (13). Given choices of strip-like ends and
popsicle sticks, one then has a gluing construction for popsicle structures, and can
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impose the relevant consistency condition on the € g 4. As before, the structure of the
maps (20) is crucial in proving that this condition can be met. We omit the details of
this, since the argument is essentially the same as that for pointed discs.

Remark 2.8 The choice of Qg itself only involves the underlying surface S. In
other words, it is pulled back through the forgetful map (14). In principle, it would be
possible to lift that restriction, making the popsicle sticks depend on ¢ as well, but
there seems little point in doing so. The situation for strip-like ends is slightly different.
While the equivalence class of €g 4 depends only on §, the specific choice of end
varies with the popsicle structure. This is necessary in order to achieve consistency,
because there are stable popsicles (S, ¢) with unstable underlying disc S = Z (and
moreover, even if one restricts to d > 2, such popsicles occur as components in the
compactification of RE+1:P),

We want to fix these auxiliary structures once and for all. To reiterate, this involves: first,
a universal choice of strip-like ends for pointed discs (supposed to be consistent, and
for technical reasons, also rational); second, a consistent universal choice of popsicle
sticks; and third, a consistent universal choice of strip-like ends for popsicles. All these
choices will be kept constant throughout the rest of the paper.

2.5 Closed one-forms

We now introduce a class of one-forms on discs, which can be seen as generalizations
of dt € Q1(Z). Namely, let S be a disc equipped with a set of strip-like ends. By a
set of basic closed one-forms for S we mean a collection & = {a!, ..., a?}, where
each of € Q1(S) is closed, with «¥|3S = 0, and satisfies

; dt if j=0ork
1) KA S
0  otherwise

over the ends (more precisely, on a subset of Z4 where 45 > 0).

Basic closed one-forms behave well with respect to the gluing process (10). To spell this
out, let S1 be pointed discs with d+ + 1 ends, respectively, equipped with strip-like
ends and basic closed one-forms. Suppose that we glue together the ends corresponding
to the points at infinity ¢° and ¢ i_, for some i € {1,...,d+}, using a small gluing
parameter. The result is a disc S with d + 1 = d_ + d4 ends. This will come with
induced basic closed one-forms, which are constructed as follows:

in the case k < i, take aﬁ and extend it trivially (by zero);

(22) for k > i + d_ do the same, but starting with oclj__d—'H;

k—i+1

fori <k <i+d_, take oei_ and glue it together with o
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For a fixed S, it is clear that basic closed one-forms exist, and in fact form a contractible
space. In the stable range d + 1 > 3, we can choose such one-forms « g = {alg} for each
pointed disc S, varying smoothly over the moduli space (and, of course, compatibly
with our fixed universal choice of strip-like ends). Moreover, this can be done in such a
way that the obvious consistency condition, for all gluing processes with small gluing
parameter, is satisfied. Finally, returning to the original motivation, we extend this to
d =1 by setting alz =dt.

2.6 Sub-closed one-forms

Let (S, ¢) be a p—flavoured popsicle, equipped with strip-like ends. A set 8 = {f}
of basic sub-closed one-forms consists of a one-form B, for each f € F, such that
BrldS =0, dBy = 0 in a neighbourhood of 9.5, and dBs < 0 everywhere (this is
sub-closedness; the sign is with respect to the complex orientation of S'). The analogue
of (21) is the requirement that at infinity,

dt if j =0,

0  otherwise.

(23) (e)*By = {

This may seem puzzling at first sight, because f does not appear on the right hand
side of (23); however, looking at the gluing process provides some clarification. Take
two popsicles S1 with flavours p+ . These should be equipped with strip-like ends,
popsicle sticks, and basic closed as well as sub-closed one-forms. Glue S+ together
as before, using the process from Section 2.4 to produce a popsicle structure on the
resulting disc S'. Recall that the flavour p of the new structure is indexed by the disjoint
union F'= Fy LI F_. We then define sub-closed one-forms B on the surface obtained
by gluing S+ to S_ at the i th incoming marked point of Sy as follows:

24) if /€ Fy, take the given 8 r and extend it trivially;
if /€ F_, take B_ r and glue it together with cxi.

Take a universal choice of sub-closed one-forms {Bg 4}. We will always assume
that this choice is invariant under the action of SymP (which is unproblematic, since
sub-closed one-forms satisfying (23) form a convex subspace, where averages can
be formed). Moreover, we can impose a consistency condition with respect to the
gluing process introduced above (and our previous choice of strip-like ends as well as
popsicle sticks); choices satisfying this condition can be constructed by applying the
usual process, based on the recursive structure of the compactification (16).

Example 2.9 For ease of visualization, it’s better to think of the two-forms dfy,
rather than the B¢ themselves. For instance, consistency (compatibility with gluing)
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has a straightforward meaning, because each dfs is compactly supported. Let’s take
a concrete look at the simplest situations. The trivial situation is when d = 1 and
| F| = 1. The (unique) point in that moduli space is represented by a surface S = Z,
and we can fix the isomorphism in such a way that the unique sprinkle gets mapped to
(0,1/2). We then have a single two-form df < 0 supported on some compact subset
of int(Z). In principle, this can be chosen arbitrarily, subject only to the condition that
/ » dB =—1,but it is convenient to imagine its support lying in a small neighbourhood
of (0,1/2). Now take d = 1 and F = {1,2}. A p-flavoured popsicle is a surface
S =~ Z equipped with two sprinkles, whose images in Z are (s, 1/2) and (s2,1/2).
The modular parameter is ¢ = s; — 55, giving an identification R?>? 2 R. On the
subset where |s; —s,| > 0, one starts with dB; and df, both being copies of the
previously introduced dp, translated away from each other exactly by the amount
o, so that each dfy is supported near the corresponding sprinkle. Over the rest of
the moduli space, one interpolates between those given choices, while preserving the
symmetry which exchanges both the sprinkles and the dfy.

As before we end our discussion by fixing, once and for all, a consistent universal
choice of closed basic forms s and of sub-closed basic forms B g 4 .

2.7 Weighted popsicles

Take some d > 1 and p = {py}, f € F. A set of weights is a collection of positive
integers w = {w?, ..., w?} satisfying

(25) w®=w! 4+ w? +|F|.

The primary use of this concept is as follows. Suppose that (S, ¢) is a p—flavoured
popsicle, which also comes with strip-like ends €, basic closed one-forms «, and

sub-closed one-forms B . Given weights, one then defines the fotal sub-closed one-form
y € Q1(S) to be

d
(26) y = Zwkak—kz,ﬁf.
k=1

feF
By construction, see (21), (23) and (25), this has the following properties:

y|0S = 0. Moreover, dy is non-positive everywhere, and vanishes in a
(27)  neighbourhood of S Finally, on the strip-like ends we have (e¥)*y =
wXdt, at all points (s, ) with +5>> 0.

Recall that in Section 2.6 we made a universal choice of basic closed and sub-closed
one-forms. This determines, for each stable popsicle with weights, a total sub-closed
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one-form (26), which we denote by yg ¢ w. Note that by construction, our choice of
total sub-closed one-form is compatible with the action of (13) on the moduli space.
Concretely, this means that if we have two weighted popsicles which differ only by a
reordering of the maps ¢y, then they carry the same total sub-closed one-form. Finally,

1

in the unstable case where S >~ Z and F = &, hence w = {w® = w! = w}, we set

(28) V7w =wdt.

Because of the previously imposed consistency conditions on the one-forms « and 3,
their sums y are compatible with gluing processes (assuming that any two ends which
are glued together carry the same weight; and that the gluing parameters remain small).

We write RET1P:¥ for the moduli space of stable popsicles with weight w. Of course,
this is just a copy of RATLP but the separate notation is still useful. For instance, if
we take the compactification RA+LP:¥ defined as in (16), then the boundary strata
are canonically products of lower-dimensional moduli spaces of weighted popsicles.
To see this explicitly, fix a set of weights w, and consider a pair (7, F) which labels
one of the boundary strata. Recall from Section 2.1 that pairs (v, k), where v is
a vertex and k is a number in {0, ..., |v| — 1}, correspond canonically to flags of
T. We can then define induced weights w, = {wﬁ } for every vertex v, by the
following conditions: first, if (v, k) corresponds to the jth semi-infinite edge of 7,
then wﬁ = w/ ; secondly, two flags belonging to the same finite edge should carry
the same weight; and finally, the analogue of (25) should be satisfied at each vertex,
meaning that w) = wl +--- + va|_1 + | Fy|. In these terms, the boundary stratum of
R4+1P-W indexed by (7, F) is isomorphic to the product of the spaces RIV-Pv-Wo

2.8 Cascades

What follows now is a bad case of mixed metaphor. Fix (d,p). Take a pair (7, F)
as in the definition of broken popsicle, and consider the induced flavours {p,}. A
cascade modelled on (7', F) is a collection {(py, Sy, $,)}, where each (S,,¢,) isa
pv—flavoured popsicle, equipped with an additional parameter value o, € (0, 1]. These
parameters are subject to the following causal ordering condition:

If a finite edge of 7" has endpoints v, with vy being closer to the root

(29) than v_, then py | < py_.

We can impose a stability condition, which is the same as for broken popsicles, and
take the disjoint union of the resulting moduli spaces for all stable choices (7', F). We
call the resulting space moduli space of stable cascades and denote it by Q4+1.p Note
that even though the notation is analogous to (16), the structure of the moduli space
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is entirely different, since each (7, F) defines a connected component of the same
dimension d — 1 + | F|.

There is also a natural partial compactification, which is a manifold with corners
denoted by Q9+ 1:P_ The strata of this space are indexed by combinatorial data

(30) (T.F,E.E)

where (7T, F) is as before, and E C E are subsets of the set of finite edgesof 7. A
point of such a stratum is again given by a collection {(py, Sy. ¢,)}, with the difference
that we now require the parameter values to satisfy (29) only if the edge connecting
vt is notin E, whereas for the other edges the equality py, = py_ should hold. The
codimension of the stratum is then precisely | E|. To understand the topology of the
partial compactification, note that one can associate to each datum (30) a collapsed tree
T, obtained by contracting the edges in E to points. For any vertex v of T, let Fy be
the union of Fy over all vertices v mapped to v under the collapsing map. Denote the
resulting decomposition of F by F. Reversing the direction of the argument, take a
fixed (T, F), with its associated collection of labels {py}, and consider all choices of
(30) which yield the given pair after collapsing. The union of all the associated strata
in Q4+1P is a copy of

(31) AT xR,

v

where AT is the set of all parameter values {py} indexed by vertices, such that in the
situation analogous to (29), the weak inequality py, < py_ holds. Then (31), with its
natural topology, is a connected component of Q4+1p As a direct consequence, the
map

Qa+LP s (0,1],
{(/Ovv va ¢v)} I /Ov()’

where v is the vertex closest to the root, is proper. This means that the non-compactness
of Q4+1.P only reflects that of the parameter interval (0, 1].

(32)

It is important to note that a given collection {(py,, Sy, ¢,)} can appear more than
once in Q4+1:P_ The reason is that, while E is determined by the relation between
parameters py, the choice of E C E is free. In particular, codimension one faces
defined by the equality of exactly two parameters occur in isomorphic pairs (the two
faces in such a pair belong to different connected components of Qd+1lp)y,

Example 2.10 In the simplest example, T is a tree with two vertices v+, and we
have corresponding triples {(p+, S+,¢ )} with py = p— = p, so that E consists
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of the unique finite edge of the tree. If one then sets E = @, the resulting point in
Q4+1LP ig the limit of a sequence {(o1,+, S+, 9, +)} with the same combinatorial
data (T,F) = (T F), and where p; + become equal in the limit / — oo. The other
possibility is £ = E. In that case 7 has a single vertex, so the resulting point in
Q4+1Lp ig the limit of a sequence (p;,S7,¢;) in which p; — p, and the popsicle
(S7, ¢;) degenerates into the broken popsicle given by {(S+,¢ )} (see Figure 5 for a
schematic picture).

Finally, Q4+1P carries an action of SymP. If we fix a connected component, and
restrict to the subgroup of permutations which preserve each subset Fy, then this is just
the product of the previously defined actions on the factors Rlvhpy, plus trivial actions
on (0, 1]. Outside that subgroup, the action exchanges different connected components.
The same applies to the partial compactification.

3 Wrapped Floer cohomology

In this section, we construct the wrapped Floer cochain complex and its Ao, —structure.
As mentioned before, this should be thought of as a kind of direct limit, although the
definition itself is not explicitly formulated in such terms. We emphasize again that,
even though the cochain level construction itself is new, the underlying cohomology
level theory is well-known to specialists, as one will see by looking at Abbondandolo—
Schwarz [1]. Our focus will be on the geometry of the relevant moduli spaces of
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(deformed) pseudo-holomorphic maps. The most interesting aspect is that the contribu-
tion of most of these spaces is zero, because of cancellations induced by orientation-
reversing symmetries; in fact, this cancellation phenomenon is crucial in order to
obtain the A.,—associativity relations. Analytic issues, which do not go beyond the
standard technological level, are relegated to Sections 7-9. To conclude, we should
mention that, in principle, there is an alternative and more direct definition of wrapped
Floer cohomology using a single Hamiltonian function with unboundedly increasing
slope instead of a sequence of functions with constant slope. However, the alternative
approach has its own technical quirks and is not as suitable for discussing Viterbo
functoriality.

3.1 Basic geometry

Let M be aLiouville domain. By definition, M is a compact 2n—dimensional manifold
with boundary, together with a one-form 6 such that w = d6 is symplectic, and the dual
Liouville vector field Z, uniquely determined by the requirement that i @ = 6, points
strictly outwards along dM . This implies that 6|dM is a contact one-form. By flowing
inward from the boundary along Z, one obtains a collar embedding (0, 1]x M — M
modelled on the small half of the symplectization of dM . One can then complete M
by attaching the big half:

(33) M = M Uy ([1, 00) x IM).

The piece [1, 00) x 8M of (33) 1s called the infinite cone. The completion carries
a natural one- form 6 such that d0 = & is symplectic, and an associated Liouville
vector field Z. On M C M these restrict to the previously given data, while on the
overlapping piece (0, 00) x IM C M we have § = r(0|oM) and Z = rd,; here
r is the variable in (0, 00). We will use a particular class of Hamiltonian functions
H € C*°(M,R), namely those for which:

H > 0 everywhere. Moreover, H should admit a smooth extension H to

34 ~ -
34 the completion M such that H(r, y) = r on the infinite cone.

Let X be the Hamiltonian vector field of £ . On the infinite cone we have X = (0, R),
where R is the Reeb vector field associated to 8|dM . By restricting, one sees that the
Hamiltonian vector field X of H satisfies X|dM = R.

Let L C M be a Lagrangian submanifold intersecting dM transversally, and which
has the following property:

O|L € Q1 (L) is exact, O|L = df . Moreover, §|L € Q'(L) vanishes to

35
(3) infinite order along the boundary dL = L N JdM .
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The second part implies that dL is a Legendrian submanifold of dM , and also that, by
attaching an infinite cone to that boundary, one can extend L to a smooth noncompact
Lagrangian submanifold

(36) L=LUy ((1,00)xdL)C M.

Recall that a Reeb chord of length w > 0 is a trajectory x: [0, 1] - dM of wR, such
that x(0), x(1) € L. An integer Reeb chord is one which has integer length. We will
make the following technical assumption:

(37) There are no integer Reeb chords.

In parallel with the previous terminology, an integer X —chord is a trajectory x: [0, 1] —
M of wX, for some positive integer w, such that x(0), x(1) € L. In these terms, (37)
says that all such trajectories must lie in the interior of M . Additionally, we assume:

(38)  All integer X—chords are nondegenerate.

(39) No point of L is at once a starting point of an integer X —chord, and an
endpoint of one (either the same chord or a different one).

Note that as a consequence of either of these two assumptions, no critical point of H

may lie on L. Besides that, we will also impose certain topological conditions which

are traditional in Floer theory:

The relative Chern class 2¢; (M, L) € H*>(M, L; Z) and the second Stiefel—

40
(40) Whitney class w,(L) € H?(L;Z/2) both vanish.

It seems appropriate to briefly discuss the significance of these conditions. There are at
least two alternative versions of (35). One is stronger:

(41)  B|L is exact and vanishes on a neighbourhood of dL.

The second part implies that the Liouville flow is parallel to L near its boundary,
making it locally into a cone over dL. The other version is weaker:

(42)  O|L is exact and the restriction 6|dL € Q!(dL) is zero.

The second part of this is equivalent to saying that 0L is Legendrian. While (42) may
be the most natural assumption, it is not directly suitable for our construction. On
the other hand, simply by allowing isotopies which are constant on the boundary, the
difference between any of these versions disappears.

Lemma 3.1 Let Lo be a Lagrangian submanifold satistying (42). Then there is

a Hamiltonian isotopy rel dM , which deforms L into another submanifold L
satisfying (41).
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Proof We start with a construction which is local near dL¢. By assumption, 6|L
vanishes along dL g, hence is exact nearby. This means that we can find a function
h € C®(M,R) vanishing along dM , such that (8 + dh)|Ly € Q(Lg) is zero in a
neighbourhood of dL . The Hamiltonian vector field Y of / is parallel to dM . Hence,
the Liouville vector field of 6; = 0+ (1—¢)dh, whichis Z; = Z+(1—t)Y, still points
outwards along dM . Take dL¢ and push it inwards using —Z;, for times in some
interval [0, 00). The orbits of each such flow yield a local Lagrangian submanifold
L!°¢ with boundary dL!°¢ = L. More precisely, we consider L' as a germ defined
near the boundary, hence reserve the right to shrink it whenever necessary. For ¢ = 0
this germ agrees with that of L, since Zj is parallel to that submanifold; on the other
hand, for t = 1 we have <9|L11OC = ( by construction.

This local Lagrangian isotopy is described by a family of closed one-forms f; €
Q1(L%), each of which is zero along the boundary. Take functions g, € C*®°(M, R)
vanishing along the boundary, such that dg;| L = ;. By construction, the Hamilton-
ian isotopy generated by the family g; is constant along the boundary, and moves L
to a Lagrangian submanifold L which extends the previously given germ Llloc. a

Next, among the more technical conditions, (37) can be satisfied by a small rescaling of
o and 6, simply because the periods of all Reeb chords form a measure zero subset of
R (by a suitable application of Sard’s theorem). Suppose that this has been done, and
additionally that 2n = dim M > 4. Then, a generic choice of H ensures that (38) and
(39) hold (Lemmas 8.1 and 8.2, respectively). Unfortunately, in the two-dimensional
case the second of these conditions is not generic, and a workaround is needed (Section
5.2). Finally, one can drop (40) altogether, at the cost of the usual loss of Floer-theoretic
structure. This would mean working with coefficients in Z/2 and obtaining only an
ungraded A,—structure, since degrees and signs can no longer be assigned consistently.

3.2 Almost complex structures

We begin by recalling a classical definition from Hofer [17]. Suppose that we are given
an almost complex structure on the contact hyperplane field & =ker(6|dM) C T (0M),
compatible with its symplectic structure. From that, one constructs an almost complex
structure on the symplectization (0, co) x M as follows: write

(43) T((0,00) x IM) = R? B £,

where the first factor is spanned by rd, and (0, R). Take the direct sum of the standard
complex structure on the first summand, meaning that »d, — (0, R), and of the given
one on the second summand. The almost complex structures on the symplectization
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constructed in this way are called of contact type. Any such structure is invariant under
the flow of ra,.

Take a @—compatible almost complex structure I on M, whose restriction to the
infinite cone is of contact type. The restriction I = I | M is called an almost complex
structure of contact type at the boundary. Note that I determines I uniquely. Denote
the space of all such structures by J(M). This is an infinite-dimensional manifold in a
loose sense. Its tangent space 7' J(M) at any point I consists of endomorphisms K of
TM which anti-commute with 7, which have the property that w(-, K-) is symmetric,
and which moreover are restrictions of suitable endomorphisms of TM (we omit the
details of the last condition, which are straightforward but lengthy). We call these
endomorphisms infinitesimal deformations of the almost complex structure. One can
get an actual deformation by exponentiating K, which means setting

(44) J =1 exp(—IK).

Let S be a disc equipped with a set of strip-like ends €. Let I = {I,} be a family of
almost complex structures in J(M) parametrized by points z € S. We say that this
family is strictly compatible with the strip-like ends if for each k € {0, ..., d} there is
a family of such structures I¥ = {I tk } parametrized by ¢ € [0, 1], such that

(45) Loy =1If

when £s > 0. In other words, if we go sufficiently far along any end, I becomes
independent of s, hence compatible with translations in the s direction.

A universal choice of almost complex structures consists of the following data. For
each stable weighted popsicle (S, ¢, w), choose a family Ig ¢ \ parametrized by S,
and strictly compatible with (the previous universal choice of) strip-like ends. We
require that these structures should vary smoothly over the moduli spaces RA+LpW
and be invariant with respect to the action of SymP. Additionally, for each w choose a
family I, parametrized by [0, 1]. This can actually be viewed as an extension of the
previous choice to the unstable case, invariant under automorphisms:

(46) IZ,w,s—I—it = ]w,t»

where w = {w® = w! = w}. A universal choice is called consistent if the following

two conditions are satisfied. First of all, over the kth strip-like end the behaviour
of Is ¢,w, in the sense of (45), is actually governed by I« . Secondly, the choice is
compatible with gluing together weighted popsicles, for small values of the gluing
parameter. Here, the gluing process is defined by our previous universal choices of
strip-like ends and popsicle sticks, as in Section 2.4 (and carrying over the weights in
the obvious way).
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Remark 3.2 The consistency requirements ensure the existence of well-behaved
compactifications for the moduli spaces of holomorphic maps to be defined later on.
However, they are not convenient from the point of view of transversality results,
because the behaviour of the almost complex structure on parts of the Riemann surface
is restricted (in a non-local way, even). To see an example of this, suppose that
(S, ¢, w) is obtained from (S, ¢, w4) and two copies of (S—,¢_, w_) (glued into
different positive ends of S, which necessarily should have the same weight). Then,
consistency dictates that the family of almost complex structures associated to .S should
be equal on the two pieces coming from S_. To avoid these problems, we will introduce
perturbations of the almost complex structures which allow the conditions to be relaxed,
while retaining enough asymptotic control for the purposes of compactification.

Take a disc with a set of strip-like ends, and suppose that we have chosen I on it
satisfying (45). An infinitesimal deformation of I is a family K = {K,}, where each
K lies in the tangent space to TJ(M) at I, and with the property that as z = ¥ (s, 1)
goes to infinity along a strip-like end, K, and all its derivatives go to zero faster than
any exponential function exp(—C|s|). Equivalently, let K be the trivial extension of
Kt S ; the condition is that this extension is smooth, and vanishes to infinite order at
the points at infinity. Then, the perturbed family J = {J,} obtained by applying (44)
at every point of S agrees asymptotically with the original I, with good control over
the rate of convergence.

We now consider the corresponding notion for families. Assume we have already
made a universal choice of almost complex structures, assumed to be consistent. A
universal infinitesimal deformation consists of an infinitesimal deformation Kg ¢  of
each Ig ¢ v, which varies smoothly with respect to the moduli, and is compatible with
the action of SymP. In slightly different terms, the universal infinitesimal deformation
is given by a SymP—invariant section of the pullback bundle

47) End(TM) —> 84H1PY 5 A

for each (d, p, w). We say that the universal infinitesimal deformation is asymprotically
consistent if the sections extend smoothly to the compactifications SA+1pW 5 M | and
the following two additional properties hold.

For the first condition, fix a pair (7', F) which represents a boundary stratum R7-F-¥
RA+Lp:w | For every vertex v of 7', with its associated p, and weights w,, we take
the projection 7ry: RT-FW s RIVLPv-Wo yse that to pull back the universal family,
then take the disjoint union over all v. By definition of the compactification, there is a
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natural embedding

(48) ]_[ axgllpuwy _ gd+Lpw,

v

Given a universal infinitesimal deformation, there are two ways of making a section of
End(TM) — [ [, 7t §lvhpv:wo 5 A7 . We could take the sections attached to the smaller
infinitesimal families 8!Vl"P»>Yv and combine them; on the other hand, we could take
the section attached to 84+ 1-P-¥ extend it to the compactification, and then pull it back
via (48). The condition then says that these two constructions yield the same result, for
all (T,F).

For the second condition, take a point of the compactified moduli space gd+ipw
which is represented by a pair (S, z), where z is either a point at infinity of S or (in
the case of a broken popsicle) a singular point. Then, our section should vanish when
restricted to that point (times M ), and so should all its derivatives.

From now on, we will work with a fixed consistent universal choice of almost complex
structures, as well as a fixed asymptotically consistent infinitesimal deformation. By
applying (44) at each point of S, one can then form perturbed families Js ¢ w. By
definition, this kind of perturbation does not affect the limits of our almost complex
structures over the ends of S, so we set

(49) Ju=Ily, Jzw=1zy forw=(w0=w1 =w).

Remark 3.3 To understand the concrete implications of asymptotic consistency, one
has to look at the geometry of the compactified universal family, and more specifically
at the behaviour of functions with similar vanishing conditions at special points. This is
done in Section 6.4, and the outcome of that discussion can be summarized as follows.
As one approaches a point in the boundary of RZ+1P:¥  the fibre of the universal
family acquires “necks” which are finite strips of increasing length. On each of these
finite strips, as well as on the strip-like ends, the infinitesimal deformation Kg ¢
decays faster than exponentially, in the sense of (141), (142). Hence, Jg ¢ w converges
everywhere to the structure which is inherited from the components of the limiting
broken popsicle, and moreover, the rate of convergence is precisely controlled on the
finite strips and strip-like ends.

3.3 Pseudo-holomorphic maps

For each w, let Xy, be the set of integer X —chords of length w. From (38) we know
that each set Xy, is finite.
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Take a weighted popsicle (S, ¢, w), equipped with strip-like ends, as well as sets of
basic closed and sub-closed one-forms. Let y be the induced total sub-closed one-form
(26). In addition, we assume that we have a family I which is compatible with the
strip-like ends, as well as an infinitesimal deformation K, which together define the
perturbed family J. Pick x = {x°,..., x4}, where each x* is an element of Xy -
Consider the inhomogeneous d—equation

u. S — M, u(dS)cCL,

(50) limy— 00 (€ (5,-) = x* (),
(duz - Xu(z) ® VZ) oj+ Jz,u(z) o (d”z - Xu(z) ® VZ) =0.

Here j is the complex structure on S; X ® y is the section of Hom(7S, u*TM)
obtained by composing y € C®(TS*) with u*X € C*®u*TM); and the overall
condition says that when we subtract that inhomogeneous term from du, the outcome
is of type (1,0) with respect to j and J,. We will sometimes abbreviate this equation
by

(51) (du—X®y)*"! =0.

Fix d > 1 and p = {ps}reF, assuming first that these satisfy the stability condition
d + | F| = 2. Choose weights w satisfying (25), and limits x as before. The space of
stable popsicle maps, denoted by

(52) REATLPY (%) (or RITIV(x) if F = @),

is the set of triples (S, ¢, u) of the following kind. (S, ¢) is a p—flavoured popsicle,
representing a point of R4+ 1P = RA+1LP-W - Ag such, it carries additional data specified
by our previous choices, in particular: ends €g ¢, a one-form yg ¢ v, and a family
of almost complex structures J = Jg ¢ w. Using all that, one can write down (50) on
S, and u is then a solution of that equation, with limits given by x. Note that (52)
carries an induced action of SymP, which consists of permuting the sprinkles ¢ while
keeping everything else the same.

It remains to extend the definition of the moduli spaces to the case where the underlying
popsicle is unstable, namely d = 1 and F = @. Equip S = Z with (28) as well as
the family J = J 7z y of almost complex structures taken from (49), (46). Then (50)
reduces to the classical equation for Floer trajectories:

u. Z — M, u(dZ) C L,

(53) limgs oo (s, ) =x%(),  limgqoou(s,”) =x'(),
3su + Jt,u(t)(atu - 'LUX) =0.
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As usual, one defines R?>™(x) to be the space of non-stationary solutions of that equation
(solutions for which dsu does not vanish identically), divided by the translational R —
action.

Convention 3.4 From now on, we will lump both cases together. This means that,
even though we will mostly use the notation (S, ¢, u) which is appropriate for stable
popsicles, it is tacitly understood that the discussion includes the case of Floer moduli
spaces, with the necessary minor modifications.

3.4 Smoothness

Let (S, ¢,u) be a point in (52). The virtual dimension of the moduli space at that
point is

(54)  vdimRITIPY(x) = dim RITVP 4 deg(x®) — deg(x!) —- - - — deg(x?).

Here, deg(x) is the Maslov index of x € X,, (in general, this depends on a choice
of grading). In the case of Floer’s equation, the dimension is set to “dim R? = —1,
recovering the standard formula.

Theorem 3.5 Suppose that the almost complex structures 1,, have been chosen gener-
ically. Then, for a generic choice of infinitesimal deformations Kg ¢ v, subject to
asymptotic compatibility, all the moduli spaces RE+1P-¥(x) are regular, hence smooth
manifolds of the expected dimension (54).

The action of SymP on R4 T1:P-¥(x) has the same structure as the underlying action
on the moduli space of popsicles. By this, we mean that the isotropy groups which
appear are the subgroups Sym® from Addendum 2.6. The virtual codimension of the
corresponding fixed point set is

(55) vcodim fRdH’P’w(x)SymP = Z(|Pm| —1).
m

Theorem 3.6 Generically, in the same sense as in Theorem 3.5, the subspaces of
RA+1LP¥(x) fixed by any subgroup Sym® are themselves regular, hence smooth sub-
manifolds of codimension (55).

The proofs of Theorems 3.5 and 3.6 are pretty much standard transversality theory (see
Section 8.3 for details). From now on, we will assume throughout our discussion that
all the almost complex structures involved have been chosen generically, so that the
conclusions of these theorems hold.
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3.5 Compactness

The spaces (52) admit compactifications whose structure is modelled on (16). Suppose
that we have a pair (7, F) as in the definition of broken popsicle. Define flavours p,
as in Section 2.3, and weights w,, as in Section 2.7. Moreover, for each v we want to
have a collection x, = {x{f }, where each xff € f)ng , with the following properties:

If the pair (v, k) correspond to the j th semi-infinite edge of T, then x{f =x/
(56) 1is one of the given X —chords. Otherwise, given a finite edge of 7', and the

two associated flags (v, k) and (v—, 0), we require that xﬁ L= xgi.

Finally, for every v we want to have an element
(57) (Su, @y, tty) € RIVIPOI (x,),

Then, the collection {(Sy, ¢,.uy)}, which we call a broken popsicle map, defines a
point in the compactified moduli space. As the terminology indicates, this space is
compact in an appropriately defined Gromov topology. A basic role in the compactness
argument is played by an priori estimate for the energy ||[du — X ® y||; 2, derived
from an inequality between that norm and the action functional; see Section 7.2, or
more specifically (149) and (151). Other important players are the various consistency
conditions; these ensure that, when the domain degenerates into a broken popsicle,
the limiting map satisfies (50) on each component of that popsicle, with the correct
almost complex structure and inhomogeneous term. The proof of compactness starts
with these observations, and then proceeds exactly as in the case of ordinary Fukaya
categories. We will not comment on it further.

The simplest application is when the virtual dimension is zero. Then the boundary of
the compactification is empty, hence RY+1-P-%(x) itself is a finite set. Next, suppose
that the virtual dimension is one. Then RYT1:P:¥(x) is a one-dimensional compact
manifold with boundary. Boundary points correspond to broken pseudo-holomorphic
maps, where 7' is a tree with two vertices, and each component of the broken map is
itself part of a zero-dimensional moduli space. Part of this statement requires a suitable
gluing theorem, which we again take for granted, given its similarity with established
results for Fukaya categories. Another point, which is more specific to the geometric
situation here, is the following one: in principle, one could think that there might be
other boundary points of one-dimensional moduli spaces, related to the fact that our
pseudo-holomorphic maps can hit the boundary of M . It turns out that these points
are actually not boundary points, essentially due the convexity of dM (see Section 7.4
for a proof; alternatively one could use the maximum principle, as in Oancea [24] or
Khovanov-Seidel [20]).
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3.6 Algebraic relations

At this point, we fix a coefficient field K. We also choose an orientation of each
popsicle moduli space RE+1Lp, Finally, we make a choice of grading and Pin structure
for our Lagrangian submanifold. The first choice fixes the Maslov indices deg(x) € Z
of all x € Xy, and the second one allows one to associate to any x a one-dimensional
K —vector space, the so-called K-normalized orientation space |ox|k (see Section 9.1
for a brief recapitulation). Moreover, for every point (S, ¢, «) in a zero-dimensional
moduli space R¢T1P¥(x), we get a preferred isomorphism

(58) 10§ K [0xalK ® -+ ® |oy1 K — |oy0|K.

This is, in a slightly more abstract formulation than usual, the sign with which (S, ¢, u)
contributes to the algebraic count of points in the moduli space. Denote by m94P¥(x)
the sum of the homomorphisms (58)

m*PYx) = Y ok
(S!¢!u)

When F = & we may omit p and just write %% (x), in parallel with the notation for
the spaces (52) themselves.

Lemma 3.7 If SymP is nontrivial, m@P¥(x) vanishes.

To see why this is the case, recall that Theorem 3.6 implies that all strata of R+ 1.P-W(x)
consisting of points with nontrivial isotropy group have positive codimension. Hence,
in the zero-dimensional case, SymP necessarily acts freely on the moduli space. Now,
any two points related by a transposition in that group actually contribute with opposite
sign, hence cancel out (for details, see Lemma 9.1).

The vanishing argument outlined above applies exactly when the map p: F —{1,...,d}
fails to be injective (or to put it more intuitively, if there is a popsicle stick carrying
more than one sprinkle). We now turn to the remaining injective case. In that situation,
it is more natural think of F as a subset of {1,...,d}, with p being the inclusion, and
we correspondingly replace p with F everywhere in the notation. Fix d+1, F, w
and x such that the moduli space RA+1LF.W(x) is one-dimensional.

anumber i €{l,...,dy},andsubsets Fy C{l,...,dy} satisfying | F_|+|F4+|=|F]|,

Definition 3.8 An admissible cut of F consists of d4,d_>1 suchthat d_+di=d+1,
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with the following property:

F contains all k € F satisfying k < i, the numbers k + d— — 1 for all
k € Fy with k > i, and the numbers k +i — 1 for k € F_. If i & F, this
completely describes F'. Otherwise, F has one element other than the ones
we have already given, which lies in the range {i,...,i +d— —1}.

(59)

Note that these subsets automatically come with canonical injective maps (+: Fy — F,
which together cover the whole of F. One of them is simply (—(k) =k +i — 1. The
other one satisfies (4 (k) =k for k <i, 14(k) =k +d-—1 for k > i, and maps
i € Fy (if that is the case) to the unique element in F specified above.

Given such a cut, set w"" = wi +--.4+w!T4=—"1 4| F_|. Choose any x"®" € Xynen such
that deg(x"™") = deg(x?) +- - - +deg(x!T¥-~"1) 42 —d_ —| F_|. Then, define weights

wiz{wi, AU wii} and collections of chords Xiz{xi, R xii} as follows:
(wk’ xk) k < i’
(wh, x§) = 4 e, xmemy k=i..
(60) (wk—i-d_—l’ xk—i—d_—l) k>i
k k B (wnew’ leEW) k — 0’
(W=, x2) = (k=1 xk+i=1y 0

In this terminology, RA+HLF Wy (x ) x RI-FLF-w—(x_) appears as one of the
boundary strata in the compactification of R%¥-¥(x). In fact, this construction describes
precisely those strata which have a trivial group of symmetries. The contributions from
the other boundary strata cancel, for a reason parallel to that in Lemma 3.7 (see Section
9.3 for the precise argument). We therefore get a relation

61 Y (DI mHFE (xy) 0 (1d®H T @md— P (x0) @ 1d®TT!) =0,

where the sum is over all admissible cuts (d4,i, F+) and all possible x"*". The sign
depends on the choice of orientation of the underlying spaces R¢T1-F (see Section
9.4 for a detailed discussion). For a specific such choice, it turns out to be
§=d_i+i+14+dy|F_]|
(62) + (d— + | F|)(deg(x"T9=) + -+ + deg(x9))
+ {4, k=) € Fop x F— @ 1y (ky) <i—(k-)}.

Examples 3.9

(i) Take d =1 and F = {1}. In that case, the admissible cuts necessarily have
dy = 1. One of the two sets Fy is {1} while the other is empty. Omitting
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weights for the sake of brevity, we find that (61) specializes to
Zml’F(XO, xnew) oml(xnew’ xl)
63
( ) _Zml(xo,xnew)oml,F(xneW,xl):0’

where the sum is over all x"*" with the appropriate Maslov index. Geometrically,

this kind of degeneration corresponds to an ordinary Floer trajectory bubbling
off at the ends oo € Z.

(i) Take d =2 and F = {1, 2}, which is the situation from Examples 2.7(ii). Out
of the five boundary edges in R>F, four give nontrivial contributions to (61),
while the remaining one cancels for symmetry reasons. Again omitting weights,
these contributions are

_ Zml,{l}(xo’ xneW) Omz,{l}(xnew’ xl i x2)
+ Zml,{l}(xo, anW) omz,{Z}(Xnew’ xl’ x2)
+ ZmZ,{l}(XO’ xl’xnew) o (ml,{l}(xnew’ x2) ® id)

o ZmZ,{Z}(XO’ xnew. X2) o (ld ®ml,{1}(xnew, XI)).

(64)

There are three more summands coming from bubbling off of Floer trajectories
as in (i):

Z ml (XO, xneW) o mZ,F(xnew’ Xl , x2)
(65) _ Z mZ,F(XO’ xl , xneW) o (ml (xnew’ x2) ® id)

+ (_l)deg(x2)+1 Zmz’F(XO, xnew, X2) o (id ®m1 (xnew’ xl)).

Remark 3.10 The m®F¥ and their relations are all the analytic input underlying
our geometric construction. In particular, moduli spaces with nontrivial symmetry are
actually relevant only insofar as they appear in the compactification of other spaces. The
crucial fact is that whenever R+ 1-F-W(x) one-dimensional, those of its boundary strata
which do not correspond to cuts admit orientation-reversing free involutions, hence do
not appear in (61). With that in mind, the various consistency conditions imposed on
the additional geometric data living on RZ+1:P-W could be somewhat relaxed when
SymP is nontrivial (but nothing substantial is gained in doing that).

3.7 Wrapped Floer cohomology

For any w, one defines the Floer cochain group (actually a finite-dimensional graded
K —vector space) of L with respect to wH as a direct sum of K—normalized orientation
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spaces, placed in the degree indicated by the Maslov index:

(66) CF*(L;wH) = @ lox|x[—deg(x)].

xXe€Xy

This group carries the usual differential § defined by counting Floer gradient trajectories.
In our terminology, the x = {x°, x!} matrix coefficient of § is

S(xo, 51y =m0 x1): Jo, |k —> [0k

There is one other nontrivial linear operation which appears naturally in our framework.
Namely, take d = 1 with F = {1},so w={w® =w + 1, w! = w}. Counting points
in these moduli spaces yields maps «: CF*(L; wH) — CF*(L; (w + 1)H), whose
matrix coefficients are

(67) Ko xy = mPIPTLVI O 31y o g — o0k

Examples 3.9(i) translates into the statement that « is a chain map (in more standard
terminology, this is the continuation map associated to the homotopy from wH to
(w + 1) H; this is a monotone homotopy since H > 0 by assumption).

Let ¢ be a formal variable of degree —1, with ¢ = 0. Take the space CF*(L; wH)[q]=
CF*(L;wH) @ q CF*(L; wH), whose elements are formal sums ¢ = a + bg. We
consider this as a module over the one-dimensional exterior algebra C[d,], where d4
has degree +1 and acts by formally differentiating in g—direction: d,(a + gb) = b.
The wrapped Floer cochain space is the infinite direct sum

(68) CW*(L: H) = €D CF*(L:wH)q)

w=1

We equip it with a differential which commutes with 9 :
(69) 1! (a+gb) = (=1)*¥D8(a) + (=1)*= P (¢8(b) + k(b)) - b).

Visually (and with signs omitted), the resulting chain complex looks like this:

$ 8 8
(70) CF*(L:H) CF*(L;2H) CF*(L:3H)
MT ///////7 MT ///////7 MT //////7
q CF*(L; H) q CF*(L;2H) q CF*(L;3H)
Y Y Y
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The cohomology of (69) is called wrapped Floer cohomology and denoted by HW* (L)
(we omit the function H from the notation because the cohomology groups are inde-
pendent of it, even though we won’t give a proof of that fact here).

Lemma 3.11 For every v, the subcomplex CV consisting of those summands in (68)
with w > v is quasi-isomorphic to CW*(L; H).

Proof The CV form a decreasing filtration of CW*(L; H). Each quotient C¥/CV+!
is the mapping cone of the identity map on CF*(L;vH), hence acyclic. This implies
that the inclusions C"*! — CV are quasi-isomorphisms. O

Lemma 3.12 There is a canonical isomorphism
(71) HW*(L)zli_r)anF*(L;wH),

where the maps in the direct system are induced by « .

Proof Consider the exhausting increasing filtration of CW*(L; H) by subcomplexes
w=CF*(L: H)[q]®---® CF*(L; (w—1)H)[q] ® CF*(L; wH), where the last
summand has no ¢ component. Obviously, this means that

¥ ~ 1 *
(72) HW*(L; H) = limy H*(Cu).

In turn, each C,, itself carries a finite decreasing filtration, C, = CF*(L;vH)[q] ®
@ CF*(L; (w—1)H)[q] ® CF*(L; wH). For v # w, the quotients CY,/CT! are
acyclic, for the same reason as in Lemma 3.11. Hence, the inclusion C) — Cy, is a
quasi-isomorphism. Moreover, the diagram

(73) cw £ cwtl

[\ w+1

Cyp = Cyy1

commutes up to a chain homotopy, which is a — (—1)%8@gq . Therefore, if in (72)
we replace the cohomology of Cy, by that of its quasi-isomorphic subcomplex C,;,
the connecting maps in the resulting direct system are the ones induced by «. Now,
CY agrees with CF*(L;wH) up to a sign change in the differential, which does not
affect cohomology. O

Remark 3.13 CW™*(L; H) should be regarded as the homotopy direct limit of the
CF*(L;wH). Indeed, this is just the chain level version of a well-known construction
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in classical homotopy theory (see Hatcher [16, page 457], for instance). Note also
that, while wrapped Floer cohomology carries an induced C[d,]-module structure,
that structure is actually trivial. This is an easy consequence of the proof above: every
class in wrapped Floer cohomology can be represented by a cocycle in Cj;, which is
obviously killed by 9.

3.8 The A, ,—structure

We will now equip CW*(L; H) with the structure of an A,—algebra, generalizing the
differential 1! introduced above. For each (d, F, w) we will in fact define a multilinear
map

ud,F,w

74 CFY(L;w'H)[g]®-- ® CF*(L;w' H)[q] — CF*(L; w® H)[q]

of degree 2—d , which encodes all the m@F-%(x). We will first define the first summand
of (74), namely the one which takes values in CF*(L; w® H). That summand vanishes
unless each entry lies in qik CF*(L; wk H), where by definition i =1 if k € F, and
i* = 0 otherwise. The remaining coefficients are

.d .1
(=1)*m®FN: g o alk ® -+ ® ¢ |ogi Ik — loyolk.
* = ; jdeg(xj) + 3 jer(deg(xg) —1).

k>j

(75)

Having done that, there is a unique way to define the second summand, which is the
one taking values in ¢ CF*(L; w® H), such that the outcome commutes with the action
of d, when considering reduced degrees deg(c) = deg(c) — 1. By this we mean that

(76) 8qud’F’W(cd, )=

ZZ:I (_1)@(01(—&-1)+...+£g(cd)ud,F,W(Cd, o, aqck’ o Cl).
Finally, we extend [Ld W trivially (by zero) to a multilinear map defined on the whole
of CW*(L; H), and let u? be the sum of those maps over all F and w. For d = 1,
this reproduces (69) except for the last term gb +— (—l)deg(b)“b, which one needs to
add by hand.

Example 3.14 Suppose that we have fixed isomorphisms |ox|g = K for each x.
Then CF*(L;wH) becomes a graded vector space with distinguished basis indexed
by x € Xy, and each m?@F-¥(x) is just an element of K. In those terms (and omitting
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weights for brevity, as in Examples 3.9) we have
7
22, x1) = (_1)deg(x1) > om?(x0 x!, x2) x°,

,uz(qxz,xl) _ (_l)deg(xl) Zx‘) (MZ(XO’XI’XZ) qxo +m2’{2}(x°,x1,x2) xO)’
,uz(xz,qxl) _ (_1)deg(x1)+deg(x2)—l ZXO (mz(xo,xl,xz) qxo
_|_m2,{1}(x0’ X! x?) XO)’
M2(qx2,qx1) _ (_1)deg(x1)+deg(x2)—l ZXO (—mz’{Z}(xO,xl,xz) qxo

+m> (0 x1 x2) gx® + mP 2 (0, X1, x?) xo).

Proposition 3.15 The maps ', u?, - -+ satisfy the Aoo—associativity equations. This
means that for every d > 1 and cl,....%¢ CW*(L; H), we have

(78) Z(_1)@(c1)+---+@(c"—‘)ud+ ... citd-
Md—(ci+d—_l,...,c*i),ci_l,...,cl) =0,

where the sum is over all d4 +d_— =d + 1 and all i . Hence, CW*(L; H) equipped
with these maps is an A, —algebra.

This follows from (61) and the definition of ud by a direct (if somewhat tedious,
because of the signs) computation. The only terms in (78) which do not have direct
counterparts in (61) come from last term in /,Ll , but those cancel out because of (76).

4 Viterbo functoriality

This section sets up the Aoo—homomorphisms CW*(L; H) — CW*(L™; H'™) asso-
ciated to an embedding (M™, L") C (M, L). In the corresponding construction for
symplectic cohomology [30], Viterbo’s strategy was to shrink the interior domain M ™
by a conformal symplectic factor p < 1. This makes all energies inside that domain
small compared to those outside, and when carried out in a carefully designed way,
allows one to identify the Floer complex CF*(L™; wH™) with a quotient complex of
CF*(L;wH). One takes the map on cohomology induced by this projection, which
under the direct limit w — oo yields the desired homomorphism between symplectic
cohomology groups. In our case, the chain complexes for different values of w are tied
together by the Ao —structure. It seems that there is no single value of p which achieves
the desired properties for all moduli spaces simultaneously, and as a consequence, we
can’t define F as a projection. Instead, we let p vary in (0, 1], and look at how the
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moduli spaces change depending on that parameter, which then yields the correction
terms that need to be added to the naive projection map. The relevant formalism of
parametrized moduli spaces, and its relation to the As,—homomorphism equation, is
an adaptation of that in Fukaya—Oh—Ohta—Ono [13, Section 19] (see also Seidel [27,
Section 10]). In the interest of simplicity and brevity, we give a full description of
F1, but deal in a slightly more abbreviated way with the higher order components F d
d > 2, in particular omitting sign issues.

4.1 Geometric setup

Let M be a Liouville domain, and M'™ a Liouville subdomain. This means that
M™ C M \ OM is a compact submanifold with boundary (of equal dimension),
such that Z points outwards along dM ™. In particular, 6™ = §|M™ turns M"
itself into a Liouville domain. We call dM ™ the dividing hypersurface, and write
MO = (M \ M™) U dM™ for the part outside that hypersurface. By integrating
Z starting from the boundary, respectively from the dividing hypersurface, one gets
collars, which we denote by

k: (0,1]x M — M,

(79) in in

k"0, 1+e)x oM™ — M

(for some € > 0). In the case of x™™, points (r, y) with r <1 get mapped to M, and
those with r > 1 to M°". Let L C M be a Lagrangian submanifold, intersecting oM
as well as M ™ transversally, and write L" = L N M, LU = [ N M°". We make
the following assumption:

(80) 6| L°" vanishes on a neighbourhood of the boundary dL°" = 9L U dL™.
Moreover, one can write §|L = dh, where h|0L U dL™ is zero.

This requirement merits some discussion. The first part of (80) says that Z is parallel
to L° near its boundaries. To put it more explicitly in terms of (79), there is some

small A > 0 such that
1) kNN =X, 1]x M) =[1—A, 1]xIL,
™LA (1, 1+ A x M ™) =[1,1 4+ A] x L™,

This is similar to (41), hence marginally stronger than its counterpart in (35), but that is
just for technical convenience. A more interesting aspect is the condition on /, which
amounts to a strengthened form of exactness. In more algebro-topological terms, the
statement is that the relative class [#|L] € H'(L,dL™ U dL;R) is zero.
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Lemma 4.1 Let Lo C M be a Lagrangian submanifold satisfying the following
weaker property:

O|Lo = dhgy|Lgy, where hg € C°°(M,R) is a tunction which is locally

(82) .
constant on oM U oM™,

Then there is a Hamiltonian isotopy (stationary on dM U dM ™) which deforms L
into a submanifold L such that [0|L;] € H'(L,, 8Liln UdLq;R) is zero.

Proof We may assume that 6|Lq vanishes in a neighbourhood of 8Lg‘ U dLg (since
that can be achieved by the same argument as in Lemma 3.1). In that case, we may
further assume that / is locally constant on a neighbourhood of M ™ UM C M . Let
Y be the Hamiltonian vector field of /y. Then Ly is a closed one-form vanishing
near M ™ U dM . The relative cohomology class of this form is

(83) [Ly6] =iyw] = [-dhol € H'(M,dM UIM™;R).

Integrating this out, we find that if & is the flow of Y, then [(§1)*0] = [0 — dhy)]
becomes zero when restricted to H'(Lg, 3Ly U dL™; R), which of course means that
[0] itself has the same property with respect to L = £'(Lg). This provides the desired
isotopy. |

Note that unlike Lemma 3.1, the isotopy constructed here is not necessarily local
near M U dM™. On the other hand, the following example shows that exactness
of L, which would be vanishing of [0|L] € H!(L;R), is not sufficient to construct
meaningful Viterbo functoriality maps.

Example 4.2 Take M = D*S'! to be the annulus, which is the disc cotangent bundle
of S! with fibres of some radius r. Let L be the union of two different cotangent
fibres L; = D‘}"I_S1 (i = 1,2). Take the zero-section and perturb it locally near ¢,
in a Hamiltonian way, such that it intersects L; transversally in three points. A
neighbourhood of this perturbed zero-section looks like a smaller cotangent disc bundle
M™ = D*S! with r™ < r. One can arrange that the intersections LI = L; N M™
are unions of cotangent fibres (three and one, respectively). Moreover, the canonical
one-forms on our two cotangent disc bundles will satisfy 8|M™ = " — dh for some
function /. Take 4 and (shrinking ™ first, if necessary) extend it to a function on the
whole of M , which vanishes near dM . Then, if we replace the original 6 by 6 + dh,
we will actually have '™ = §|M™ as in the general framework set out above. The
Lagrangian L satisfies (81), since |L = dh|L and #™|L'™ = 0. On the other hand,
let A is the shaded region in Figure 6, and write d; A and d, A for its left and right
boundary arcs, and x,, x; for its upper and lower corners. Then

(84) O<an)=f3rA9+falA9=f3rA9+h(xd)—h(xu),
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Figure 6

and by construction #|dM ™ > 0, which in view of the orientations occurring means
that f 9, A 0 < 0. Hence, the values of / at the two corners are different, so that (80) as
well as the weaker version (82) are violated.

In this situation, the wrapped Floer cohomologies of L and L™ are well-defined.
However, as we will now show, no Viterbo-type restriction homomorphism (with
reasonable properties) can exist. Write R = K[¢,7~!], which is the wrapped Floer
cohomology of a single cotangent fibre in D*S!. The wrapped Floer cohomology of
L is a matrix algebra R?*2?. More geometrically, we write this as

(85 ()= 1)

where the (j,i)th piece in the splitting is represented by X —chords going from L;
to L;. Similarly, the wrapped Floer cohomology of L™ is a matrix algebra R***
(actually, it is now nontrivially graded, but we will not discuss that since it’s irrelevant
for our purpose). In terms of the pieces Li.“ this has a block matrix decomposition

R3X3 R3)

(86) HW*(U“)=( R3 R

Suppose that we had a restriction map HW*(L) — HW*(L™) with the following
properties: it is a map of rings preserving the unit elements of the ring structure and is
compatible with the splittings (85), (86). In particular, multiplication with the images

of x1, = (8 (1)) and xp; = (‘1) 8) on the left and right would yield a ring isomorphism
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between two subalgeras of HW*(L™) which are isomorphic to R3*3 and R, which is
of course impossible (this example finds a more natural interpretation in the framework
of wrapped Fukaya categories, where L is the direct sum of two isomorphic objects,
while L™ is the sum of two non-isomorphic ones).

4.2 Hamiltonian functions

We will consider functions H € C*°(M, R) of the following type:

Both H and its restriction H'" = H|M™ satisfy (34); equivalently, H is
everywhere positive, and both H(k(r, y))—r and H(x™(r, y))—r vanish to
infinite order along r = 1. In addition to that, we assume that the restriction
of H—dH(Z) to M°"\ dM°" is positive.

(87)

Example 4.3 Suppose that we make the following ansatz:
H=c"on MM\ k™1 =6, 1]xdM™),
HK™(r, y)) = x™(r) for (r, y) € [1 = 8,1+ 8] x M ™,
H =™ on M\ (k™([1, 14 8] x IM™) Uk([1 -6, 1] x IM)),
Hk(r,y)) = x°"(r) for (r, y) € [1 = 8,1] x OM .

(88)

Here § > 0 is small; ¢, ¢°" > 0 are constants; Xi“ € C*®(R, (0, 00)) is a function
satisfying x'"(r) = ¢! for r <18, x'"(r) =" for r > 14-§, and such that " (r)—r
vanishes to infinite order at r = 1; similarly, x°* should satisfy x°"'(r) = ¢ for
r <1-3§,and x°“(r) agrees with r to infinite order when r = 1 (see Figure 7 for a
schematic picture). Then

™ —r-dx™/dr at points k" (r, ), r € (1,1 + 6],
(89) H—dH(Z) =4 ¢® on M\ (k™ ([1,1+ 8] x IM™) Uk ([l —8,1] x IM)),
XM =r-dx®™/dr at points k(r, y), r € [1 =8, 1).

It is easy to choose our functions and constants so that this is > 0 (note the elementary
calculus fact that y —r - dx/dr is where the tangent line to the graph of x at r hits
the y-—axis).

From this point onwards, we will assume that (37) holds for both 0. C dM and
dL™ C M ™. Since by assumption, the Hamiltonian vector field X of H restricts
to the Reeb fields R € C®(T(0M)) and R™ € C®(T(dM ™)), it follows that these
two hypersurfaces contain no integer X —chords. We can then can split the set Xy, of
X —chords of length w into two parts

(90) Xy = X1 U XU
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graph(H)

Mlﬂ MOUI
| | | |
T ] T T 1
k"(r, y), k(r,y),
1-6<r<1+49$§ 1-6<r=<li
A
graph(H")

| I j
T T 1

K" (r, p),
p=r=l1

Figure 7
containing the integer X —chords lying in M\ M ™ and M °'*\ dM °U, respectively.

4.3 Rescaling the inner part

Somewhat unconventionally, we will write {° for the flow of Z at time log(p). By
definition, this shrinks all the symplectic data by a factor of p. Our strategy will be to
use this flow, with p < 1, to shrink the inner Liouville domain to

o1 M™P =yl (M™).

By definition, ¥°(k™(r, y)) = «™(pr, y). In particular, the boundary of (91) is
OM™P = k" ({p} x IM™). Similarly, we define Lagrangian submanifolds L™ =
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WP (L") and complete them to submanifolds L° C M as follows:
LP A MMP — Lin,P’

(92) LP Nk ((p, 1) x IM™) = (p, 1) x L™,
LPAM™™ =LNM™,

There is a natural choice of function 4#° with dh? = 0|L”, namely

p-(howl/p) on M™P
93) h? = { 0 at points k™(r, y) with r € (p, 1),

h on M°",
which makes sense because of (80). Finally, given any Hamiltonian function H as in
(87) and any p € (0, 1], we define the rescaled function HP as follows:

p-(Ho 1pl/,o) on M,
(94) HP” = { r at points x™™ r,y) with r € (p, 1),

p
H on M°™,

This is smooth since, along dM ™ the function p-(H o'/P) agrees to infinite order
with p-(roy/Py=p.-p~t.r=r (Figure 7 shows what happens if we apply this
rescaling process to one of the functions from Example 4.3). Correspondingly, the
associated Hamiltonian vector field is

Y£(X) on M™P,
(95) X?P =3 k"0, R™) at points «™(r, y) with r € (p, 1),

X on M°".

There is a natural bijection between X —chords with boundary in L and X?—chords
with boundary in L*, which we denote by

X — XO,

x —> xP.

(96)

For chords lying in M°", the map is a simple equality x” = x, while for the ones in
M™ itis x? = ¥P(x). As usual, we end our discussion by fixing once and for all a
Hamiltonian H as in (87), and which in addition should satisfy (38) and (39). These
conditions are still generic for dim(M ) > 4, even within the present smaller class of
functions (one can see that by inspecting the argument from Section 8.1).
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We also need to relate our choices of almost complex structures on M and M™,
but here the connection will be made in a somewhat looser sense. Suppose we are
given I € J(M) and I™ € J(M™). Then, an interpolating family of almost complex
structures is a family 7° € J(M) parametrized by p € (0, 1], such that 7! = I and:

There is a § > 0 such that for p < §, the following properties hold:
97) IP|M™P = X1, and (k™)*(IP) is of contact type on some neighbour-
hood of {p} x IM™ C [p, 1] x dM™.

Note that the first part already implies that /7 is of contact type along the boundary of
M™P; the second part then extends that control slightly to a piece of the cone on the
outside of that boundary. The same idea applies to infinitesimal deformations. Namely,
assume that we have I, I'™™, [° as well as infinitesimal deformations K € T'J (M),
K™ e TJ(M™)in. Then, an interpolating family consists of infinitesimal deformations
KP of I*, satisfying the analogue of (97). Obviously, this leads to the same relationship
between the perturbed almost complex structures which we saw in Equation (44).

Remark 4.4 Usually, we will be dealing with families of almost complex structures
parametrized by points on a Riemann surface, and possibly additional moduli. In that
case, we always assume that the constant § and the neighbourhood of {p} x M ™ in
(97) should be the same throughout the family.

4.4 Parametrized moduli spaces

Consider the moduli spaces (52) for the given L C M . In addition to various data
which concerns only the domains (strip-like ends, popsicle sticks, one-forms), the
construction of those spaces involves choices of almost complex structures on M .
Namely, for each w we have a family J,, parametrized by [0, 1], and for every stable
weighted popsicle we have another family J ¢ \ parametrized by points of S'. Choose
analogous families Ji and ‘S“ o.w O M™ and introduce the corresponding moduli
spaces, which will be denoted by

(98) RATLPW ()N for x = (x0,...,x%), xF e DCi;k.

To relate the two constructions, we will then need interpolating families J5, and J g,, b’
in the sense defined above. To ensure that the interpolating families are asymptotically
consistent in a suitable sense, one needs to copy in more detail the construction from
Section 3.2, by which we mean the following. Recall that Jg ¢ w was obtained by
taking an initial choice Lg ¢ v, which satisfied consistency in a strict sense, and then
perturbing it by exponentiating an infinitesimal deformation Kg ¢ . The same applies
to the corresponding data on M. Similarly, one should first choose interpolating
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families Ig dw for the initial choices of data, satisfying strict consistency, and then

perturb them using a suitable Kg ¢ which is asymptotically consistent. We omit the
. . . 2 ’w
details, which are straightforward.

For any p € (0, 1], define RZ+1:P-W(x)? to be the moduli space of popsicle maps
analogous to (52), but where L is replaced by L, X by X, the limits of the map u
are the x¥? and the almost complex structures belong to the interpolating families
we have just constructed. For p = 1 this just reproduces the original moduli space
RA+LP-W(x) . On the other hand, if p is sufficiently small and the x* all lie in X, , it

wk”

contains a copy of RZT1P-¥(x)in obtained by rescaling the map, u = ¥? ou™. In the
converse direction we have the following statement, proved in Lemma 7.4:

There is a positive integer v, such that for any fixed (d,p,w) with

w?, ..., w? > v, the following holds. There is a § such that all points
(99) in RATLPW(x)P with x° € 361120 and p < ¢ are of the form (S,¢,u =

YP ou'™) for some (S,¢,u™) € RA+LPW(x)in [ particular, this means

that R4+1P-¥(x)? = & unless all the other x¥, k > 0, lie in xi;,k as well.

Convention 3.4 applies here, meaning that while the statement is formulated in terms
which make sense for stable popsicles (.S, ¢), the analogous result holds for d 4| F| =1
as well. We will use this property heavily from now on, hence

we require throughout the subsequent discussion that all weights should be
)

(100)

The first step is to suitably package our moduli spaces for varying values of p. The
most straightforward way is to introduce parametrized moduli spaces

(1o PPN = {(p, S, p,u) : pe(0,1], (S,p,u) € RITLPV(x)P}.

Adding the parameter p modifies some analytic aspects of the theory, but only in a
relatively straightforward way. For instance, if one considers the standard compactifica-
tion of RY+1:P-W(x)P for any p, the disjoint union of these compactifications provides
a partial compactification of the parametrized moduli space; more precisely, this is a
properification with respect to the projection map

(102) (0, S, @, u)—> p.

Next, suppose that the original almost complex structures on M, as well as their
counterparts on M ™, have been chosen generically, so that both Theorems 3.5 and 3.6
apply. In that case, the parametrized moduli spaces are regular near their boundary
points, which by definition are the points (p, S, ¢, u) with p = 1. Moreover, at each
such point, the derivative of the projection (102) is onto, so p =1 is a regular value of
that map.
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Theorem 4.5 For a generic choice of interpolating families, satisfying the required
asymptotic consistency conditions, the following properties will hold. First, all moduli
spaces P4+ 1P%(x) are regular, hence smooth manifolds with boundary of the expected
dimension. Secondly, for every fixed value of p, there is at most one point (p, S, ¢, u)
which belongs to a zero-dimensional parametrized moduli space. Finally, if p is such
that there is one such point, then all moduli spaces RE+1-P-W(x)P for various choices
of (p, w,X) are regular everywhere except at that point.

This is the counterpart of Theorem 3.5 for parametrized moduli spaces, and is proved
by essentially the same methods (see Section 8.4). There is also a stratified version,
which means an analogue of Theorem 3.6 applying to the isotropy strata of the SymP —
action on the parametrized moduli spaces. We leave its formulation to the reader.
From now on, assume that the interpolating families have been chosen in such a way
that the conclusions of Theorem 4.5, and of its stratified version, hold. Points of
the zero-dimensional parametrized moduli spaces will be called rigid; they represent
behaviour which is non-generic for a fixed value of p, but which is unavoidable in the
parametrized context.

4.5 Cascade maps (naive version)

Fix (d,p) as well as (w, x), where it is assumed throughout that
(103) x%e X,

Let (T,F), {wy}, {pv} and {x,} be as in the definition of the Gromov compactification
in Section 3.5. A stable cascade map modelled on (7, F) is a collection of points

(104) (Do S, @y, t1y) € PIVIPVIU(x )

satisfying the causal ordering condition (29). We denote the moduli space of cascade
maps by Q4+1.p:W(x). Each component of this space, corresponding to a particular
choice of (7,F) and x,, is an open subset of a product of parametrized moduli
spaces PIYPv-Wo (x,) | hence regular by Theorem 4.5. There is also a natural partial
compactification Q9+ 1:P-¥(x), whose structure is analogous to that for moduli spaces
of cascades considered in Section 2.8. Namely, in addition to (7, F), assume that we
have subsets E C E of the set of internal edges of T, as in (30). Points of the resulting
stratum in the partial compactification are collections (104), with the causal ordering
condition replaced by equality p,, = py_ for those edges contained in E.

Theorem 4.6 The map Q‘HI’P’“’(X) — (0, 1] which associates the value p,, to any
cascade {(py, Sy, ®,,uy)}, where vy is the vertex closest to the root, is proper.

Geometry & Topology, Volume 14 (2010)



672 Mohammed Abouzaid and Paul Seidel

This is the counterpart of (32). The strategy of proof is as follows. Fixing x gives an a
priori bound on the energy available for all components of the cascade. The next step is
to bound the complexity of (7, F). Because the number of semi-infinite edges of 7T is
d+1,and |F| =), | Fyl, this comes down to bounding the length of chains of Floer
trajectories. However, a standard monotonicity argument, based on the fact that integer
X P—chords never merge as p varies, shows that each such trajectory consumes at least
some fixed amount € of energy, as long as the parameter values stay in some interval
[8, 1]. This achieves the desired bound, and parametrized Gromov compactness theory
takes care of bubbling processes.

4.6 The zero-dimensional case

In the case where the moduli space of cascade maps is zero-dimensional, its partial
compactification is regular, which means that all strata of positive codimension are
actually empty. To see that, consider a point lying in such a stratum. Since the
codimension is |E|, there is at least one edge belonging to that subset. Take the two
vertices v+ connected by that edge, with the usual convention according to which v
is supposed to lie closer to the root. For simplicity, denote the associated components
by (p+ =p, S+, ¢, uy) € Pd£+1.pL-Wt (x, ). For index reasons, each component
must be a rigid point in its parametrized moduli space. On the other hand, Theorem 4.5
tells us that at most one rigid point exists for any fixed value of the parameter p. Hence,
the two components must necessarily agree. Suppose first that these components are
both Floer trajectories. We then know that their limits satisfy x° = ler (this is part of
our general condition on the x,) as well as x! = x}r (because the two components
agree). But this is impossible; a Floer trajectory has non-negative energy and hence
cannot have the same limits at both ends. In the remaining case where d + |F4| > 2,
the argument is parallel but based on weights instead of the limits. Suppose that v_ is
obtained by leaving v in direction of its k th flag. Then w® = wi (by definition of

the wy), but also wk = w’jr (because the two components are the same). But by (25)

0

we necessarily have w2 > wk for any k > 0, which is again contradictory.

Corollary 4.7 The zero-dimensional moduli spaces Q9T 1:P:¥(x) are finite sets.

To see why that is true, take a point of a zero-dimensional moduli space, and look at the
component associated to the vertex v = v nearest to the root. By (103), xg =x%¢ f)CiIZO .
If p, was sufficiently small, (99) would ensure that this component comes from a
suitable R™ moduli space, hence is regular in the unparametrized sense, which is in
contradiction to its rigidity. To be a little more precise, one has to consider all the
possibilities for (|v|, py, Wy, Xy ), but since there are only finitely many, the resulting
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lower bound for p, is uniform. In view of the previous discussion, Qd TLP.W(x) agrees
with its partial compactification, so applying Theorem 4.6 yields the desired result.

Addendum 4.8 At this point we tweak the existing definitions in a small, but useful,
way. Consider a zero-dimensional space Q¢+1PW(x) where d = 1, F = &, w =
{w® =w,w! =w} and x® = x! = x € X", We formally add a point, denoted by
D, to this space. One can consider that as the degenerate case of an empty cascade
(whose underlying tree would be an infinite line, with no vertices). Of course, doing
that does not affect Corollary 4.7.

4.7 The one-dimensional case

Now consider the partial compactifications of one-dimensional moduli spaces of cascade
maps. Points in such a space have the property that one component belongs to a one-
dimensional parametrized moduli space (we will refer to it as the moveable component),
while the remaining ones are all rigid. As before, one can show that the vertices
belonging to an edge in E cannot both carry rigid components. In particular, if |E| =1
then equality of parameter values can only happen between the moveable component
and a single adjacent rigid component. In that case, another look at Theorem 4.5 shows
that the moveable component is a regular point in its unparametrized moduli space,
and that implies that the codimension one strata of Q9+ 1:P:%(x) are regular. We now
turn to the remaining case |E| > 2, where the associated strata should be empty. A
slight generalization of the previous argument shows that no two rigid components
can be connected by a sequence of edges in E in which each step goes further away
from the root. The only remaining possibility is the following one: E is a set of edges
starting at a fixed vertex, which is the one where the moveable component is located,
and going in direction of the leaves towards other vertices; and moreover, all of those
other vertices have the same (rigid) component associated to them. In this situation,
which is unfortunately not ruled out by Theorem 4.5, regularity fails. We will have to
return to this issue later on.

Corollary 4.9 Suppose that Q4+1p:W(x) is one-dimensional. Then its partial com-
pactification Q¢+ 1-P:¥(x) contains finitely many additional points.

This is essentially the same argument as in Corollary 4.7. The only case requiring
a little extra thought is when the vertex closest to the root is the one carrying the
moveable component. But then, the rigid components tied to it by edges in £ must
have the same parameter value, and if that value is small, (99) applies, leading to the
same contradiction as before.
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With that in mind, we can describe the ends of the partially compactified one-dimensional
moduli spaces. Take a partition of d into d_ 1 +---+d_, and set dy = [. This
should come with a decomposition of F into subsets .y and F_; (j =1,...,/]),
and associated flavours p4, p—,;, such that the following holds:

Foreach f € F suchthatd_ 1 +---+d_ ;1 <pr<d_ +---+d_ j,either
SeFyand py r=j,or feF_jand p_; r=pr—d_1——d_ ;1.

Choose weights w4, w_ ; and collections of chords x4, x_ as follows:

(105)

E,j — xd7,1+-~-+d_,j_1+k’ w/i’j — wd7,1+"'+d_,j_1+k for k > 0;

(106) X =x w s =wl =w!

Corollary 4.10 Suppose that Q4+ 1-P:%(x) is one-dimensional. Then, its partial com-
pactification has finitely many ends, and these are modelled on the disjoint union of
products

(107) (0. 8] x REEFLREM+ (x )i o [T Qs F1P— V=i (x_ ).,
J

The combinatorial data is as described in (105), (106), with the degrees of the x;L
chosen so that all the moduli space factors in (107) are zero-dimensional.

As usual, the situation is clearer in graphical terms (see Figure 8). Each end (107)
consists of cascades where the vertex nearest to the root carries the moveable component.
For that moveable component, the parameter can become arbitrarily small, and then
(99) applies, identifying it with a point in R". Note that it is crucial to include the
additional points @ in the Q factors in (107), since they cover the cases where some
of the positive ends of the moveable components do not have additional components
attached to them (in the simplest case there is only one component, which must be
moveable).

4.8 The linear restriction homomorphism

Temporarily, let’s concentrate on the moduli spaces of cascade maps with d = 1. This
gets rid of the transversality issue described in the discussion preceding Corollary 4.9
(since that issue assumed the existence of a vertex with valency |v|—1 > |E| > 2). Of
course, the situation also simplifies in other respects, which makes it possible to shed
some notational ballast. The maps p are constantly equal to 1, so we replace them in
the notation everywhere by F. The trees T reduce to chains of two-valent vertices,
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X x2
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Xl

XO

Figure 8
which we number as {vq,...,v;} starting from the one closest to the root. We also
write

Fj = Fy, for the subsets forming the decomposition F,
0 1 1

(108) {wy, = wj—1,w,y, = w;} where wj =w" +|Fj1q|+---+[F],

{ij = xj_l,xll,j = xj}, where xj € Xy,, xo = x% x; =x1.
Finally, we identify each surface S,; with Z. With that in mind, the components of a
cascade map in our moduli space are of the form

(109) (0j. Z. ;. uj) € PRI W3 (x4 xj).

More precisely, the parametrized moduli space is the space of (p;, Z, ¢, u;) divided by
the diagonal action of R on the last two factors, reflecting the fact that the identification

Sy; = Z is not unique.

Let’s begin translating the geometry of the moduli spaces into algebra. For this purpose,
assume that L satisfies (40), and choose a grading as well as a Pin structure. These
structures carry over to L™ (by restriction), and to L” (extending them over the obvious
isotopy). To any point {(p;, Z,¢;,u;)} in a zero-dimensional moduli space Q2. F.w(x)
one can associate a map

(110) 1040y, 3 K 10x1 1K — loxo K

Geometry & Topology, Volume 14 (2010)



676 Mohammed Abouzaid and Paul Seidel

analogous to (58). The orientation issues underlying this definition are discussed in
Section 9.6. In the case of the formal point @, of the moduli space, we set (110)
to be the identity on oy |k . Let ¢F>™(x) be the sum of (110) over all points in the
zero-dimensional moduli space. A symmetry argument parallel to Lemma 3.7 (see
again Section 9.6 for more details) shows that

Lemma 4.11 If |F|> 1 then ¢""¥>Y(x) vanishes.

Of the two remaining cases, consider first that where F = &. In that situation, we
omit F from the notation for moduli spaces and the resulting maps between orientation
spaces, following the model of (52). Consider a partially compactified one-dimensional
space 02¥(x), where w = {w® = w, w! = w} and x = {x°, x!}. The ends of such
spaces were described in Corollary 4.10. In this specific situation, they are modelled
on

(111) (0’ 5] % :RZ,{w,w}(XO, xneW)in % QZ,{w,w}(xnew’ xl)’

where x"" € X satisfies deg(x"") = deg(x®) — 1 = deg(x!). On the other hand,
we have three kinds of boundary points. The first kind are those already contained in
Q2:%(x) itself, namely those where the last component is moveable, and reaches time
p1 = 1. The set of such boundary points is the union of the spaces

(112) QZ,{w,w}(XO, X"y x RZ,{w,W}(xnew, Xl)

over all X" € Xy, with deg(x"®") = deg(x?) = deg(x') + 1. As in the case of (107)
and (111), this works because the left hand factor may contain a point &y, which
represents the case where the boundary point is a chain of total length / = 1. The
remaining kinds of boundary points lie in the partial compactification, where the set
E in (30) consists of a single edge, connecting v; to v;j 4 for some j, and where
E is either @ or E. It turns out that for each collection {(pj, Z,¢j,uj)} satistying
Pj = pj+1, the contributions coming from the two choices of E cancel each other, so
that the total contribution is zero. In other words, one could glue together these boundary
points in pairs, in a way compatible with the orientations of the one-dimensional moduli
spaces induced from isomorphisms 0,0 = R and 0,1 = R. Hence, the remaining
relation is the one which counts points of the form (111) and (112). Taking into account
signs, which will be elaborated on in Section 9.6, one finds that

Zml,{w,w},in(xo’ xneW) oql,{w,w}(xnew’ Xl)

(113) i qu,{w,w}(xo’ xnew) oml,{w,w}(xnew’ Xl) =0,

where m and m™™ are the maps defined in Section 3.6 on M and M ™, respectively,

and the sum is over all x"*" with the appropriate Maslov index. The entire discussion
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carries over to the remaining case F = {1}, w = {w® = w + I,w! = w} with
minor modifications. In considering the analogue of (111), there are two possibilities,
depending on whether the component carrying the popsicle is the first one or not. This
leads to two types of ends,

(0, 8] x Rz’{w+1’w+1}(x°, xneW)in « QZ,{I},{w—}—l,w}(xnew’ xl),

(114) (0, 5] x RZ,{I},{w+1,w}(xO, xneW)in x QZ,{w,w}(xnew, xl)'

Similarly, there are two possibilities for the boundary points corresponding to (112),
QZ,{uH-l,w-i-l}(xO’ xneW) x RZ,{I},{w,w-l—l}(xnew, xl)’

(115) QZ,{I},{w—l—l,w}(xO’ xneW) % RZ,{w,w}(xnew’ Xl).

The upshot are the algebraic relations
_ Zml,{w-ﬁ-l,w—i—l},in(xo’ xneW) oql’{l}’{w+1’w}(x”ew, xl)

+ Zml,{l},{w-i-l,w},in(xo’ xnew) oql,{w,w}(xnew’ xl)
_ qu,{w-l-l,w—i-l}(xO’ X"y oml,{l},{w-l—l,w}(xnew, XI)

_ qu,{l},{w-i-l,w}(xo, xneW) oml,{w,w}(xnew’ xl) —=0.

(116)

For each w > v, let y: CF*(L;wH) — CF*(L™;wH™) and A: CF*(L;wH) —
CF*(L™; (w+ 1) H™)[—1] be the maps whose matrix coefficients are ¢ 1-{%-w}(x0 x1)
and g1 HLwh (0 1y regpectively. We want to combine them into a single 0g—
linear map between suitable wrapped cochain groups. More precisely, if CV is the
subcomplex from Lemma 3.11, we define

Fl. ¢V — cw* (L™ H™),
F'(a+gb) = y(a) +qy(b) + A(b).

From (113), (116) and the definition of the wrapped differential (69), it follows that
F7' is a chain homomorphism.

117

Remark 4.12 The decomposition (90) induces a projection from CW*(L; H) —
CW*(L™™; H'™), whose restriction to CV is precisely the summand in F' coming
from the formal points @, in our moduli spaces. One can therefore think of J!
as the projection map plus “instanton corrections” coming from rigid points in the
parametrized moduli spaces P F¥(x) with |F| < 1. Of course, the projection by
itself would generally not be a chain map.

4.9 Almost complex structures on cascades

In the original definition, moduli spaces of cascade maps were (open subsets of)
products of parametrized moduli spaces. There is no intrinsic need for maintaining
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this product structure, as long as the necessary relations between codimension one
boundary faces are preserved. This allows us to enlarge the space of perturbations,
which solves the previously encountered transversality issues.

Fix d,p,w, and let Q9+ 1P be the partially compactified moduli space of weighted
cascades. As in the case of popsicles, this is just a copy of the space Q4+1.p defined
in Section 2.8, but where we wish to emphasize that on each (7, F, E, E) stratum,
the vertices of the tree come with weights w, as well as flavours p,. Associated to
any point in this stratum, represented by a collection {(py, Sy, ¢,)}, we want to have
families of almost complex structures of the following kind:

For each edge e of T', a family J. of almost complex structures. If the
edge is finite and connects two vertices v+, this family is parametrized by

(118)  (p,1) € [py,, pu_]x[0, 1]. If the edge is semi-infinite and connects v to one
of the leaves, J is parametrized by [p,, 1] x [0, 1]; similarly, if it connects
the root to v, J, is parametrized by (0, py] X [0, 1].

For each vertex v of the tree, we want to have a family J, of almost complex
structures parametrized by Sy, which is asymptotically compatible with the
(119)  strip-like ends (in the usual sense: as s — +00, J,, (ks ) converges to a

family depending only on 7, and this convergence is faster than exponential
in any C” norm).

It is crucial that J, and J, may depend on the whole collection {(py, Sy, ¢,)}. and
not just on the part of the data associated to that particular vertex or edge. This should
really be reflected in the notation, but we avoid doing that in order to keep things
reasonably brief. It is implicit in our definition that the dependency on the points in
the moduli space of cascades is smooth. In fact, as one goes to the boundary strata in
connected components (31) where some popsicles (Sy, ¢,) degenerate into broken
popsicles, one wants the same convergence behaviour as in Remark 3.3. Moreover, we
require all our choices to be invariant under the action of SymP.

The additional requirements on (118), (119) are of four kinds. The large parameter
value restriction says the following. Let e be an edge, and suppose that the weight on
the flags associated to it is w. Then, the restriction of J. to p = 1, if it is nonempty,
agrees with the family J,, previously chosen as part of the construction of wrapped
Floer cohomology of L. Similarly, suppose that p, = 1 for some vertex v. Then
Jv=1Js,.6,,w, should agree with the almost complex structure on that particular stable
popsicle. Finally, note that the vertices where p, = 1 necessarily form a finite union
of subtrees inside 7', each of which reaches up into the leaves. If we remove those
subtrees, the result is another tree 7”, which comes with its own data (p’,F', E’, E’).
We then require that our families of almost complex structures, when restricted to the
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edges and vertices of T, should depend only on that part of the cascade, and should
in fact agree with the ones the cascade carries as part of our universal choice.

Secondly, we have a small parameter value requirement, whose structure is roughly
similar to the previous one. Namely, there should be a § > 0 (depending on d, p, w)
such that the restriction of J, to any p < §, if nonempty, has properties analogous to
those for an interpolating family. Namely, on M ™ it should agree with ¥2J ‘,B , as
previously chosen when defining the wrapped Floer cohomology of L™™. Moreover,
in some neighbourhood of dM ™ C k" ([p, 1] x dM™) it should be of contact type.
Similarly, if p, < § for some vertex v, then J,| M ™? is the pushforward of the family
Jg}v,%,wv associated to that stable popsicle for M, and we have the same local

condition near M ™ as before. Slightly more interestingly, the vertices where p, <§
form a subtree of T, reaching down to the root. Removing 7" yields a finite disjoint
union of similar connected trees 7 ]é, and we require that on the part of our cascade
corresponding to each of these, the almost complex structures should be those given by
considering only the subtree.

Third, there is an unstable consistency condition. Pick a vertex v, a number k €
{0,...,|v|—1}, and let e be the edge belonging to the kth flag adjacent to v. Then
the limit of J, over the kth end must agree with the family J. specialized to p = py.
Finally, we have stable consistency, which says that all the almost complex structures
depend only on E, and are independent of E. In particular, if we consider pairs of
isomorphic codimension one boundary faces defined by |E| =1 and E = @ or E,
then the almost complex structures on both copies of such a face must coincide.

One can build families of almost complex structures satisfying these conditions by
gradually increasing the complexity, say by induction on d + | F|. For any given (7T, F),
one first considers the large and small parameter value requirements. In those situations,
the almost complex structures are completely determined by those for smaller trees,
which had been chosen in a previous step. Note that even though both situations can
apply simultaneously, the resulting combined condition is non-contradictory. Having
done that, one then extends the choices over the entire moduli space, while fulfilling the
relatively weak consistency conditions over the boundary strata, and finally averages to
obtain SymP—invariance.

4.10 Cascade maps (corrected versions)
Suppose now that (118), (119) have been chosen, satisfying all the requirements

stated above. Fix (d,p,w). Consider pairs (7, F) as before, but where now two-
valent vertices with empty subsets F, = & are allowed, violating the previous stability
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condition. A cascade map modelled on (7', F) is a collection {(py, Sv, ¢, tv)}, where
the maps u, have to satisfy certain d—equations, which we will now specify.

Suppose that we erase each unstable vertex of 7', directly sewing together the two edges
which meet there, and correspondingly forget all components (py, Sy, ¢,) associated
to such vertices. The outcome is a stabilized tree, and a stable cascade modelled on it,
which defines a point of Q4+1L.PW  Take the almost complex structures (118), (119)
associated to that cascade. Consider first a stable vertex v of 7', which survives to a
vertex of the stabilized tree. In that case, we require that u, should be a solution of
(50) for the almost complex structure J, belonging to that vertex. On the other hand,
an unstable vertex v gets mapped to an edge of the stabilized tree, and in that case
uy should be a Floer trajectory for the almost complex structure J. associated to that
edge. As usual, two such trajectories which differ by a translation are considered to be
the same.

From now on, Q¢+ 1:P-¥(x) denotes the moduli space of cascade maps in the modified
sense we have just explained. Essentially by construction, the definition and structure
of the partial compactification Q9+ 1-P-¥(x) developed in Section 4.5 carries over, and
so does the transversality theory in so far as it yielded positive results. The breakdown
in transversality for one-dimensional partially compactified moduli spaces, discussed
in Section 4.7, is resolved for the following simple reason. Take two vertices vy
and v, _ of T, both of which are connected to the same vertex vy by edges pointing
towards the root. Suppose first that the vg _ are stable (v4 is automatically stable,
since it is at least trivalent by assumption). By the previous discussion, we only need
to consider the situation when oy, = py_,1 = py_,2 = p, and the weighted popsicles
(So_ksPy_ k> Wy_ k) are isomorphic. In the framework of (119), the families of
almost complex structures on S, can usually be chosen independently of each other,
which means that generically, rigid solutions of the d—equation will not appear for the
same parameter value, thus removing the obstruction to transversality. There are two
exceptions to the statement about independence. If p =1, the almost complex structures
on both v_ ; components are necessarily the same. But in that case, transversality
for the original construction of wrapped Floer cohomology of L ensures that the
components {(py, Sy, @, uy)} for v = v4, v _ must all be moveable, which can
never happen in a one-dimensional moduli space. The other, parallel but slightly
more complicated, exception occurs when p < §. Supposing that § has been chosen
sufficiently small, (99) will then apply all components of our popsicle map lying
between v_ ; and the root, which implies that these components must be moveable,
leading to the same dimensional contradiction as before (this is not a circular argument:
the upper bounds on parameters p provided by Lemma 7.4 depend only on action
considerations, hence are independent of the choice of almost complex structures).
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Finally, one also needs to consider the situation when both p,_ x are unstable, but the
argument there is essentially the same.

Remark 4.13 To summarize, we have addressed the transversality issue by enlarging
the class of allowed perturbations, while preserving enough consistency to retain the
basic relations between the boundary strata of one-dimensional moduli spaces. There
are of course other possibilities. For instance, Fukaya, Oh, Ohta and Ono [13] use
Kuranishi structures induced by virtual perturbations for the same purpose (the version
of Kuranishi space theory described by Joyce [18] seems particularly relevant here,
since we need to deal with moduli spaces for all d at the same time).

4.11 The restriction homomorphism

Assume now that generic choices of (118) and (119) have been made, subject to all the
conditions above, making the spaces Q9+ 1:P:¥(x) and their partial compactifications
regular. As usual we consider only the case when SymP is trivial, and replace p by
F C{l1,...,d} in the notation. Write

(120) gV (x): Jogalk ® - @ o1 [K — |0yl

for the map obtained by counting the contributions from a zero-dimensional moduli
space Qd+L.F ¥(x) (as announced at the beginning of the section, we won’t properly
discuss the signs that enter into this definition). For d =1 this reproduces the definition
from Section 4.8, in a slightly generalized version since the choices of almost complex
structures considered there form a strict subset of the ones allowed here. We assemble
the (120) for all x into a multilinear map

(121)  CF*(L;w?H)[q]®---® CF*(L;w' H)[q] I o (L™ w®H™)[q]

of degree 1 —d. More precisely, the first summand of (121), which takes values
in CF* (Li“; wOH ), has coefficients (120) with suitable signs, and we define the
second summand to make F4-F-¥ g dg-linear map in the same sense as in (76). In
the case where d = 1 and F = @, we also add a trivial term which is projection
CF*(L;wH)[g] — CF*(L™; wH™)[q], compare Remark 4.12.

Recall from (100) that all weights that we are considering are larger than a fixed weight
v > 0. In particular, we extend each (121) by zero to a map defined on the whole of
(C")® — CW*(L; H)®?, and taking values in CW*(L™; H™). Define 59 to be
the sum of all these maps for fixed d but varying (F, w).
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Theorem 4.14 The maps F d satisfy the Aoo—homomorphism equations

in,k (d, d
> WM™ camdger) - F N Cays o 01)
di++di=d

(122) Z( ydee(e )t e (e ) g (od it

pd=(ita=—1 ,ci), A eh.
Moreover, they can be extended to an Ao, —homomorphism CW* (L) — CW*(L™), in
a way which is unique up to homotopy.

Proof The underlying geometry is very simple: the left hand side of the equation
collects contributions from the ends of one-dimensional spaces Q9 +1:P-%(x), where the
component for the vertex next the root is the moveable one, and (99) applies to it; the
right hand side takes into account those boundary points where, for one of the vertices
nearest to the leaves, the parameter value becomes equal to 1. All other boundary strata
cancel in pairs, just as in the corresponding argument in Section 4.8.

We know from Lemma 3.11 that the inclusion C¥ — CW*(L; H) is a quasi-iso-
morphism of A.,—algebras. It is a general algebraic fact that there is always a quasi-
isomorphism in inverse direction, CW*(L; H) — C", whose restriction to C" is the
identity, and this is unique up to homotopy (see for instance Keller [19, Section 3.7]
and the references there). By composing the given J with such an inverse, one can get
an Aso—homomorphism defined on the whole of CW*(L; H). ]

Remark 4.15 The reason why JF is initially only defined on CV comes down to
Lemma 7.3. There is a simpler alternative, in the spirit of Lemmas 3.1 and 4.1. Namely,
one extends / to a function on M , which vanishes near 9M UIM ™, and then makes a
replacement 6 — 0 —dh. One effect of this is that the /4 terms in (150) become absorbed
into the [ 6, which removes the previous obstruction. Of course, it simultaneously
changes Z, hence also our family of rescaled Lagrangian submanifolds L”.

5 Complements

Our first, and rather straightforward, task in this section is to extend the previous
construction to wrapped Fukaya categories. After that, we return to the two-dimensional
case, which could not be treated previously due to the failure of (39) to be generic, and
outline a simple workaround, which is to increase dimensions by taking the product
with a standard factor (other solutions are possible; see Remark 5.1).
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5.1 Wrapped Fukaya categories

Let L = {L;};e; be a collection of Lagrangian submanifolds of M, which is at
most countable. Suppose that each of them satisfies (35) as well as (40), and choose
gradings as well as Pin structures. An integer Reeb chord from 0L;, to dL;, is a
map x: [0, 1] - dM satisfying dx/dt = wR for some positive integer w, such that
x(0)€dL;,, x(1) € dL;, . Integer X —chords going from L;, to L;, are defined in the
same way. Generalizing (37), we assume that there are no integer Reeb chords between
the boundaries of any two Lagrangian submanifolds in our collection. Having that, we
choose some Hamiltonian H as in (34), such that the appropriate generalizations of (38)
and (39) hold. As before, these are generic assumptions (true after a generic rescaling of
6, and small isotopies of the L;) provided that dim(M) > 4. Let CF*(L;,,, L;,; wH)
be the Floer cochain complex generated by |ox |k, where x runs over all X —chords of
length w going from L;, to L;, . Generalizing (68), we define the wrapped complex
by

o0
(123) CW*(Liy. Liy: H) = @ CF*(Liy. Li,: wH)[q]

w=1

The wrapped Fukaya category W(L) has the L; as objects, (123) as morphism spaces,
and an A, —structure defined by extending the construction from Section 3, in an
essentially straightforward way to multiple Lagrangians.

Now suppose that we have a Weinstein subdomain M ™ C M , and that each L; satisfies
(80) with a uniform lower bound on the size of the neighbourhood of the boundary of
L; where the restriction of 6 vanishes. In this situation, one can define an A ,—functor
W(L) — W(L™), where L = {Li.“ = L; N M™} by following the same procedure
as before. To be slightly more precise, for every pair of elements in / there will be
a constant vj, ;, such that the analogue of Lemma 7.3 holds with w > v;,;, . By
inspecting the proof of Lemma 7.3, we find that we may choose v;, ;, so that for any
collection (L;,, -+, L;,;), we have

(124) Vigia < D Vikixs-
k

In particular, the collection of morphism spaces which are sums (123) restricted to
w > vj,,;, forms a subcategory on which we can define a restriction functor. However,
this subcategory is quasi-isomorphic to the whole thing by the same argument as before,
and one can use that to formally extend the functor.
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5.2 Stabilization

Consider D*S! =[—1,1] x S'. We use standard coordinates (p,q), so that the
tautological one-form is p dgq. Let M be a Liouville domain, and k: M x S' - R a
function which vanishes in a neighbourhood of dM x S'. One can then consider the
product M x D*S!, with the one-form

(125) 6=0+C pdg—dk

for some constant C (pullbacks by projection to various factors are implicit in this
definition). The associated Liouville field is Z = Z +C pop+Y,+(0k/0g)d,, where
Y, is the Hamiltonian vector field of k(-,¢) on M . This will point strictly outwards
along both boundary faces, provided that C > 0 is big enough. Hence, after rounding
off the corners suitably, we get a Liouville domain M C M x D*S!.

Suppose that L. C M is a Lagrangian submanifold satisfying (80). We take the product
of L with some cotangent fibre D} S I'=[—1,1] x {a}. Assume that the function k
appearing above has been chosen in such a way that

(126) dk(-,a)|L =0]|L.

In that case, the Lagrangian submanifold L= (LxD:SHn M satisfies §|Z =0,
hence our previous construction of the wrapped A,—algebra, with a suitably chosen
Hamiltonian function H, applies to it (gradings and Pin structures for L induce the
same kind of structures on L). Recall that generators of CF* (L wH ) correspond
naturally to X —chords of length w, with boundary on L. Thei image of any such
chord X under projection M — S! is a closed loop, whose winding number we
denote by «(%X). Obviously, the moduli spaces RY*1-P-¥(F) can be nonempty only
if @(X9) = a(F!) + -+ a(¥?). Hence, the subcomplex of CW*(L; H) consisting
only of those generators with zero winding number is in fact an Ao, —subalgebra. For
2n = dim(M') > 2, one can prove that it is quasi-isomorphic to the previously defined
CW*(L; H). We will not prove this here, but with this motivation in mind, one can
use the subalgebra as a replacement for the wrapped complex in the two-dimensional
case. It is easy to see that the Viterbo restriction maps also preserve these subalgebras.

Shghtly more generally, glven a finite collection L = {L;};<; satisfying (80), one can
take L, =(L;x D* SHhn M for pairwise distinct @;, and choose k in such a way
that the analogue of (126) is satisfied for all 7. In addition, fix preimages of all the a;
under the projection R — R/Z = S!. For any chord X which connects L,0 to L,l ,
one then has an integer «(X) measuring the difference in winding numbers between
the projection of X and that of any path in R connecting the preimages of a;,, a;, .
The subcomplexes of the CW* (Zio, Zil : H) generated by chords with «(X) = 0 form

Geometry & Topology, Volume 14 (2010)



An open string analogue of Viterbo functoriality 685

an Ao —subcategory of W(f). As before, this can be used as a replacement for W(L)
in the two-dimensional case.

Remark 5.1 The stabilization construction is actually a version of the approach
outlined in Remark 4.15, and correspondingly comes with some limitations. Most
substantially, it only works for finitely many Lagrangian submanifolds at once. In
principle, one can overcome that particular restriction by using the universal cover
D*R =[—1,1] x R as a stabilizing factor, but that no longer strictly falls into the
previously considered framework, hence requires some additional work (in particular, in
the choice of Hamiltonian functions, to avoid problems arising from the noncompactness
of the R factor). Among the other possible approaches which avoid stabilization
entirely, the most obvious one, since we are dealing with a transversality problem, is
to use Kuranishi structures. Alternatively, along more classical lines, one could try to
replace the multiples wH by a more general sequence of Hamiltonian functions, or
make the Hamiltonians time-dependent (which has the disadvantage of making action
computations less straightforward; we have not considered this in detail).

6 Popsicles and stable maps

This section revisits the compactified moduli spaces RA+Lp, filling in some gaps
left in the original discussion (Section 2). Instead of starting with the combinatorial
description of these spaces as union of strata, as in (16), we construct them from a
complex geometry perspective, based on the existing theory of stable maps (this follows
the strategy used by Fukaya and Oh [12] for Stasheff polyhedra).

6.1 A complex analogue

Fix d > 1 and p={pyr}, f € F. Consider the projective line CP! =C U{oo}, and
let Y = (CP')F be the product of such lines indexed by F, with coordinates yr. For
k €40,...,d}, define subsets H*X C Y by

(127) HF = the point where all y; = 0 ifk =0,
| the subset where yr=ocforall f with py =k ifke{l,....d}.

A p-flavoured lollipop is a closed genus zero Riemann surface C, equipped with a
collection of d+1 distinct ordered marked points & = {¢°, ..., ¢%}, together with a
holomorphic map ¥: C — Y of degree (1,...,1) such that

(128) v (%) e HF forall k.
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Equivalently, the components ¢ 7: C — C P! are isomorphisms satisfying Vr(§ 9 =0,
V¢ (§Pr) = oo. More generally, define a broken lollipop to be a genus zero surface C
with nodes, equipped with a collection § of smooth points, and with a map satisfying
the same incidence condition (128) as before. The stability condition says that on
each irreducible component of C which carries less than three special points (nodes
or marked points), ¥ may not be constant; in our case, stability and the nature of
(128) rule out having just one special point on a component, so there are always at
least two. For d + |F| > 2, we then have the moduli space of lollipops M?+1-P
and its compactification MATLP | the space of stable broken lollipops, considered as
a subspace of the space of stable maps with target Y. The compactification has a
decomposition into strata M7F indexed by data similar to that in (16): the difference is
that instead of a ribbon structure, 7' only comes with a labeling of its semi-infinite edges
by {0,...,d}. The pair (T, F) fixes the topological type of the broken lollipop (the
structure of the nodal curve, including the choice of irreducible components on which
the marked points lie; and the degrees of the map ¥ on each irreducible component).
There is a natural action of (C*)F on Y by rescaling coordinates, and therefore an
induced action on our moduli spaces. Similarly, we have an action of SymP, which
comes from permuting the factors in the target space Y . In both cases, the important
point is that each H¥ remains invariant.

Lemma 6.1 M?+1P js a smooth compact complex manifold.

Proof The moduli space of all genus zero stable maps with target ¥ and degree
(1,...,1) is known to be smooth and compact: compactness is a general property, and
smoothness follows from the convexity of Y (see Kontsevich and Manin [22, Definition
2.4.2]). By definition, MA+LP s a closed subspace, hence itself compact. Smoothness
does not follow directly, but the proof proceeds along well-established lines. First of
all, the infinitesimal deformation space 7 of any stable broken lollipop sits in a long
exact sequence

(129) 0 — Ext®(QL (% +---+¢9),0c) — H(C,&) — T —
— Bxt"(QE (0 + -+ +¢7),0c) — H'(C,E),

where £ C ¥ *T'Y is the subsheaf of vector fields which at each marked point ¢ k are
tangent to H k. More specifically, & is a direct sum of line bundles £ C w;T cpl.

Each W;T C P! itself is of degree 2 on exactly one irreducible component of C, and
trivial on all others. Moreover, £r C W}‘T C P! is defined by imposing vanishing

conditions at the points ¢°, {77 . From this and the fact that our curve has genus zero,
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it is easy to see that H°(C, &) =C, H'(C, &r) = 0. Hence the obstruction term,
which is the last one in (129), vanishes, ensuring smoothness. O

This computation has another useful consequence. Fix a stable broken lollipop, mod-
elled on a tree 7. Nodes of C then correspond canonically to interior edges e of T'.
Choose, for each node, local holomorphic coordinates {z. 4} near its preimages in the
normalization. Then there is a deformation

(130) C—Uu

of the underlying surface with marked points (C, {¢°, ..., ¢94}), parametrized by some
neighbourhood of the origin & C [[, C. The local model for the deformation is the
standard smoothing

(131) Ze,—Ze,+ = Ses

applied to each node. Possibly after shrinking I/, the map ¥ extendsto ¥ :€C — Y, in
such a way that (128) is satisfied on each fibre. This is a general fact about deformations
of lollipops, which follows directly from the Kodaira—Spencer deformation theory
of holomorphic maps: in the notation from Lemma 6.1, the obstruction to such an
extension lies in H!(C, ), which we know to be zero. Of course, the extension is
not unique, but the ambiguity is easy to understand: the group of maps U — (C*)F
which equal (1, ..., 1) at the origin acts simply transitively on the set of all possible
choices. Once we have chosen W, the resulting family is classified by a holomorphic
map U — MA+LP (this uses the universality property of the moduli space, which in
turn is based on the fact that stable broken lollipops have no nontrivial automorphisms).

Instead of starting with a single stable broken lollipop, one can also take a family, in
particular that corresponding to one of the strata MTF. Suppose that for each surface
in the family, we have chosen local coordinates near the nodes, as in the previous
discussion. Given that, carry out the smoothing process, and find suitable maps W. As
before, this yields a classifying map, which now takes a form analogous to (11):

(132) MT’FXH(C SUTF s jd+1p,
e

Lemma 6.2 Possibly after shrinking UT"¥, (132) is a diffeomorphism onto a neigh-
bourhood of MT-F ¢ Md+1-p,

Proof Take a stable broken lollipop (C, ¥) representing a point of MT-F . Let C—>C
be the normalization, and {v, 4} the preimages of the nodes in C. Concerning the
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tangent space of our stratum at this point, we have an exact sequence

(133) 0 — Ext®(QL (% +---+¢9),0c) — H°(C,&) — TMTF
— Ext' (QE (X4 &5 + X, vet + X ve, ). O) — 0.

By comparing this with (129), one sees that TM4 1P/ TMTF can be identified with
the quotient Ext! (% (X ¢%), Oc)/ Ext QL (X4 % + X, vt + X, ve,-). Og).
On the other hand, there is a well-known short exact sequence (see Harris and Morri-
son [15, page 100]) which identifies that quotient with

(134) & ré,. ., o710, .
e

Geometrically, projection from Ext! (QIC(Z PRe k), O¢) to (134) measures the amount
of smoothing that is applied to the nodes (the reduction to first order of the parameter
8 from (131), essentially). This means that the differential of (132) induces an
isomorphism from the normal bundle of MTF to (134). m]

Addendum 6.3 In the construction of (132), we have implicitly assumed that the
local coordinates used in the gluing process are not only holomorphic on each single
surface, but also depend holomorphically on the moduli. In our intended applications,
the dependance is in fact only differentiable, which makes it difficult to apply the
universality property directly. One way to get around this problem is to restrict attention
to rational local coordinates, which are ones that extend to isomorphisms from C P!
to the relevant component of the broken lollipop. There is an enhanced moduli space
MTF of broken lollipops equipped with such coordinates for all the nodes, and this
comes with a canonical holomorphic gluing map

(135) JW’FXHC SUTF 5 jd+1p,
e

On the other hand, the forgetful map MTF 5 MTF s a holomorphic principal bundle.
A choice of rational local coordinates, depending differentiably on moduli, is simply
a smooth section of that bundle. One then defines the generalization of (132) by
composing this section and (135). This is obviously differentiable, and it is easy to see
that Lemma 6.2 continues to hold.

6.2 Real structures

The complex conjugate of a lollipop is the complex conjugate C of the underlying
curve, equipped with the map ¥ . A real lollipop is one which is invariant under this
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operation. This means that it has an anti-holomorphic involution ¢: C — C preserving
each ¢ k. and such that ¥ o1 = ¥ . The same applies to broken lollipops. Note that in
the stable case, a real structure (if it exists) is necessarily unique. Complex conjugation
induces an anti-holomorphic involution of the compactified moduli space, whose fixed
point set J\_/[%H’p parametrizes real broken lollipops.

We now revisit (130) in the presence of real structures. Start with (C, ¥) which is
real. For each node of C, choose local holomorphic coordinates around its preimages
in the normalization, and assume that these coordinates are compatible with the anti-
holomorphic involution. In that case, the family € inherits a real structure as well, and
the map W on it can be chosen to be compatible with that structure. This is still not
unique, but we can make a more specific choice based on additional geometric data, as
follows. Suppose that (C, ¢) is modelled on (7, F). This means in particular that the
irreducible components C, are indexed by vertices of T, and that for each f € F,, the
restriction ¥ ¢|Cy: Cy — C P! = C U{oo} is an isomorphism. Choose, for each f,
an additional marked point g5 lying in wf_l (S1) c Cy, which should not be a node.
Since the deformation € is defined by a local process near the nodes, these points will
survive into the nearby fibres, yielding sections ks: U — € of (130). For any choice of
W compatible with the real structure, we get an associated collection of real analytic
functions

(136) |\IJfOKf|ZUR—>R*,

each of which sends the origin to 1. If we change Wy by a a real analytic map U/ — C*,
the effect is to multiply (136) with the restriction of the same map to {/r. Hence,
possibly after shrinking g, there is a unique choice of W such that all the (136)
become constant equal to 1. We call the resulting (C, V) a geometric deformation
of the real broken lollipop (C, ¥). Such deformations depend on the choice of local
holomorphic coordinates near the nodes, and on the points ¢ .

Take a stratum M]}TR’F in the real part of the lollipop moduli space. Suppose that along
this stratum, we choose rational local coordinates around the nodes, as well as additional
marked points as described above. For the same reason as in Addendum 6.3, it is
sufficient to have these coordinates and points vary differentiably over the moduli space.
The geometric deformation construction then yields a gluing map, whose real part is a
diffeomorphism onto a neighbourhood of our stratum:

(137) ME" < [TR o g™ — Mg t'e.
e
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6.3 Popsicles vs lollipops

Take, as before, a tree T with d+1 semi-infinite edges, labeled by {0, ...,d}. We say
that 7" is of ribbon type if it can be embedded into the plane in such a way that the given
numbering of the semi-infinite edges is compatible with the counterclockwise cyclic
ordering. If such an embedding exists, it is essentially unique, so we do indeed get a
distinguished ribbon structure in the ordinary sense. Suppose from now on that 7" is of
this type; and let (C, ¥) be a stable broken lollipop modelled on (7, F), which carries
a real structure. From the ribbon structure of 7', we get a canonical ordering of the
flags adjacent to any given vertex v (compare Section 2.3), hence of the special points
(nodes and marked points) on each irreducible component C,. We say that the real
structure is admissible if there is some orientation of the real parts C, g = S ! which
is compatible with the ordering of the special points, and such that for each f € Fy,
the diffeomorphism ¥y r: Cy g — R U {oo} = Yy r becomes orientation-preserving.
Again, there can be at most one such orientation. Supposing that one exists, one can
construct a popsicle modelled on (7, F) as follows. For each v, take S, to be the
disc in C, whose boundary is C, g with the positive orientation, and then remove all
special points to get a pointed disc S, . The popsicle maps are defined by

(138) ¢ = Llog(Yy) | Sy.

Conversely, the broken popsicle with components Sy, and maps ¢, f € Fy, determines
the original (C, ). Now suppose that we are given popsicle sticks on each Sy, which
allow one to convert the information contained in the popsicle maps ¢, into sprinkles
qr € Sy C Cy. Because of (138), these points necessarily satisfy V¢ (qy) € S!. Hence,
the geometric deformation introduced above actually reproduces the gluing process
from Section 2.4. More precisely, geometric deformation with non-positive gluing
parameter corresponds to gluing of popsicles, whereas a positive gluing parameter
results in a non-admissible real structure.

To conclude, R4+1P can be identified with the subset of JV[%H’D consisting of those
broken lollipops which have admissible real structures. Consider some boundary
stratum RTF and suppose that for each family 8!VlPv — RIVlPv we have made
choices of rational strip-like ends as well as popsicle sticks. The associated gluing map
(20) is a restriction of (137), which means that

Corollary 6.4 Possibly after making UT¥ smaller, (20) is a diffeomorphism onto a
neighbourhood of RTF inside RA+1:P JV[%H’E’.

Corollary 6.5 RIt1P J\_/[%H’p is a smooth submanifold with corners.
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6.4 Compactifying the universal family

We now discuss, in slightly less detail, the construction of the compactified total space
84+1Lp Consider stable maps ¥: C — Y of the same genus and degree as before,
but where C now carries d + 2 marked non-special points {¢°, ..., ¢, z}. The first
d+1 of these should satisfy the usual incidence condition (128), and the last one can
be mapped freely to Y. On one hand, the computation from Lemma 6.1 shows that
such maps form a smooth moduli space @4+LP_On the other hand, it is part of the
general theory of stable maps (the prototypical case of stable curves was treated by
Knudsen [21]) that there is a natural holomorphic forgetful map

(139) éd-l—l,p _)Md+1,p’

and that this can in fact be identified with the universal family of stable curves over the
moduli space.

Consider the subset $911:P c @9+ 1P consisting of those points (C, & U{z}, ¥) which
satisfy the following two conditions. First, the image under (139) should lie in RE+LP,
Secondly, if it is the case that (C, &, ¥) is stable (note that we are forgetting z here),
we require additionally that z should lie in the subset of C given by the associated
compactified broken popsicle. One checks easily that (as a set) this can be identified
with the compactification of the universal family (17). The case where forgetting z
makes the map unstable deserves special mention. This occurs whenever ¥ is constant
on an irreducible component of C which contains z as well as

(i) exactly one of the points ¢ k. and exactly one nodal point; or

14
(140) (ii) none of the ¢¥, and exactly two nodal points.

In terms of (17), this corresponds to having the compactification S of an (ordinary or
broken) popsicle, together with a point z € S which either (i) agrees with one of the
points at infinity, or (ii) is a singular point. The correspondence is shown schematically
in Figure 9.

It is now easy to construct local models for 8§4+1P Near any point where (C, ¢, V)
is stable, this is a manifold with corners, the codimension of the corner being given as
usual by the number of double points. In the remaining case (i), if we consider the node
lying on the same component as z, the relevant gluing parameter does not have to be
real, but (with suitable conventions) it should lie in the upper half-plane; otherwise, the
outcome of the gluing process does not lie in the subspace 84+1L.P_Hence, the local
model is a corner whose codimension is the number of double points of the image of
our point under (139). Finally, in case (ii) one has two gluing parameters §1 associated
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z ¢ 3
(@)

¢! ¢

(ii)

¢! ;2
Figure 9

to the nodes which lie on the same component as z. Both of them must lie in the
upper half-plane, and moreover, their product needs to be real and positive, so we get a
singularity of type (8); this is particularly easy to see if one thinks of arg(6+) as an
angle of rotation in Figure 9.

As we have briefly mentioned before, even though §4+Lp jg singular, one can define
the notion of smooth function on that space, either by being smooth with respect to
the local coordinates mentioned above, or (equivalently) as the restriction of a smooth
function on C4+1-P. For our purposes, only a very special class of such functions
will be relevant. Namely, suppose that /: $4+t1P — R is a smooth function with the
following property: it admits a smooth extension / to the compactification, which
vanishes to arbitrary order at special points (points at infinity and double points). From
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the more concrete viewpoint of gluing parameters, this property has the following
implications. First, consider a single popsicle (S, ¢), identified with some fibre of
the universal family 82+1P_and let g be the restriction of 4 to that fibre. Take a
strip-like end, written for simplicity as an inclusion Z < §. Then, for every C > 0
there is a constant D > 0 such that on the strip-like end,

(141) |h(s,1)| < DeTC5.

In words, /i decays faster than exponentially near the points at infinity. To get (141)
from the given vanishing condition, one simply notices that exp(—sm(£s £ i¢)) is part
of the local coordinate system on 84+1LP centered at a point at infinity; therefore, A
grows smaller than any of its powers.

Next, suppose that we have a one-parameter family of popsicles (S7, ¢;), obtained by
gluing together two fixed popsicles (S+, ¢ ) with gluing length / >> 0. By definition,
S} contains a finite strip [0,/] x [0, 1]. On that strip, the functions /s, = h|S; must
have the following behaviour. For any C > 0 there is a constant D > 0 (independent
of /) such that

(142) |hs, (s,1)] < min{DeC*, DeCG=DY,

This means that & decays faster than exponentially (uniformly in /), whether one
counts from the left end or from the right end of the strip. The reason is essentially
the same as in (141): in terms of (8), the point (s, ¢) on the neck of the surface S; has
local coordinates 6— = —exp(—n(s +it)), §+ = —exp(—n(/ —s —it)). We know
from the assumption that locally near §_ = 84 = 0, || is less than any |§_|€, [64|C.
This yields (142) on a piece [L,/ — L] x [0, 1], where the constant L is independent of
[. On the other hand, if one restricts Ag, (s, ) to [0, L] x [0, 1], it converges uniformly
as [ — oo, and the same is true for A, (s —/,1) on [-L,0]x [0, 1]. Using that fact,
one easily extends the given bound to the whole of [0, /] x [0, 1].

Bounds similar to (141), (142) hold for the derivatives of &g, (s,t). There are also
analogues where one considers families of popsicles, as well as more complicated
gluing processes.

Remark 6.6 We have used 87+ 1P because it is the most straightforward way of
compactifying the universal family. There is at least one other possibility, which
would be to consider triples (C, ¢ U {z,Z}, ¢), admitting a real involution which
exchanges the two additional marked points. The compactification obtained in this way
is somewhat larger, but has the advantage of being a genuine manifold with corners.
If we restrict to a single popsicle (S, @) representing a fibre of $4T1:P what this
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alternative compactification does is to add an interval at infinity to each end, rather
than a single point.

7 A priori estimates

This section collects various elementary analytic arguments. Action and energy consid-
erations encode what, in more standard terms, is known as the technique of monotone
homotopies, going back at least to Floer and Hofer [7]. We also need an elementary
SFT-type convexity result, which constrains pseudo-holomorphic curves to certain parts
of the target manifold; this replaces the maximum principle and Monotonicity Lemma
arguments used for the same purpose by Viterbo [30].

7.1 Preliminaries

Let’s start by summarizing the geometric data that enters into the formulation of our
inhomogeneous 5—equations (the following considerations will be largely independent
of how that data is chosen in the specific context of wrapped Fukaya categories). On
the target space side, let M be a Weinstein domain, L C M a Lagrangian submanifold
satisfying (35) as well as (37), and H a function as in (34), (38). On the source side,
we have a pointed disc .S, which comes with strip-like ends € as well as weights w.
Besides that, S carries a one-form y satisfying (27). By applying Stokes one sees that

(143) — fgdy =w®—w!— ..~

In particular, dy = 0 if and only if w is the sum of the other weights. Finally, we
have a family J = {J;} of almost complex structures parametrized by points of .S,
each of which is of contact type at the boundary. Over the strip-like ends €k (s,1), this
family should converge to one which depends only on k and ¢, and the convergence is
assumed to be faster than exponential in any C” topology. Given that, we consider
solutions of (50), which (to save the reader the trouble of looking it up) means maps

u: S — M,

u(dS)cC L,

limg—s 4 o0 u(ek(s, ) = xk e Xk,
(du—Xy)%! =0.

(144)

If we choose local holomorphic coordinates z = s + i around some point of S, and
write accordingly y = p(s,t)ds + ¢q(s,t)dt, the d—equation in (144) becomes

(145) dru—q(s, 1) X = Js (05u — p(s,1)X).
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This class of equations is compatible with certain changes of variables, given by the
action of the flow ¢ of X'. More precisely, if we make the ansatz

(146) u(s, 1) = ¢! (@ (s, 1)),
then # satisfies the same equation with modified data

fs,t = (¢l(s’t))*Js,t,
147) p(s,t) = p(s,t)—05l(s,1),

q(s,t) =q(s,t) —0:1(s,1).
In a less coordinate-bound way, what this means is that one has replaced y with
y =y —dl. Suppose that the point we are considering is an interior point of .S, and
that dy = 0 in a neighbourhood of that point. If we then take / such that d/ = y,
the associated transformation turns (145) into a standard pseudo-holomorphic map
equation (still with almost complex structure which depends on z). Similarly, near
boundary points (where dy always vanishes, by assumption) one has y = d/, where

! is constant along the boundary, and that transforms our equation into a standard
pseudo-holomorphic map equation with Lagrangian boundary conditions.

In the general case where dy # 0, one can still get rid of the inhomogeneous term by
applying the traditional Gromov trick. Namely, consider S x M with the symplectic
form w — d(Hy) + (a large positive two-form on S'). There is a unique compatible
almost complex structure such that the equation for pseudo-holomorphic sections
S — S x M becomes equivalent to (du — X ® ¥)%! = 0. One consequence of this
reduction, and of standard pseudo-holomorphic curve theory, is the following:

Lemma 7.1 Two different solutions of (144) can only agree on a discrete set of points.

7.2 Energy and action

The geometric and topological energies of a solution of (144) are defined by

E&oM(y) =/ Hldu— X ®y|? =/ u*o —u*dH Ay,

(148) S §

E™P(u) =/ w*o—du*H-y)= E&™®u) —/ u*H-dy.
S S

Since H > 0 and dy <0, it follows that

(149) 0 < E&™(y) < E"™P(u).

Moreover, the first inequality is an equality if and only if du = X ® y (see Section 8.2
for further discussion of these special solutions), while the second one is an equality
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if and only if dy = 0. On the other hand, the topological energy can be computed in
terms of action differences by a direct application of Stokes’s theorem. Namely, define
the action of x € Xy, to be

1
(150) Ay (x) = /0 —X*0 + wH(x(1)) dt + h(x(1)) — h(x(0)),

where / is as in (35). Then, for any solution of (144) with limits xk ,

d
(151) E“P(u) = Ao (x°) = Y Ay gr (x5).
k=1

7.3 A convexity argument

Suppose that we have a manifold with boundary M , together with a one-form 6
such that df = w is symplectic, but where now the Liouville field Z points strictly
inwards along dM . This is sometimes called a concave contact type boundary, and the
natural completion of such a manifold is to attach the small part of the symplectization
(0, 1] x 0M to the boundary. Let L C M be a Lagrangian submanifold satisfying (35),
where we assume additionally that

(152) h|dL = 0.

Suppose also that we have a function H satisfying the analogue of (34). Finally,
there is a natural notion of almost complex structure which is of contact type on dM ,
analogous to the one in Section 3.2.

Take a connected compact Riemann surface S with corners. The corners divide 9
into pieces which are closed intervals or circles. In our case, each piece should carry
an n or [ label, with the property that two pieces ending at the same corner must be
labeled differently. We denote by dS = 9,5 U d;S the resulting decomposition, and
assume that 9, S # @. Suppose also that our surface comes with some y € Q1(S),
satisfying y|d;S = 0 and dy < 0. Additionally, we want to have a family J of almost
complex structures, parametrized by points of S, which are of contact type on dM .
Given this, consider the equation

u. S — M,

u(3;S)C L,

u(0,S) C oM,
(du—Xy)%! =o.

(153)
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Lemma 7.2 There are no solutions of (153) unless dy = 0. Even then, all solutions
must satisfy du = X ® y and u(S) C oM .

Proof We apply Stokes to the integral defining the topological energy (148):
(154) E™(u) = / u O —u*H-y.
S

By assumption, we have H = 6(X) = 1 along dM , and moreover 6|L = dh, where
h vanishes along dL. Using this, one can rewrite (154) as

E"P(y) = Oo(du—X®vy)
0nS

(155)
:/a S(@on)o(du—X@by)O(—j)-

We know that along dM , 6 o J; is the radial one-form (written as dr in terms of the
coordinates on the cone). In particular, since X |0M is the Reeb flow, (Ao J;)(X) =0.
If £ is a vector tangent to d,S, and positive with respect to the boundary orientation,
then j& points inwards, hence du(j&) does not point outwards along dM , whence
(6oJ,odu)(j€) > 0. Integrating that, we find that £'P(x) < 0. This contradicts (149)
and the nonnegativity of the geometric energy, unless E&°™ = () and E'°P = EFg&om,
which means that du = X ® y and dy = 0. Since du is always a multiple of X, it
follows that the image of u lies inside a single orbit of that vector field, which in turn
must be contained in dM since 9,5 # . O

Note that Lemma 7.2 still holds if we replace H by ¢H for some constant ¢ > 0, since
that can be compensated by rescaling y . This will be occasionally useful.

7.4 Solutions escaping to infinity

We now return to the original setup of equation (144), and modify it by completing all
the target space structures. This means that we consider

u: S — M,
u(dS)C L,
(156)
limy—s 400 u(e (s,-)) = xk € Xk,
(du—X @)% =0.
Here, X is the Hamiltonian vector field of the natural extension A from (34). Similarly,

we use the extended almost complex structures J» which are of contact type on the
infinite cone. By assumption (37), all the possible limits x% still lie in M \oM C M.
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The infinite cone [1, 00) X M is a manifold with a concave contact type boundary.
Suppose first that u intersects {1} x dM transversally. Then, one can apply Lemma 7.2
to the part of u that gets mapped to the infinite cone. Note that the additional condition
(152) holds automatically here, since 0 vanishes along [1, 00) x dL. The outcome is
that u does not actually penetrate into the interior of the cone, hence stays in M C M
after all. To remove the technical transversality assumption, take some € > 0 such that
u intersects {1 4+ €} x dM transversally. Lemma 7.2 (or rather, the slight generalization
mentioned at the end of Section 7.3) applies to [1 + €, 00) x dM , showing that the
image of u remains inside M U ([1, 1 + €] x dM'). Since € can be chosen arbitrarily
small, we then come to the same conclusion as before.

To see the specific implications of this, suppose that we have a one-dimensional regular
moduli space R+ 1-P-¥(x) and a point in that space, represented by a triple (S, do. Uo),
such that uo_l (0M') # . Because of regularity and the dimension assumption, this
point sits in a family (S,, @, ,u,), where a priori the u, could leave M and penetrate
into (1, 00) x M C M . However, the argument above shows that this does not happen
(the family of surfaces u, (S,) becomes tangent to dM at r = 0, but does not actually
cross the boundary). Hence, (So. ¢. 1¢) is not a boundary point of the original moduli
space.

7.5 Solutions escaping from a subdomain

On the target space side, let’s suppose that we have M together with a Liouville
subdomain M ™ and a Lagrangian submanifold L, as in Section 4.1, and assuming that
(37) holds for both L C M and L™ C M™. Take a Hamiltonian H of the form (87).
In particular, for each w we have the splitting of the set of integer X —chords of length
w into ones lying in the interior and exterior of the dividing hypersurface, as in (90).

Lemma 7.3 There is a constant v such that for all w > v and all x € X", the action
Ay g (x) is positive.

Proof By assumption (80), we can extend /| L°" to a function defined on the whole
of M°U, which vanishes in a neighbourhood of dM°"t = M ™™ U dM . Note that on
both hypersurfaces we have H = 1, with nontrivial derivative in transverse direction.
Hence, we can choose our neighbourhood to be bounded by level sets of H on either
side, which means that it will be invariant under the flow of X .

Take x € X%, and write the action as

1
(157) Awp (x) = /0 w(H(x (1)) —dH(Z)x(ry) dt + h(x(1)) = h(x(0)).
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If x lies in either of the two neighbourhoods defined above, the / term in (157) vanishes,
and the integral is over a positive function by (87), which yields the desired result for
any w. On the other hand, outside those neighbourhoods H — dH (Z) is bounded
below by some positive constant, and of course / is itself bounded, which means that
(157) will necessarily be positive if w is sufficiently large. a

Consider the rescaled family H” as in (94), whose Hamiltonian vector field X © satisfies
(95). The crucial point about this rescaling process is that it affects the action values
on the inside and outside differently. Namely, for x* as in (96),

Ay (x) if x € X",

158 A xP) = ‘
(158) wio (X7) {p-AwH(x) if x e Xjj.

Take (S, €, w, y) as in Section 7.1. For the almost complex structures, we want to have
the following: a family J = (J;) in J(M) parametrized by S, which asymptotically
over the ends depends only on ¢; a similar family J = (Ji") in J(M™) of the same
kind; and a third family interpolating between the two, in the sense of Section 4.3,
again with the same kind of asymptotic behaviour. For any p € (0, 1], we then consider
solutions to the parametrized equation

u: S — M,

u(dS) c L”,

159
(159 limg—s 100 u(Ek(S, ) = xk,p’

(duy — le(z) ®y:)oj+ Jzu(z) o(duy, — X,f(z) ®yz) = 0.

Clearly, for p = 1 this reduces to (144). Moreover, if ™" is a solution of the corre-
sponding equation on M™ (using H™ = H|M™, and the almost complex structures
J™), then for each sufficiently small p, the rescaled map ¥ ou™™ is a solution of (159).
The last observation has a partial converse:

Lemma 7.4 Suppose that all weights are > v, p is sufficiently small, and x° € f)Ci;‘)O.
Then every solution of (159) is of the form y° ou™. In particular, its other asymptotics
are x* € DC‘IE « » and the image u(S) is entirely contained inside M ™"

Proof Combining (149) with (151) and (158), one finds that

(160)  0<EPw)=p-Ayg(x)—p Y Awa(F)— Y Apgy,(F).
k>0 k>0

k in k out
x"eX x"eX
wk wk
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In the last term on the right hand side, all the actions are positive by Lemma 7.3,
and in fact bounded below by a positive constant which is independent of p. The
other terms are bounded by p times a constant, which depends only on the weights
(the maximum of |4, g (x)| among the finite sets X0, ...,X,«). This leads to a
contradiction for p < 1 unless we assume that the last sum in (160) is empty, which
means that x* e i)Ci’Ek for all k.

Having excluded the possibility that some input lies in M°", we now prove that
all solutions to (159) lie in M ™. Consider M°" U k'"([p, 1) x dM™). This has
OM™P as a concave contact type boundary (of course, there is another boundary
component, namely dM , but that won’t be relevant). Moreover, for all p < 1, the
almost complex structures J£ are of contact type in a neighbourhood of dM ™P C
k™([p, 1) x dM™). From the previous argument, we know that all limits x%** lie in
the interior of M ™. Suppose first that u intersects M ™ transversally, so that the
preimage u = (M Uk™([p, 1) x IM ™)) is a compact surface with corners. Applying
Lemma 7.2 then shows that u(S) C M™? . To remove the transversality assumption,
one argues as before by moving the hypersurface slightly, then taking the limit. |

8 Transversality

We now revisit in more detail the transversality claims made throughout the main part of
the paper. The proofs are basically routine, in spite of the presence of a finite symmetry
group (see Remark 8.10 for an informal explanation of why this group does not cause
any problems).

8.1 Nondegeneracy of chords

Let M be a compact symplectic manifold possibly with boundary, L C M a Lagrangian
submanifold, and H € C°°(M,R) a function, with its associated Hamiltonian vector
fields X and flow ¢. We will be interested in the generic behaviour of integer X —
chords. Here, generic is understood in the sense of Baire, with respect to perturbations
of H. Actually, we will sometimes find it useful to perturb L as well, in a Hamiltonian
(exact Lagrangian) way. However, as far as X —chords are concerned, passing from L
to ¥ (L) is equivalent to going from H to H oy ~! while keeping L fixed. Hence, all
the results ultimately translate into statements about perturbing H alone, for arbitrary
fixed L.

As a first step, after a perturbation of H, we may assume that: first, at any stationary
point x, the derivative D¢l has no eigenvalues which are roots of unity; secondly, if
x is a periodic point whose minimal period is some integer w > 0, then D¢y has X
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as the only eigenvector for the eigenvalue 1, and no other eigenvalues which are roots
of unity. As a consequence of these properties, if x belongs to any (possibly stationary
of multiply covered) periodic orbit of integer period w, the image of

(161) id—D¢¥: TMy — TMy,

is precisely the symplectic orthogonal complement of X . In addition, we can assume
that the stationary points are disjoint from L, and that the non-stationary integer
periodic orbits intersect L transversally. Fix an H with these properties. We want to
know if, by a small generic Hamiltonian isotopy of L, one can make the intersections
¢¥ (L)N L transverse. By a standard Sard-theory argument, this is possible if for every
x € ™ (L)N L, the map

Def(L) —> TMyx/(TLx + T (¢"(L))x),
Er—&x — DP” (v (x))

is surjective. Here, Def (L) is the space of infinitesimal deformations of L, seen as
normal vector fields. If x # ¢~%(x), the map (162) subtracts values of £ at two
different points, so surjectivity is automatic. In the remaining case, we have Xy & T'L
by assumption, which implies that 7'L is not contained in the symplectic orthogonal
complement of Xx. From this and the previous remark concerning (161), it follows
that (162) is still onto. Hence:

(162)

Lemma 8.1 For generic H, all integer X —chords are nondegenerate. a

Next, consider triple intersections L N ¢* (L) N (L), for integers 0 < w < v. In
that case, the map corresponding to (162) is

(163)
Def (L) ® TMy —> TMy/TLyx & TMy/T($"(L))x ® TMx/T($"(L))x.

(£,8) — (Ex + 8. D@ (Ep—w(x)) + 8, D@’ (Ep—v(x)) + 0).

This is obviously surjective if the points (x, ™ (x), ¥ (x)) are all different. If exactly
two of them coincide, it is surjective by the previous argument. In the remaining
situation, where all three points coincide, surjectivity fails. This happens whenever L
intersects an integer periodic orbit of X', which doesn’t happen in dimensions 4 and
higher due to our previous transverse intersection assumption. The upshot is:

Lemma 8.2 Assume that dim M > 4. For generic H, starting points of integer
X —chords are never endpoints of integral X —chords.
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8.2 Trivial solutions

Consider an equation (144), in the setup described there. A trivial solution of that
equation is a map u such that

(164) dui=X®y.

These are precisely the solutions whose geometric energy is zero, or more intuitively,
those maps which satisfy (144) for all possible J at the same time. In local coordinates
as in (145), this means that

(165) osu—p(s, )X =0, du—q(s,t)X =0.

The simplest examples are constant maps u(z) = x, where X, = 0.

Lemma 8.3 Suppose that dy is not identically zero. The only trivial solutions are the
constant ones taking values at stationary points of X .

Proof This follows from the integrability condition for (165). Namely, taking V to
be any torsion-free connection on 7'M , we have

0=Vpy,,0:u—Vy,,05u
(166) =q-VouX +05qg-X—p-Vy X —=0p-X
=q-VpxX —p-Vax X +(95g —9:p)- X = dy(95,91)- X.
Since dy is not identically zero by assumption, there is some z € S such that u(z) is

a stationary point of X . But then, (164) and elementary ODE theory show that # must
be constant. O

Lemma 8.4 Suppose that dy =0, and that H satisfies (39). The only trivial solutions
are the ones with domain S = Z.

Proof Since S is simply-connected we can write y = d/, and then integrate (164),
which yields

(167) u(z) = ¢/ (x)

for some x which is independent of z. Equivalently, one could view this as the result of
applying a transformation (146) globally, and getting a & which is a holomorphic curve
with energy zero. The function / is locally constant on 9.5, and over the strip-like ends

it satisfies

wO¢ k=0
168 1% (s, 1)) = ’
(168) (€ 6.1) {w1+--~+wk_1+wkt k>0.
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For the limits x = {xX} this means that
x1(0) = x°(0),
x*(0) = x'(1) =™ (x'(0)),
(169) :
x4(0) = x771 (1) = g1 (x7H0)),
(1) = x4(1).

In particular, if d > 1 then x2(0) would be both an endpoint and a starting point of an
integral X —chord, which contradicts (39). m|

Lemma 8.5 Suppose that dy = 0, and let u be a solution of (144) which is not a
trivial solution. Then the set of points where du = X ® y holds is a discrete subset of
S.

Proof Locally near each point of S we can apply a transformation (146), which
takes (144) into an ordinary pseudo-holomorphic curve equation, and transforms trivial
solution into constant maps. Using standard pseudo-holomorphic curve techniques
(the Carleman similarity principle; see Floer, Hofer and Salamon [8, Corollary 2.3]
for interior points, and Oh [25, Corollary 2.2] for boundary points), one sees that the
subset of U consisting of points at which du — X ® y vanishes to infinite order is both
open and closed. The rest is straightforward. a

Lemma 8.6 Suppose that dy # 0, and that H satisfies (39). Let U C S be a connected
open subset, containing S as well as neighbourhoods of all the points at infinity, and
such that dy|U = 0 (such a subset always exists, because of the assumptions on y ).
Then, for any solution u of (144), the set of points in U where du = X ® y holds is a
discrete subset of U .

Proof Suppose that the contrary is true. Applying the same argument as in Lemma
8.5, one then sees that du = X ® y holds on all of U. As in Lemma 8.4, it follows
that the limits x of our map satisfy x!(0) = x°(0). In view of (143), the assumption
dy # 0 implies that w® > w!. Therefore x!(1) = d)wl(xl(O)) = ¢wl_w0(x0(1))
is both starting point and endpoint of an integral X —chord, contradicting the other
assumption. O
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8.3 Linearization

We now consider the linearization of (144) with respect to infinitesimal changes of J
as well as as u. This is given by an operator

Yo W w*TM) — L"(Hom® (TS, u*TM)),

(170) .
(Y, X) — %Yz,u(z) o(duz— Xu@z) ® Yz) 0 jz + Dy X.

Here, Y is the space of infinitesimal deformations of our given family of almost
complex structure, which have superexponential decay over the ends of S'. The second
component is the standard linearized d—operator D, , taking the Sobolev completion
for some r > 2.

Lemma 8.7 Suppose that u satisfies (144), and is not a trivial solution of that equation.
Then the map (170) is surjective.

Proof This is a standard argument. Since D, itself is Fredholm, we only need to
show that the image of (170) has zero orthogonal complement. Suppose that 7" # 0
lies in the kernel of the adjoint D} . Then it is automatically smooth, and vanishes only
on a discrete subset of points in S. If dy = 0, one can use Lemma 8.5 to find a point
z € § where both T and du — X ® y are nonzero, and a Y such that

(171) (Yz,u(z)o(duz_Xu(z)®Vz)°]'29Tz> # 0.

Strictly speaking, our almost complex structures are constrained to be of contact type
along the boundary. Hence, to ensure that (171) can be achieved, we need u(z) to lie
in the interior of M . But since we are assuming that (37) holds, all limits x lie in the
interior, hence so does u(z) outside a compact subset of S'. Having found (171), one
multiplies Y with a function supported very close to z, and gets a contradiction to the
assumption that 7" lies in the orthogonal complement to the image of (170). In the
case where dy # 0, the same argument works except that one has to take z in a subset
U C § of the kind considered in Lemma 8.6. O

Now consider two solutions u, v of (144), with possibly different limits at infinity. We
can then consider the linearization of the equation at both solutions, with respect to a
common variation of the family of almost complex structures. In parallel with (170),
this is given by an operator

Yo W W*TM) e W (v TM) —

(172)
— L"(Hom® (TS, u*TM)) & L" (Hom® ' (TS, v*TM)).
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One can now argue as before, varying the almost complex structure near a point z € S
such that (du—X®y); #0, (dv—X ®y), #0, and u(z) # v(z). With the obvious
exceptions, the existence of sufficiently many points with that property is ensured by
Lemma 7.1. The outcome is:

Lemma 8.8 Suppose that neither u nor v are trivial solutions, and that u # v. Then
(172) is surjective.

Addendum 8.9 Inspection of the proofs above shows that one can restrict to the
subspace of those Y which vanish outside some open subset of M, as long as that
subset contains all integer X —chords.

8.4 Application

We will now explain how these arguments apply to the moduli spaces RZH1:P-%(x) . It
is a classical fact that a generic choice of I, ensures that the moduli spaces of solutions
to Floer’s equation (53) are regular. With that done, let’s turn to the case of stable
weighted popsicles (S, ¢, w). Recall that in (50) we use families of almost complex
structures obtained by taking a fixed universal choice I =1g 4  and then changing it in
the way indicated by an infinitesimal deformation K = Kg 4 . The latter is restricted
by SymP—invariance as well as the asymptotic consistency requirement. Take a dense
Banach subspace X of the space of all possible choices of infinitesimal deformations,
and consider the universal moduli space, which is the space of solutions of (50) with
K considered as an additional variable. The linearization of this equation is a map

(173) K x TRITLPY S WU (* TM) —> L" (Hom® (TS, u*TM)),

whose first and third components are as in (170), and where the tangent space to
RA+1LP:W ig taken at the point corresponding to (S, ¢). The implications of asymptotic
consistency were spelled out in Remark 3.3. Inspection of that discussion shows that for
any given S the choice of K is free, subject only to the conditions of superexponential
decay over the ends. It therefore follows from Lemma 8.7 (with Y restricted to
a dense subspace of Y, which does not affect the result) that (173) is onto. By a
standard Sard—Smale argument, a generic choice of K € K will ensure that for every
(S.¢,u) € RATLP¥(x) the restriction of (173) to fixed almost complex structure,
which is an operator

(174) TRITLPY S WL *TM) —> L7 (Hom®' (TS, u*TM)),

is again onto. This is precisely the statement of Theorem 3.5, and the kernel of (174) is
the tangent space of our moduli space. The same argument, applied to the stratification
of RA+LP-W by isotropy groups of the SymP—action, proves Theorem 3.6.
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Remark 8.10 In view of the generally problematic nature of equivariant transversality,
it behoves us to explain why in this specific instance, the action of SymP does not pose
any problems. As a toy model, suppose we have a manifold B and a vector bundle
E over it, both of which come with compatible actions of a finite group I". Crucially,
suppose that for every point b € B, the isotropy group % acts trivially on Ep. In that
case, for every given n € Ej one can find an equivariant section s such that s(b) = 7,
simply by averaging. In other words, the evaluation map on the space of equivariant
sections,

(175) BxC®B,E)' — E

is a submersion. Therefore, a generic s € C%°(B, E)! is transverse to the zero-section.
Returning to our real-world case, the assumption on isotropy groups corresponds to the
fact that if (S, ¢) lies in the subset of R4+ 1P fixed by some subgroup of SymP, then
that subgroup acts trivially on the range of (174) for any map u: S — M satisfying
(144).

To conclude, we consider parametrized moduli spaces as defined in (101). As before,
we can allow variations of the associated interpolating family of almost complex
structures (taking suitable technical precautions, so that the variations form a Banach
space), leading to an infinite-dimensional universal moduli space, which will be a
smooth Banach manifold with boundary. Moreover, projection to the parameter is
a submersion from the universal moduli space to (0, 1]. This follows from Lemma
8.7 and Addendum 8.9, where the latter makes up for the restrictions imposed on the
behaviour of interpolating families for small p. As before, this implies regularity of the
actual parameter moduli space for generic choices of the interpolating family, which is
the first part of Theorem 4.5.

Now consider the product of two parametrized moduli spaces, and its universal version
(where the almost complex structures on both factors are varied in the same way).
Lemma 8.8 shows that the universal space is smooth, and that the projection map
to (0, 1]? is a submersion away from the diagonal. This implies the second part of
Theorem 4.5, and the final part is similar. Of course, these arguments strictly speaking
only apply in the range d + | F| > 2 where the underlying popsicles are stable, but the
corresponding results in ordinary Floer theory are well-known.

9 Signs

The issues involved in constructing orientations of moduli spaces in Floer type theories,
and the role played by Pin structures in the open string case, are well-understood (see
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Floer—Hofer [6], Fukaya—Oh—Ohta—Ono [13] and de Silva [28]). Therefore, we only
give an outline the general theory, and then concentrate on two phenomena where
contributions coming from different points in the moduli space cancel. The first of these
comes from the action of SymP on popsicle moduli spaces. The second one occurs in
the context of cascades, where the same boundary component appears several times,
see Example 2.10. We will also discuss the origin of the signs appearing in various of
our formulae. This mainly comes down to clarifying the conventions, and the choices
of orientations for RZ+ 1P,

9.1 Degrees and orientation spaces

Let L C M be a Lagrangian submanifold satisfying (40). One can then associate to
any x € Xy a Maslov index deg(x) € Z. This is easiest to explain if one assumes that
[x]€m (M, L) is trivial, which is when x can be filled in by a half-disc. More precisely,
we want to think of this half-disc as a map w: H — M, where H = R x[0,00) C C
is the upper half-plane, satisfying w(0H) C L and limy— oo w(se™*™") = x(¢). Such
a w comes with a linear 5—operat0r Dy, and one defines

(176) deg(x) = index Dy,.

Vanishing of 2¢; (M, L) ensures that this integer is independent of the choice of w.
In fact, one can allow higher genus surfaces as well and thereby extend the treatment
to the case where only the homology class [x] € H;(M, L) is trivial. However, the
answer in full generality is not as canonical and requires a slightly different approach.
Fix a compatible almost complex structure on M , and let

177) K2 =(AFTM)®?

be the bundle with first Chern class 2¢q(M ). Along L this bundle has a preferred
trivialization, given by taking an orthonormal basis {&;} of T'L at a point, and consid-
ering the nonzero element (£; A--- A £,)®? in the fibre of KX™2 at that point, which is
independent of the choice of basis. The vanishing of 2¢; (M, L) allows us to equip L
with a grading, which is an extension of the given trivialization to the whole of M .
The choice of grading in turn singles out, for each x € Xy, a class of 5—operat0rs on
H which are abstract generalizations of the D, introduced above. Those operators,
called orientation operators, are then used to extend (176) (one reference is Seidel [27,
Section 11], but the idea goes back to Floer [5]). Changing the homotopy class of the
grading by some ¢ € H' (M, L;Z) will affect the degree of each x by (c,[x]), which
explains why for trivial [x] one can get away without choosing a grading.

Next, we want to associate to each x € Xy, a one-dimensional real vector space oy,
the so-called orientation space. If one considers only those x that can be filled in by a
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half-disc w, and assumes additionally that H'(M;Z/2) — H'(L;Z/2) is onto, one
can simply define

(178) ox =det Dy,

to be the determinant line of the operator D,,. The additional assumption we just
made ensures that if we have another choice of half-disc W, the loop formed by the
boundaries of w and @ is contractible in L. A choice of contraction of that loop
yields an isomorphism det Dy, = det Dg; and since w,(L) = 0, that isomorphism is
independent of the specific contraction, up to multiplication with a positive constant.
The general procedure is slightly different: one chooses a Pin structure on L, and then
replaces Dy, by abstract orientation operators which are compatible with that structure
in a suitable way. Twisting the Pin structure by a real line bundle A has the effect of
changing each 0x to 0x ® Ax(0) ® Ax(1)-

We assume from now that a grading and Pin structure have been chosen, so that deg(x)
and ox are unambiguously defined for all x. Additionally, we need the following
notation. Let £ be a one-dimensional real vector space, and denote by 0¥ its two
possible orientations. For a fixed coefficient field K, the K-normalization of & is the
one-dimensional K —vector space

(179) IElk =Kot @Ko~ /Ko™ +07).

By construction, |&|k is identified with K in a way which is canonical up to sign. A
choice of identification is precisely the same as an orientation of £. Similarly, any
isomorphism between one-dimensional real vector spaces induces an isomorphism of
their K—normalizations, which is +1 if one chooses identifications of those spaces
with K.

9.2 Zero-dimensional moduli spaces

Consider a point (S, ¢, u) in a moduli space R4+1:P-W(x). If we take the linearized
operator D, associated to u, and glue it at the positive ends to orientation operators
for x1,..., xd, the outcome is an operator on H which is homotopic to an orientation
operator for x°. The gluing relation for determinant lines of 5—operat0rs therefore
yields an isomorphism

(180) oxo =det Dy ®0,a @~ ®0,1.

To be more precise, one should say that by choosing the homotopy of operators to be
compatible with the given Pin structures, one gets an isomorphism of one-dimensional
vector spaces which is canonical up to multiplication by a positive constant (the same
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interpretation should be applied to similar statements made later on). Assume from
now on that all moduli spaces are regular, as in Theorem 3.5, and also that d + | F| > 2,
which means that the underlying popsicle (S, ¢) is stable. Then, because the tangent
space to the moduli space is the kernel of an operator of the form (174), we have

(181) AP(TRIFIPY (%)) ¢ 4 = AP(TRITIP) g 4 @ det Dy,

Plugging those two relations into each other, we get an isomorphism
(182)
05.¢ut AP(TRITIPY(x)) g4 ®0a ® @041 = AP(TRITIP) g 4 @00

At this point, let’s choose an orientation of each moduli space RA+LP (which is
possible since they are contractible). This allows us to trivialize the TR term in (182).
Assume additionally that the moduli space of popsicle maps is zero-dimensional, so
that A©P(TRE+1:P:W(x)) is canonically trivial. We then get an isomorphism

(183) 0% 1 Oxa ® -+ ® 051 = 00,

Since this is unique up to multiplication by a positive constant, the induced map on
K -normalizations, denoted by |0r§d¢ /K> 1s canonically well-defined. By definition,
this is the contribution (58) of (S, ¢, u) to the algebraic count of points in our moduli

space.

Lemma 9.1 Take 0 € SymP C Sym'F |, acting on the zero-dimensional moduli space
REFTLPW(x) by permuting popsicle maps, (S, ¢, u) — (S,o(¢),u). Then, up to a
positive constant,

red

(184) 05 (). = S1gN(0) 05 -

This is clear from the construction above. Since RZ+1P projects to R4+! with fibers
R, and SymP  Sym®" acts fibrewise by the standard representation of permutations
on | F| letters, o preserves orientations if and only if ¢ is an even permutation. Hence,
if we compare (S, o (¢),u) with (S, g, u), the associated maps (180) agree, but the
trivializations det D, =~ R obtained from (181) differ by sign(o’), and so do the maps
(183).

9.3 One-dimensional moduli spaces

Consider a point in the boundary of a one-dimensional moduli space R¢+1-P-¥(x), repre-
sented by a broken map with two components (S+, @4, u+). As before, we assume sta-
bility of the underlying popsicles, which means that (S4+, ¢, u+) € RAEHLPLW (x )
with dy + |F+| > 2. Gluing them together, one gets a nearby point (S, ¢, u) in
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the interior R t1P¥(x). The gluing parameter yields a preferred local orienta-
tion for the moduli space (pointing towards the boundary), hence an isomorphism
A©P(TRATLPY(x)) = R at (S, ¢,u). With that in mind, and an additional choice an
orientation of R¢+1P, one can turn 0S,4,4 Into a map or§?¢’ , Of the same form as in
(183). The elementary fact that boundary points come in pairs implies that the sum of
the normalizations |0red 4K overall (Si,¢ 4, uy) vanishes. Of course, this is not
strictly speaking true, since we are ignoring the case where a Floer trajectory bubbles

off, but we will make up for that omission later (Section 9.5).

On the other hand, we shall presently see that org"j‘b’ , can be decomposed as follows:

(185)
O0xd @+ & 041
0,0 ® Q0 ita ® A“’p(TRd*"'l’p*)Sﬂd,_ ® Oxnew ® 04i—1 ®+++ ® 041
= AP(TR-TIP)g 4 ®0d® @ 0xiw @+ ® 01
~ Atop(TRd++l,p+)S+,¢+ ® Atop(ngd—-i-l,p_)S_"p_ ® 0,0
~ Atop(TiRd-i-l,p)S’qs ® 0.0

~/
= 0,0

The first step consists of applying os_ ¢ _ ,_, keeping in mind that RA-+1p—W—(x )
is necessarily of dimension zero; here, x"" = x0 = xi is the X —chord at the ends
where our two components are glued together. The second step is just a permutation
of tensor factors (with suitable Koszul signs given by dimensions and degrees; this is
natural, since each factor encodes orientations of a vector space). Thirdly, we apply
05, .¢,.u, > and exchange the first two factors of the resulting expression. Next, recall
that (S, @) is a point of R¢T1P close to the boundary stratum to which the broken
popsicle (S+, ¢ ) belongs. Using any collar neighbourhood of that stratum, we get
an isomorphism

(186) AtOp(TRd+1’p)S’¢ ~ AtOp(TRd++1’p+)S+,¢+ ®At0p(TRd7+l’p7)Si’¢_,

which is used in the fourth step in (185). The fifth and last one is just to put in the
chosen orientation of RYT1:P After unwinding the definition of (182), the fact that the
sequence of operations in Equation (185) agrees with the original definition of 0r§"1¢’ u
reduces to applying the gluing isomorphism det D, = det D, ® det D,_ and using

its associativity properties.

From now on, we always assume that SymP is trivial, and accordingly think of F C
{1,...,d} asin Section 3.6. The same property then holds for P, but not necessarily
for p+, compare Examples 2.7(ii). Given o € SymP+, let (S ¢ 1) be the element
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of RA+1LP-W(x) obtained by gluing together (S+.0(py),uq)and (S—,¢_,u_). We
can see the effect of o on (185) by looking at the diagram of isomorphisms
(187)

O0xd &+ Q041

TN

Atop(TRd++1,p+)(S+’¢+) AtOP(TRd++1’p+)(s+’a(¢+))

A (Do) ®id ® id
® AtOp(ngd_—{_l’p_)(S_,tl),) ®AtOP(TRd_+1’p—)(S_,¢7)

® 0,0 ® 00
ACP(TRIHIP) (5 4) ® 0,0 ACP(TRIFIP) 5 5 @ oo

\ 5 /

Going down the left or right sides yields the contributions of (S, ¢, ) and (§ , 6, u)
to the total count of boundary points, respectively. The upper triangle of the diagram
commutes. The lower pentagon depends only on the orientations of the various popsicle
moduli spaces, and can be described as follows. On the left side, we compare some
orientation of the boundary stratum (186) with the chosen orientation of the interior
RA+1LP . On the right hand side we do the same, but where the orientation of the
boundary stratum is changed by the action of o, so the difference is 51gn(0) In
particular, whenever sign(c) = —1, the contributions of (S, ¢, u) and (S q) ) cancel
out.

With that out of the way, we turn to the case where SymP* are both trivial, whose
combinatorics is captured by the notion of admissible cut (Definition 3.8). In that
case, the outcome of our discussion can be summarized as follows. Given a choice
of orientation of all the popsicle moduli spaces, let (—1)2 be the sign measuring the
difference between the product orientation of (186) and that of R4+1P | Then what
(185) says is that

0r§d¢ L= ( 1)§ Ored s
(188) § = A+ (dim Rd—“’F—)(dim de++1,F+)

+ (dim RFTLF-) (deg x' T + .- + deg x9).

o (id®H ' @o! , |, ®id®),

_U—
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9.4 Explicit orientations

So far, the choice of orientations of the popsicle moduli spaces has been arbitrary. For
those cases where SymP is nontrivial, there is no need to restrict that freedom, since
their contributions cancel out anyway. In contrast, for the cases with trivial symmetry,
we do want to make an explicit choice, so as to get a concrete expression for A in
(188).

The standard way of choosing an orientation of RA+1 s as follows. For every pointed
disc S there is a unique isomorphism S =~ D which takes 0, ¢1,%t0—1,—i,+1€dS,
and hence all other points at infinity ¢ k to points in the upper semicircle. This yields
an identification

(189) RIFV x{0<ty <+ <ty_o<m}CRI2,

and one pulls back the standard orientation from the right hand side. Next, consider the
moduli spaces RYt1F for d > 2 and F C {1,...,d}. These come with diffeomor-
phisms to RAH  RF | obtained by splitting the forgetful map (14). The splitting is
not canonical, but the induced orientation is well-defined (to make things precise, we
should say that the identification of the fibre of the forgetful map with R¥ is such that
increasing the coordinates has the effect of moving the sprinkles away from (% = —o0;
moreover, the orientation of R¥" is the one obtained by ordering the elements of F
in the obvious way). We extend this to the case where d = 1, F = {1} by taking the
opposite of the tautological orientation of R*#1} = point. An elementary computation
shows that with these conventions, the orientation difference associated to a given cut
is

A=d_dy+d_i+i+1

190
(150 I Flde o+ g ko) € Fyx Fe o) > (ko))

After substituting this, as well as the obvious formulae for the dimensions of the moduli
spaces, into (188), one gets signs as originally stated in (62). In principle, any other
choice of orientation is equally viable; the only difference is that the sign in (75) would
have to be adjusted accordingly, so as to recover the As,—associativity relations in the
desired form (78).

9.5 The unstable case
We will now describe a slightly different version of the formalism above, for d =1,

which is more easily extended to F = &. Take (S, ¢, 1) € R>P¥(x). As in Section 4.8
we identify S = Z, so that (¢, u) are maps defined on Z, determined up to translation.

Geometry & Topology, Volume 14 (2010)



An open string analogue of Viterbo functoriality 713

In that case, the tangent space of the moduli space can be identified with a kernel of an
operator

(191) REx WU w*TM) — Rx L™ (u*TM).

Here, increasing any of the entries in o = {0y} € R¥ has the effect of moving the
corresponding sprinkle away from —oo, while leaving the map u constant. The second
component of (191) is the linearization of (50), with the standard trivialization of
T Z taken into account. The first component is the L? pairing with the infinitesimal
generator of the translational R—action, concretely

REx WU u*TM) — R,
From (191) we get an isomorphism

(193) APP(TRZPY(x) @ 0,1 =2 RY @ AP(RF) ®0,0.

(192)

If we choose an ordering of F, hence an orientation of R¥, the right hand side of
(193) can be identified with o,0. Using that, one then associates to any point in a
zero-dimensional moduli space a map ozeZd’ o) - Ox1 > 0x0. In the special case where

|F| =1, (191) takes on the form

_ldR (83‘“")
(194) (Du(asu) D, )

and one can deform it through invertible operators to —idgr & D,,. In this way, one
sees that the sign contribution here agrees with the convention in Section 9.4.

Now consider a point on the boundary of a one-dimensional space R?*P*¥(x). In parallel
with Section 9.3 we denote the components of that point by (Z, ¢ 4., u+), and a nearby
point in the interior by (Z, ¢, u). The preferred orientation at the latter point, going
towards the boundary, determines a map OE? ¢.u)- Ox! = 0x0. A gluing argument as

in (185) shows that

red __ (__1\# red red
(195) 0Zpa) = TV 0Z g, )%z u )y

#=[Fp|+1+{(f. D) e Fpa xF_: fi> [}

In this formula, the first summand comes from swapping the AP(RF+) factor with
an adjacent RV, the second one arises because the standard generator of RY moves
the popsicle to the right, whereas in the gluing process, going to the boundary moves
popsicles in opposite ways, and the last one comes from our chosen ordering of F and
the induced orderings of the subsets F1 . Of course, in practice only the case |F| =1
is important, in which case the sign is just (—l)lF ~I. This explains why in the two
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terms in Examples 3.9(i) appear with opposite signs, thereby justifying the relevant
case of (62). A similar argument explains the other instances of (61) where one of the

two operations involved is m 2.

9.6 Parametrized moduli spaces

We now consider the parametrized moduli spaces and moduli spaces of cascades maps,
always assuming that d = 1. The notation will generally follow that from Section 4.8.
In the parametrized case, variations of the parameter o have to be included into the
operator whose kernel describes the tangent space to the moduli space. Hence, the
analogue of (193) for a point (p, Z, ¢, u) € P>F¥(x) is a canonical isomorphism

(196) AP(TPEEYx) R0, = RORY @ AP(RF) ® 0,0,
where the R factor is the tangent space to the parameter space (0, 1].

Now suppose that we have chosen an ordering of [, as well as identifications 0,1 = R,
0,0 = R. After trivializing the R and R factors in (196) in the standard way, we then
simply get an orientation of the parametrized moduli space. Consider a codimension
one boundary stratum in the partial compactification P F+¥(x), which is a fibre product

(197) TZ’F+’W+ (XO, xneW) X(O,l] TZ,F_,W_ (xnew’ Xl).

After taking the orderings of F. induced from the one on F, and choosing some
identification oxnw =2 R, one gets orientations of both factors in (197), hence an
orientation of the fibre product. Note that since oxnw appears in either factor, its
trivialization does not really affect the fibre product orientation.

Remark 9.2 To explain the convention here, consider Euclidean spaces R+ with
coordinates ¢4+ . Take projections to the first coordinate, 74 1: R"+ — R. Then, the

diffeomorphism
R+ XR R"* —» Rn.;_-i—n_—l’
(198)
(t4 t) = (ty ooty 1)

takes the fibre product orientation to the standard orientation of R”++”==1 In particu-
lar, if we consider the fibre product as the boundary of the open set {(t4,7—) : 141 <
1} C R™ xR"-, the induced boundary orientation agrees with the fibre product
orientation.

Again arguing in the style of (185), one finds the following:
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Lemma 9.3 The boundary orientation of the stratum (197), which is induced from
that of P2-¥-Y(x), differs from the fibre product orientation by (—1)2 , where

(199) A= [{(f4, /2) € Fxx FZC FXF : f1> [C}|+|F-|(deg(x"") —deg(x")).

Now we turn to the moduli spaces of cascade maps Q2F¥(x) from Section 4.8. Recall
that a point in such a space consists of a finite chain of / > 1 components, each of
which is of the form (109). As before, we choose an ordering of F', equip the subsets
F; with the induced orderings, and consider the associated isomorphisms

(200) AtOP(TTZ’Fj ’(wj_l’wj)(xj—h xj) X OXj N OXj—l .

Now Q% F:%(x) is locally equal to the product of the ?Z’Ff’(wf—l’wf)(xj_l ,Xj). Hence,
by composing all the (200), one gets an isomorphism A©°P(7°Q%F:¥(x)) ® 041 = 0,0.
We twist this isomorphism by (—1)*, where

201) *= {(f+. ) € Fjx Fr CFXF : j>k, f> [}

+ ) | Fj| (deg(xj—1) —deg(xo)) + .
J

red
and denote the outcome by o (0 Z.b, )}

by swapping two elements. If both of these lie in the same subset Fj, the associated

isomorphism (200) changes sign by definition, while in the other case, each component

still gives rise to the same map, but x changes. In both cases, the result is that the sign
red . . . . . .

of o (0. Z.$, )} gets flipped, which explains the cancellations which result in Lemma

4.11

Suppose that we change the ordering of F

We now concentrate on the case where | F| < 1, when the choice of ordering of F,
hence also the first line in (201), become trivial. For simplicity, assume as before that
we have trivialized 0,0 and 0,1, so that the moduli spaces of cascade maps connecting
these two chords are canonically oriented. Suppose that Q%-F¥(x) is one-dimensional,
and consider a boundary point in its partial compactification, where two components
pj—1 = pj occur for the same parameter value. As in the model case of Example
2.10, such points can arise in two different ways: either E = &, which means that
equality of parameter values is achieved simply as a degenerate limiting case of the
usual inequality pj_1 < p;; or else E = E, which means that our boundary point is the
limit of a sequence in which one component is divided into two parts by (the standard
Floer-theoretic) bubbling. In the first case, the orientation of the boundary point is just
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the fibre product orientation of Q2F+¥+(x ) X(0,1] xQ2-F=W—(x_), where

F_i_:FlU...U...F}._l’ F—:FjU"'UF],
Wy = (wO’ wneW)’ wW_ = (wnew’ wl)’
(202) _ 0 _new _ new 1
X+_(x’x )a X_—(X ,X)
with w = w® —|Fy| =w' +|F_|, x™ =x;.

Let’s temporarily forget the signs (201) and use the untwisted orientations of the moduli
spaces of cascade maps. Then, Lemma 9.3 would tell us that the boundary orientation in
the first and second cases differ from each other by | F_|(deg(x"¢" —deg(x?)). Turning
the twist by (201) back on cancels out that difference, up to an overall —1 which comes
from the difference in / (obvious, since bubbling raises the number of components by
one). Hence, we have shown that with the conventions used in defining 02"& 2.8 u)))°
the contributions from the two boundary points to the standard counting argument will
vanish, as claimed in Section 4.8.

The remaining boundary points of Q% F+¥(x) are those where p; = 1. In we take j =1
and use notation as in (202), the boundary orientation differs from that of the product
Q% F+ W+ (x, ) x RZF-¥—(x_) by (—1)*, where the sign comes from (201) and is

(203) x = |F_|(deg(x"") — deg(x®)) + 1.

The other relevant geometric phenomenon are the ends of the partial compactification,
which are modelled on (0, §] x R%F+W+ (x)i" x Q2-F=¥~(x_) with data as in (202)
for j = 1. In this case, pointing towards infinity along such an end corresponds to
decreasing the parameter. Hence, if we cut off the end, the boundary orientation differs
from the product orientation by (—1)**!. Specializing to F = @ and F = {1}, and
taking into account the fact that the component of each boundary point belong to
zero-dimensional moduli spaces, then yields (113) and (116), respectively.
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