
RESEARCH Open Access

An open virtual multi-services networking
architecture for the future internet
May El Barachi1*, Nadjia Kara2, Sleiman Rabah3 and Mathieu Forgues4

Abstract

Network virtualization is considered as a promising way to overcome the limitations and fight the gradual ossification

of the current Internet infrastructure. The network virtualization concept consists in the dynamic creation of

several co-existing logical network instances (or virtual networks) over a shared physical network infrastructure.

We have previously proposed a service-oriented hierarchical business model for virtual networking environments.

This model promotes the idea of network as a service, by considering the functionalities offered by different types

of network resources as services of different levels – services that can be dynamically discovered, used, and composed.

In this paper, we propose an open, virtual, multi-services networking architecture enabling the realization of our business

model. We also demonstrate the operation of our architecture using a virtualized QoS-enabled VoIP scenario. Moreover,

virtual routing and control level performance was evaluated using proof-of-concept prototyping. Several important

findings were made in the course of this work; one is that service-oriented concepts can be used to build open, flexible,

and collaborative virtual networking environments. Another finding is that some of the existing open source virtual

routing solutions such as Vyatta are only suitable for building small to medium size virtual networking infrastructures.

Keywords: Network virtualization; Future Internet; Service-oriented architecture; Virtual routing; Vyatta

1 Introduction
The concept of virtualization consists in the decoupling

of physical resources from the service-level view, by add-

ing an abstract layer (software), in between. The imple-

mentation of this concept gives the end-user the illusion

of direct interaction with the physical resources, while

allowing efficient utilization of resources/infrastructures

and enhanced flexibility. Different forms of virtualization

have been proposed, such as storage virtualization, server

virtualization, application virtualization and more recently

network virtualization. Storage virtualization refers to the

separation of physical disk space from the logical assign-

ment of that space, using various techniques (e.g. RAID

and SAN). Server virtualization consists in the partition-

ing of the resources of a single physical machine into mul-

tiple execution environments (or virtual machines), each

running its own operating system and server applications.

Application virtualization refers to the isolation of a cer-

tain application from the operating system on which it

runs, in order to achieve OS-independence and limit the

effect of applications incompatibilities.

Network virtualization is an emerging concept that ap-

plies virtualization to entire networks. The basic idea be-

hind network virtualization consists in the dynamic

creation of several co-existing logical network instances

(or virtual networks) over a shared physical network in-

frastructure [1]. Unlike Virtual Private Networks (VPNs)

[2] that are limited to traffic isolation capabilities and do

not allow customization nor administrative control, vir-

tual networks (VNets) can potentially be built according

to different design criteria and operated as service tai-

lored networks.

In the Internet domain, network virtualization is con-

sidered as a promising solution for the “Internet ossifica-

tion” problem – A condition by which the sheer size and

scope of the Internet architecture renders the introduc-

tion and deployment of new technologies very difficult

due to the high cost of migration and the difficulty of

achieving wide consensus among the many involved

stakeholders [3]. By enabling a logical segmentation of

the physical Internet infrastructure and the co-existence

of heterogeneous virtual networking architectures on

* Correspondence: may.elbarachi@zu.ac.ae
1College of Technological Innovation, Zayed University, Khalifa City B, P.O.

Box 144534, Abu Dhabi, United Arab Emirates

Full list of author information is available at the end of the article

© 2015 El Barachi et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

El Barachi et al. Journal of Internet Services and Applications (2015) 6:3

DOI 10.1186/s13174-015-0019-3

mailto:may.elbarachi@zu.ac.ae
http://creativecommons.org/licenses/by/4.0

top of it, network virtualization is often seen as a corner-

stone of the future Internet architecture [4].

Beyond the Internet’s context, there are several im-

portant motivations behind the network virtualization

concept. One of these motivations is the cost effective

sharing of physical networking resources, by partitioning

the resources of an existing infrastructure into slices and

the allocation of these slices to different VNets (operated

by different service providers). Another motivation is the

potential for having customizable and service tailored

networking solutions via the addition of new technolo-

gies or customized versions of existing technologies, in

the virtualization layer.

Aiming to contribute to a future service-tailored

Internet architecture, the main goal of this work is to

propose and validate an open, service-oriented network

virtualization platform for the future Internet. Our plat-

form (dubbed the Open Virtual Playground) promotes

the idea of “network as a service” by defining different

levels of services to which networking resources are

mapped, and which can be dynamically discovered,

used, and composed. It relies on a novel service-

oriented hierarchical business model [5,6] that intro-

duces new business roles, and proposes the concept of

vertical hierarchy between virtual network providers, as

well as the concept of service building block and ser-

vice reuse and composition.

The contributions of our work are of three folds: 1) It

proposed a fine-grained, service oriented network

virtualization architecture which encompasses the con-

trol functions needed for the instantiation, control, and

management of virtual networks; 2) It details a concrete

QoS-enabled VoIP scenario showcasing the architec-

ture’s operations, which include the REST-based inter-

actions for the virtual networks’ instantiation phase,

and the SIP/COPS/MEGACO based interactions for

the service invocation and usage phase; and 3) It dis-

cusses the implementation and performance evaluation

of two prototypes related to the virtual data plane and

the virtual control plane operation.

The rest of this paper is organized as follows: In section

(The network virtualization concept: principles, goals, and

motivating scenarios), we start with some background in-

formation about network virtualization and present two

concrete use cases that could be enabled by this technol-

ogy. In section (The open virtual playground architecture),

we present an overview of our previously proposed

business model, discuss the different components of our

proposed Open Virtual Playground architecture, and illus-

trate its operation using a virtualized QoS-enabled VoIP

scenario. This is followed by prototype-based performance

evaluations, in section (Solution validation). We end the

paper with a discussion of related work, before drawing

our conclusions.

2 The network virtualization concept: principles,
goals, and motivating scenarios
A virtual networking environment can be seen as a dy-

namic and collaborative environment, in which a large

pool of virtualized networking resources can be offered

and leased on demand. In such an environment, a num-

ber of logical network instances (virtual networks) co-

exist over a shared physical network infrastructure. A

virtual network essentially consists of a set of virtual

nodes connected by virtual links, and forming a virtual

topology. This topology is a subset of the underlying

physical topology, in which each virtual node (guest) is

hosted on a certain physical node (host) and each virtual

link is established over a physical path. In this environ-

ment, each virtual network is operated by a single entity,

and virtual networks are logically isolated from each

other. Several primitive forms of virtual networks have been

proposed in the past, including virtual private networks

(VPNs), overlay networks, and active/programmable net-

works. All these forms limit virtualization to a certain layer

(e.g. application layer for overlay networks) and do not offer

full administrative control and customization capabilities.

From an architectural perspective, network virtualization

promotes several design goals [1], the most prominent ones

being: the coexistence of multiple VNets (operated by differ-

ent providers) within the same environment; recursion and

inheritance between VNets allowing the nesting/creation of

a VNet on top of another VNet (thus forming a hierarchy);

flexibility by allowing a provider to implement an arbitrary

network topology, routing and forwarding functionalities

and customized control protocols in a VNet; manageability

allowing a provider to have full administrative control over a

VNet; isolation between co-existing VNets to improve fault-

tolerance, security and privacy; and heterogeneity of VNets

as well as the physical infrastructures on which they rely.

There are several important motivations behind the

network virtualization concept, including: cost-effective

sharing of physical networking resources; customizable

networking solutions; and the convergence of existing net-

work infrastructures. Furthermore, several challenges

must be addressed to enable the realization of this con-

cept. Examples of these challenges include: the definition

of standard interfaces between the different levels of the

virtual networking hierarchy; the definition of control

functions related to the instantiation and configuration

of virtual nodes/links; ensuring scalability at the level of

virtual nodes/links; enabling the dynamic discovery of

available physical/virtual resources; the definition of effi-

cient global resource management strategies; and the def-

inition of suitable business models and charging schemes

for virtual environments.

To illustrate the potential of the network virtualization

concept, we now present two concrete use cases that

could be enabled in virtual networking environments.

El Barachi et al. Journal of Internet Services and Applications (2015) 6:3 Page 2 of 22

In order to define these use cases, we first analyzed

the trends and proposed scenarios for future communi-

cation networks, such as the ones presented in the

4Ward project documents [7]. Afterwards, we focused

on examining the limitations of the current Internet and

on defining scenarios that would offer appealing services

while addressing those limitations via virtualization.

Among the known areas of weakness of the current

Internet architecture requiring innovation, we mention:

stronger security; better mobility; more flexible routing;

enhanced reliability; and better quality of service guaran-

tees [8]. As for the categories of services studied, we

chose the following categories: 1) VoIP as it represents

one of the most important categories of applications of-

fered in the current Internet; and 2) Context-aware

smart applications (i.e. applications that are aware of the

context surrounding them and capable of dynamically

adapting to changing situations) as they are seen as one

of the “killer” applications of the future.

2.1 VoIP service with two-dimensional QoS scheme

IP telephony is one of the important and popular appli-

cation areas supported by the Internet. However, one of

the main challenges faced by IP telephony is the inability

to offer adequate quality of service guarantees to users,

due to the inherent best effort nature of the current

Internet architecture and the high cost of migration to

new QoS technologies in a network as large as the

Internet.

Our first use case illustrates how new QoS schemes

could be introduced in existing networking infrastructures

using the network virtualization concept. In this use case,

a virtualized VoIP service with a two-dimensional QoS

scheme is realized as follows: At the lowest level, we find

the physical networking infrastructure (owned and man-

aged by a Physical Infrastructure Provider), on top of

which a first VNet (VN1) is instantiated and operated by a

Virtual Infrastructure Provider. The latter deploys in VN1

a new QoS scheme enabling the differentiation between

different classes of traffic (e.g. conversational, streaming,

interactive, and background traffic classes), based on their

resources requirements. Building on VN1 capabilities, a

second VNet (VN2) is instantiated and deployed by a ser-

vice provider offering sophisticated VoIP services and a

session prioritization scheme enabling the distinction be-

tween sessions based on their level of importance from

the user’s perspective. This scheme, which constitutes a

second QoS dimension, would enable the user to choose

the appropriate class for each call (e.g. silver, gold, and

platinum) based on its level of importance. We note that

the value added in this scenario consists in the support of

a two-dimensional QoS scheme and the support of so-

phisticated VoIP services. This value was added via the in-

stantiated virtualization layers, without affecting the

physical infrastructure, thus providing a smooth path for

migration.

2.2 Context-aware value added services

Context-awareness is defined as the ability to use con-

textual (or situational) information to provide relevant

information and/or services to the user [9]. Contextual

information is usually collected using wireless sensor

networks (WSNs).

Context-aware applications are an emerging category

of intelligent applications that offer personalized services

by adapting their behavior according to the users’ needs

and changing situation (e.g. personalized healthcare ap-

plications and smart shopping applications). These appli-

cations are seen as one of the “killer” applications of the

future. The following scenario illustrates how such appli-

cations could be supported in a virtualized networking

environment.

In this scenario, we find at the lowest level the PIPs,

some of which are managing regular communication in-

frastructures, while others manage various types of

WSNs used for the collection of different types of con-

textual information (e.g. spatial, physiological, and envir-

onmental data). On the top of these WSNs, we find

VN1 that acts as a specialized network dedicated for the

management of sensory information. Then, at the third

level, we find a second VNet (VN2) leveraging the infor-

mation management capabilities of VN1 as well as the

communication capabilities of physical communication

network to offer context-aware value added services to

end users.

3 The open virtual playground architecture
In this section, we give an overview of our previously

proposed network virtualization business model, and

then present the Open Virtual Playground architecture.

3.1 Overview of proposed business model

Our previously proposed business model [6] is a

service- oriented hierarchical model in which different

levels of services (offered by various players) can be dy-

namically discovered, used, and composed. Figure 1 de-

picts our proposed model, in which four levels of

services are defined, namely: 1) Essential services con-

stituting mandatory services needed for the basic oper-

ation of the network (i.e. routing/transport services); 2)

Service enablers consisting of the common functions

needed to support the operation of end-user services

(e.g. session/subscription management, charging, secur-

ity, and QoS management); 3) Service building blocks

acting as elementary services that can be used/com-

bined to form more complex services (e.g. presence and

call control); and 4) End user services constituting the

value-added services offered to users.

El Barachi et al. Journal of Internet Services and Applications (2015) 6:3 Page 3 of 22

Our business model defines five business roles,

namely: 1) The Physical Infrastructure Provider (PIP)

that owns and manages a physical network infrastruc-

ture and can partition its resources using some

virtualization technology. The services offered by the

PIP are essential bearer services. 2) The Service Pro-

vider (SP) that has a business agreement with the sub-

scriber and offers value added services, which could be

simple or composite (i.e. formed by combining service

building blocks); 3) The Virtual Infrastructure Provider

(VIP) that finds and aggregates virtual resources (of-

fered by one or more PIPs), deploys any protocols/tech-

nologies in the instantiated VNet, and operates it as a

native network. The VIP supports SPs or other VIPs

with service enablers and service building blocks and

has no direct business agreement with consumers; We

envision three potential variations of the VIP role: a) A

VIP that adds value in the virtualization layer by intro-

ducing a new technology or customizing existing proto-

cols – the resulting VNet can be used by a SP to offer

VAS running on it or resold to another VIP that lever-

ages its capabilities to form another VNet on top of it

(i.e. forming a vertical hierarchy); b) A VIP that uses

virtualization to achieve interworking between hetero-

geneous physical infrastructures – the result being a

unified network for others to use; and c) A VIP that im-

plements more advanced services in the virtual layer to

offer application building blocks that can be used by

service providers to compose new value added services;

4) The Consumer who acts as the subscriber and the

end user of value added services; and 5) The Services

and Resources Registry (SRR) acting as broker by pro-

viding information to find other parties and the ser-

vices/resources they offer. This functional separation of

roles enables the creation of an open and collaborative

networking environment in which a rich set of re-

sources and services are offered.

3.2 The proposed architecture

In this section, we present our proposed open virtual

multi-services networking architecture, named the

Open Virtual Playground. This architecture was de-

signed to be open to different entities/roles/players and

also open to change (i.e. dynamic and flexible), in

addition to relying on virtualization technology as a

central concept in its operation, and offering a play-

ground area for multi-players to interact, collaborate,

and offer different services.

We start by presenting the overall architecture and its

related functional entities and interfaces, and then

present an illustrative session management scenario de-

tailing its operation. The architecture was designed

based on the defined business roles and the proposed

functional split between them.

3.2.1 Functional entities and interfaces

As shown in Figure 2, the Open Virtual Playground

architecture we are proposing is a layered architecture

that introduces data and control planes at each of the

three levels of the hierarchy. While the data plane pro-

vides essential data transportation functionality, the con-

trol plane encompasses all the control and management

functions needed for the provisioning of different levels

of services.

In order to realize the three main roles defined in our

business model (i.e. PIP, VIP, and SP) and achieve the

proposed functional split between them, three hierarch-

ical levels are defined in our architecture, namely: 1)

The physical network level (managed by the PIP); 2) the

first virtual network level (managed by a VIP); and 3) the

second virtual network level (managed by a SP). The

consumer role accesses the services offered by the SP by

interacting with the lowest level of the hierarchy (i.e. the

physical network), while the SRR (i.e. the broker role) is

Figure 1 Proposed network virtualization business model.

El Barachi et al. Journal of Internet Services and Applications (2015) 6:3 Page 4 of 22

Figure 2 Proposed open virtual playground architecture.

El Barachi et al. Journal of Internet Services and Applications (2015) 6:3 Page 5 of 22

a vertical role that interacts with all three levels of the

hierarchy.

Similar to all business models, one entity could play

several business roles at the same time. For instance a

VIP could also play the role of a SP (i.e. offering both

virtual topologies and value added services to end users).

This situation would result in a two-tier architecture,

encompassing two hierarchical levels (i.e. the physical

network level and one virtual network level). While such

model involves less interactions, it lacks the flexibility,

openness, and role specialization achieved by the three-

tier architectural model. In fact, maintaining the VIP as

a separate entity offers the level of abstraction and separ-

ation between PIPs and SPs required to build virtual net-

works that are customized for particular service and

user requirements. Furthermore, using a VIP as inter-

mediary role simplifies the negotiation and virtual re-

source allocation process, in cases involving multiple

SPs and multiple PIPs [10]. This process becomes much

more complex when those SPs are directly interacting

with multiple PIPs, in a fully distributed fashion (i.e.

forming a full mesh topology). For the rest of this paper,

we assume that each role is played by a separate entity,

and focus on the three-tier hierarchical model which is

described below.

At the Physical Network Level, we find the physical data

plane containing regular and virtual routers connected to

form the physical network infrastructure, as well as the

physical control plane responsible for the following func-

tions: Resource publication, resource negotiation, resource

allocation and provisioning, and resource management.

These functions are achieved using the following entities:

The Services and resources registry (SRR) used for the

publication/discovery of information about available re-

sources; the Context information base (CIB) used for the

management of contextual information related to the

physical network (e.g. resources status and security level);

the Subscription Registry containing all clients’ subscrip-

tion/authorization/authentication information; the AAA

function using this information to authenticate, authorize,

and charge VIPs for network resources utilization; the vir-

tual resources provisioning function responsible for the

negotiation of resources with VIPs, the allocation of vir-

tual resources and the instantiation of virtual topologies;

and the virtual resources management function respon-

sible for the dynamic resource (re)allocation to VNets tak-

ing into consideration the resources status and the needs

of VNets.

At the First Virtual Network Level, we find a virtual

data plane encompassing a set of virtual nodes con-

nected by virtual links (essentially a subset of the under-

lying physical topology), as well as virtual control plane

1. This latter encompasses the following functions: a set

of service enablers and service building blocks, service

publication, resource negotiation, resource discovery/se-

lection, and service deployment/management. These

functions are carried by the following entities: a SRR, a

CIB, and a Sub. Reg. (playing similar roles to their peer

entities in the lower layer, but in relation to VNet1 op-

eration); a number of entities offering common support

functions (e.g. session control, media handling, and inter-

working); a number of service building blocks (e.g. pres-

ence and conferencing); modules offering a customization

of existing protocols (e.g. a content-based routing adapter

and a multi-homing adapter); a virtual resources negoti-

ation function used for the discovery and negotiation of

resources (with PIP(s)) and the composition/instantiation

of the VNet topology; a virtual resources control function

responsible for the deployment of protocols and the oper-

ation of the VNet; and a virtual resources provisioning

function used for the negotiation of virtual resources with

other VIPs or SPs wishing to add another level in the

hierarchy.

Similarly, the Second Virtual Network Level consists of

a virtual data plane and a virtual control plane. The lat-

ter is responsible for the following: a set of end user ser-

vices, end user service publication, resource negotiation,

resource discovery/selection, service deployment/man-

agement, and service composition. We should mention

that the SRR and the CIB repositories are distributed

across all the levels of the hierarchy and a cross-layered

communication between them enables the formation/

maintenance of a global view of the physical/virtual net-

works contexts and available services/resources.

3.2.2 Illustrative session management scenario

To illustrate our architecture’s operation, we now describe

how the QoS-enabled VoIP scenario presented in section

(VoIP service with two-dimensional QoS scheme) could

be realized using it.

In this scenario, we find the following roles: a PIP

managing the infrastructure offering communication

capabilities; a VIP instantiating VN1 to offer QoS con-

trol, session control, and media handling as service en-

ablers; and a SP instantiating VN2 to offer the VoIP

value-added service, implementing a second QoS dimen-

sion (silver, gold, platinum), to consumers. Figure 3 illus-

trates the QoS-enabled VoIP service composition

diagram, in terms of lower level sub-services, and how

those sub-services are mapped onto physical networking

resources.

As shown in Figures 3 and 4, the QoS-enabled VoIP

scenario is divided into two phases: 1) the virtual net-

works’ instantiation phase; and 2) the end-user service

invocation and usage phase. Figure 4 depicts the virtual

networks’ instantiation phase that was realized using

REST-based interactions between the different entities.

REST is a network architectural style for distributed

El Barachi et al. Journal of Internet Services and Applications (2015) 6:3 Page 6 of 22

hypermedia systems. There are several motivations be-

hind our choice of REST-based interfaces, namely: its re-

liance on existing well known Web standards opens the

door for various players to adopt such unified interfaces,

for which the necessary infrastructure has already be-

come pervasive; the fact that REST is simple, light-

weight, and easy to develop; and the fact that it is

resource-oriented and supports a wide range of resource

description mechanisms.

Figure 5 illustrates the end-user service invocation and

usage phase of the scenario. This phase was realized

using three main protocols: SIP used for session control;

COPS used for the exchange of policy-based resource al-

location decisions; and MEGACO/H.248 used for the

control of media handling nodes. We chose these proto-

cols because of their extensibility and the fact that they

provided the needed functionalities and are among the

protocols supported in next generation networks.

As shown in Figure 4, the scenario starts when a PIP

publishes (through its VRPF1) a description of the re-

sources (step 1) it offers as well as their related con-

straints in a document that is used to populate the

broker, using a POST request. In this request, the bro-

ker’s resource creation service URI is specified. Once the

resources’ descriptions are created, a 200 OK message

(step 2) is sent back to the PIP. In turn, the VIP (wishing

to create VN1) sends a PIP discovery request (step 3)

containing a document describing the resources to be

leased, their desired availability, cost, and constraints.

This request is sent using a GET message to the broker,

which replies back (step 4) with a list of available pro-

viders that can satisfy the specified requirements. Upon

receiving the PIPs list, the best PIP is selected by the

VIP, using a selection/matching algorithm (step 5).

Similarity-based matching algorithms such as the ones

proposed in [11,12] can be used in this step. The VIP

then sends a resource negotiation request (step 6), speci-

fying the requested essential services and their con-

straints, to the selected PIP. After checking resources

availability (step 7), the PIP replies with a resource nego-

tiation response (step 8), specifying the offered resources

and accepted constraints to the VIP, which concludes

the negotiation process with a resource negotiation ac-

knowledgement (step 9) confirming the negotiated re-

sources and constraints. At this stage, the PIP carries a

resource allocation and virtual topology instantiation

process for VN1 (step 10), and sends an acknowledge-

ment (step 11) of the topology instantiation to the VIP’s

VRNF, which is propagated to the VIP’s VRCF (step 12).

Afterwards, the VIP asks the PIP to deploy and test the

specified service enablers (step 13), and gets a 200 OK

message as reply (steps 15, 16). Once the service en-

ablers are deployed and tested, the VIP’s VRPF asks the

broker to publish a description of the service enablers

and their constraints (step 17), which in case of success

results in a 200 OK message (step 18).

Figure 3 QoS-enabled VoIP service composition diagram.

El Barachi et al. Journal of Internet Services and Applications (2015) 6:3 Page 7 of 22

Figure 4 Illustrative session management scenario - Virtual Networks’ instantiation phase.

El Barachi et al. Journal of Internet Services and Applications (2015) 6:3 Page 8 of 22

Meanwhile, a SP (wishing to create VN2) sends (using

its VRNF) the broker a VIP discovery request (step 19)

containing a document describing the service enablers

to be used, their desired availability, cost, and con-

straints. The broker replies with a list of VIPs offering

service enablers that comply with the request (step 20).

Later, in step 21, the SP selects the best VIP to which he

submits a service negotiation request (step 22). In steps

23 to 35, interactions related to service enablers’ usage

negotiation, VN2 topology instantiation, and the deploy-

ment of the QoS-enabled VoIP end user service offered

by the SP are carried, similarly to the VIP::VN1 case.

The main difference lays in the message parameters that

refer to a different type of service in this case. When the

Figure 5 Illustrative session management scenario - End user service invocation and usage phase.

El Barachi et al. Journal of Internet Services and Applications (2015) 6:3 Page 9 of 22

end user service is successfully deployed and tested, the

SP sends its description to the broker (steps 36, 37). This

description is then discovered (steps 38, 39) by the con-

sumer that uses it to select the best SP (step 40).

Afterwards, the consumer (end-user 1) binds to the se-

lected SP and invokes the QoS-enabled VoIP service, as

depicted in Figure 5. In that case, end user 1 attempts to

initiate a VoIP session of a certain category (e.g. platinum)

with end user 2 by sending a SIP INVITE message, carry-

ing a resource priority (RP) header (set according to the

session category) to the session control function in the

VIP network. In order to allocate resources to the call, the

session control function sends the QoS control function

(in the same network) a call admission request using a

COPS REQ message (including the session information).

After running a admission control algorithm (enabling

the distinction between different classes of traffic), the

QoS control function determines that an ongoing

media streaming session must be terminated in order

to free resources for the new VoIP session to be estab-

lished. Therefore, the QoS control function sends a

“trigger_termination” decision (using a COPS DEC

message) to the session control function in relation to

the (previously admitted) media streaming session be-

tween end user 3 and the streaming server. The session

control function then sends a SIP REFER message

instructing the media streaming server to terminate the

session it has with end user 3. The server carries this in-

struction by sending a SIP BYE message, containing a rea-

son header with the value “preemption”, to end user 3, as

well as a MEGACO subtractStream instruction to the

media handling function. After the streaming session is

terminated successfully, the streaming server sends a noti-

fication to the session control function (using a SIP NO-

TIFY message). This last returns a COPS RPT message

indicating that it has enforced the QoS control function

decision, then forwards the initial INVITE message to the

session control function in the SP network.

In VNet2, similar interactions occur to enforce the

second QoS dimension, in which differentiation between

different classes of VoIP sessions (e.g. silver, gold, and

platinum) is achieved. For instance, the session control

function in the SP network interacts with the Session

prioritization function (SPF) to admit the call in this

VNet. In this case, a decision is made to downgrade an

ongoing call (from video to audio) before admitting the

new call. Therefore, a downgrade instruction is sent to

end user 4, which carries it by sending a SIP re-INVITE

to end user 5 (containing “audio” as new media type),

thus renegotiating the session parameters. After the ses-

sion is successfully downgraded, a COPS RPT (report

state) message is returned to the SPF, which then autho-

rizes the establishment of the VoIP session between end

users 1 and 2.

It should be noted that the two proposed QoS schemes

could potentially be supported using one virtual network-

ing layer. In that case, both the QoS control function

(needed for traffic prioritization) and the SPF (needed for

session prioritization) must be implemented within this

virtual network layer, which could add additional cost and

complexity. On the other hand, implementing the two

QoS schemes in two different virtual layers showcases the

ability of a virtual network to build on the capability of an-

other virtual network, in order to offer more advanced

services to end users. This recursion and nesting capability

could lead to a vertical hierarchy of virtual networks and

advanced multi-tier architectures.

4 Solution validation
Two prototypes were built in order to validate our solu-

tion. The first prototype focused on the implementation

and testing of the virtual data plane, while the second

prototype focused on the realization and performance

evaluation of the virtual control plane. For simplicity, we

combined the roles of VIP and SP, and used a scenario

with two layers: Layer 1 (consisting of the physical net-

work level), and Layer 2 (consisting of the first virtual

network level).

4.1 Virtual routing platform prototype

In order to validate and test the operation of the virtual

data plane, we implemented a virtual routing platform

using the open source Vyatta router. This router can be

used to build physical or virtual routing platforms for

small to large size enterprises. It provides almost all of

the routing functionalities offered by others routing

products (e.g., Cisco, Juniper, Extreme Networks). The

main advantage of the Vyatta routing solution is its abil-

ity to be executed as a virtual machine using different

virtualization technologies such as Xen and VMWare.

Furthermore, it offers APIs that ease the integration of

the virtual routing platform on a top of physical infra-

structures. In this project, it has been used to build a vir-

tual routing platform in order to validate the operation

of the virtual data plane in our architecture, and evaluate

its performance. The virtual routing platform built is il-

lustrated in Figure 6.

As shown in the figure, the network was split in two

separated areas. Area 1 included routers of cities A, B

and C while area 2 included routers of cities D, E and F.

Each router of a city was connected to its corresponding

host. These areas were connected via routers G and H.

Two hosts were connected to routers of cities G and H

(e.g., Hosts G1 and G2 were connected to Node G). For

cities A to F, we used two routers: master and backup.

Four servers, each with 36 GB of disk space capacity

were used to support this platform. Two HP servers

were used to implement servers 1 and 2, each with

El Barachi et al. Journal of Internet Services and Applications (2015) 6:3 Page 10 of 22

2x3.183GHz CPU and 3 Network interface Cards (NICs).

Two Compaq servers hosted servers 3 and 4, each with 5

NICs. Server 3 had a 2x1.396 GHz CPU, while server 4

had a 1x1.396 GHz CPU. Each router was implemented

using Vyatta version 6.3 as a virtual machine, with 1 CPU,

512 MB of memory, 4 GB of disk space and 3 NICs for

cities A to F and 4 NICs for cities G and H. The main

functionalities supported on each router were:1) OSPFv2

(servers 1 and 2) and BGPv4 (servers 3 and 4); 2) static

routing, route redistribution between BGP and OSPF; 3)

Static and dynamic (DHCP) IP address allocation; 4)

Ethernet and VLAN (802.1Q) encapsulation; 5) Virtual

Routing Redundancy Protocol (VRRP), CLI and SSHv2

administration and authentication; 6) Netflow Syslog and

SNMPv2c diagnostics protocols. The hosts of cities A to

H were implemented on virtual machines, each with 1

CPU, 256 MB of memory, 20GB disk space and 2 NICs.

They were used to install a set of test tools to generate

traffic across this network and to measure a set of per-

formance metrics, namely: JPerf used to measure the data

rate between two hosts using four TCP connections; Pin-

gInfoView used to measure delay in milliseconds taken by

a router to answer a network request; Ping used to meas-

ure packet loss; traceroute/pathping used to determine the

route taken by a packet from source to destination; ping

and timer to determine the time taken for routing load

balancing; and Ostinato traffic generator used to measure

the load in packets/sec on processors, memories, disks of

Figure 6 Virtual routing platform.

El Barachi et al. Journal of Internet Services and Applications (2015) 6:3 Page 11 of 22

the servers hosting the virtual routers. The technical spec-

ifications of the different platform components are sum-

marized in Table 1 below.

Among the experiments conducted, we generated 4

TCP connections, each of 20 Mbps, using the JPerf tool,

on each host. Each generated traffic was sent from one

host to the other hosts in this network (e.g., from host A

to host B, C, D, E, F, G and H). Then, using JPerf, we

measured the data rate between the Hosts. Table 2

shows the data rate in Mbps between hosts A to H.

This performance shows that data rates in a virtual en-

vironment are comparable to those obtained in a trad-

itional physical routing platform.

We also measured the delay taken by a router to an-

swer to a network request and the packet loss. There-

fore, we performed stress test using the traffic generator

Ostinato which was installed on the hosts A to H as well

as on hosts G1, G2, H1 and H2. Ostinato was configured

to generate 10 data streams, each of 1000 packets/sec-

ond, that are sent one after the other and looping back

from the first stream. These streams were sent from

each host to the other hosts (e.g., from host H to host

A, B, C, D, E, F and G). The generated traffic yields to

6293 MHz, 6279 MHz, 2548 MHz and 1393 MHz of

CPU usage as well as 2.02 GB, 2.04 GB, 1.29 GB and

951 MB of memory usage for server 1, 2, 3 and 4 re-

spectively. This corresponds to almost 99%, 99%, 91%

and 100% of total CPU capacity usage and almost 35%,

35%, 43% and 32% of total memory capacity usage for

server 1 and 2, 3 and 4 respectively. Using the PingInfo-

View tool, we measured the delay and the packet loss.

These performances are summarized in Table 3.

A significant packet loss and almost 200 ms of delay

were noticed on Host H1 and H2. These behaviors were

due to the fact that server 4 has a smaller CPU capacity

than server 3 and the traffic loads that yielded to 100%

of CPU capacity usage. Therefore, it is important to pro-

vide enough CPU capacity in the network environment

under heavy traffic load.

Moreover, using PathPing, we analyzed the route taken

by packets from source (e.g., Host B) to destination (e.g.,

host D). We noticed that packets took the appropriate

routes. For instance, for PathPing from Host B to Host

D, packets went through router G with a delay of almost

1 ms and no packet loss. The number of hops between

routers was varying from 1 to 3. This allowed us to val-

idate that the routing protocols (BGP and OSPF) were

well configured. Moreover, using Ping and a timer, we

measured the fault tolerance recovery time. For instance,

we sent Ping message from Host D to router D. We

turned off master router D and backup router D re-

placed it. We computed the difference between the time-

stamp of the last packet send by the master router and

the timestamp of the first packet send by the backup

router. We noticed that the recovery time was almost of

6 seconds and only one packet was lost.

As a conclusion, the BGP and OSPF routing protocols,

the Ethernet and VLAN encapsulation as well as fault tol-

erance functionality are well supported by virtual routing

platform using existing virtualization technologies. More-

over, the performance of a routing infrastructure built in a

virtual environment using virtual machines is almost com-

parable to the routing performance in a physical network.

4.2 Virtual control plane prototype

As a second validation phase for our proposed solution,

we focused on the implementation and testing of the con-

trol functions needed for the instantiation, control, and

management of virtual networks. In this prototype, only a

subset of the components proposed in section (The pro-

posed architecture) was implemented. Furthermore, for

Table 1 Virtual routing platform specifications

Prototype component Technical specification

Server 1 HP server with 2x3.183GHz CPU, 3 NICs, and 36 GB of disk space

Server 2 HP server with 2x3.183GHz CPU, 3 NICs, and 36 GB of disk space

Server 3 Compaq server with 2x1.396 GHz CPU, 5 NICs, and 36 GB of disk space

Server 4 Compaq server with 1x1.396 GHz CPU, 5 NICs, and 36 GB of disk space

Virtual Routers - for cities A to F Vyatta version 6.3 as a virtual machine, with 1 CPU, 512 MB of memory, 4 GB of disk space and 3 NICs

Virtual Routers - for cities G and H Vyatta version 6.3 as a virtual machine, with 1 CPU, 512 MB of memory, 4 GB of disk space and 4 NICs

Hosts of cities A to H Running on virtual machines, each with 1 CPU, 256 MB of memory, 20GB disk space and 2 NICs

Table 2 Bandwidth measurements (Mbps)

A B C D E F G H

A X 55.3 55.3 77 83.2 76.2 84.8 59.6

B 55.1 X 55.8 81 79.3 82.9 84.7 62

C 56.3 55.8 X 81.1 81.4 79.5 85.2 59.2

D 77.2 77.7 82.1 X 54.1 53.4 77.2 65.1

E 82.2 79.4 76.4 55.8 X 52.7 75.8 63.7

F 76.6 80.1 78.1 51.8 52.5 x 78 64.7

G 82.3 82.8 83.6 83.6 85.4 83.6 x 67

H 58.3 53.2 55.7 54.6 58.6 58.3 56.2 x

El Barachi et al. Journal of Internet Services and Applications (2015) 6:3 Page 12 of 22

the brokerage node (the SRR/CIB), we opted for a central-

ized design in this first stage of implementation. Figure 7

depicts the software architecture of the implemented

prototype and the technologies used.

Our implementation consists of three management

nodes, namely: the PIP Management Node (PMN); the

VIP Management Node (VMN); and the Broker Node

(BN). Each node encompasses a repository that contains

resource related information and hosts the application

logic realizing the functionalities of the corresponding

roles (e.g. PIP, VIP, and Broker). This application logic is

a set of software modules written in the Java program-

ming language and providing JFC/Swing-based user in-

terfaces for the administrators.

We use XML to describe the resources and formulate

the various requests (e.g. discover and negotiation re-

quests), and XSD (XML-Schema Definitions) to define

the structure of the data models and specify constraints

on the data contained in the XML documents. Each

document exchanged between two roles is a data model

(an instance of our proposed information model). Refer-

ence [13] can be consulted for a detailed description of

our proposed information model.

We selected Jersey [14], an open source JAX-RS (JSR

311) reference implementation, to implement the REST

interfaces, and Grizzly web server [15] to deploy the web

services. Moreover, we used JAXB 2 [16] for marshaling

and un-marshaling of the XML data contained in REST

messages’ body.

In this implementation, the BN is the key node

encompassing a resource naming/identification module,

as well as ranking and clustering engines, which are in-

volved in the resource publication and discovery pro-

cesses. In our approach, we store resource properties

such as node type (e.g. VM, vRouter) and operating sys-

tem type, virtualization environment in separate col-

umns, whereas the XML document containing the

resource description is stored as is in the same table.

When received, resource publication and discovery re-

quests are first stored in the Request Queue and later

forwarded by the Request Dispatcher to the appropriate

module. We use a 32 digits-based identification scheme

to identify each advertised resource.

The discovery request contains two parts: the selection

parameters (e.g. OS type, node type, virtualization envir-

onment); and the set of selection constraints that could

be applied on functional attributes such as CPU and

memory. To select the optimal resources, the Resource

Discovery and Selection Engine (RDS) queries the re-

pository to get a set of resources having similarities in

their description. In such a query, the selection parame-

ters described in the discover request are taken into con-

sideration, which helps in filtering the resources that do

not match part of the request. Afterwards, the RDS pro-

cesses the returned set of resources to evaluate their

functional attributes if they correspond to the selection

constraints specified in the discovery request.

The PMN sends resource publication requests to the

BN, and processes virtual network instantiation and re-

source negotiation requests for the PIP. It uses a local

database to store and manage resource information and

description templates as well as monitors allocated re-

sources and updates their registered information in the

broker. In addition to other components, the PMN

architecture includes a Resource Instantiation and Con-

figuration engine that handles virtual resource instanti-

ation, configuration, and testing. This engine allows the

management and control of the substrate resources.

Finally, in addition to discovering the resources needed

to deploy end-user services, the VMN interacts with the

PMN to negotiate resources. To build the locals and the

broker databases, we used the open source RDBMS

PostgreSQL [17] that offers native XML support for

storing XML documents, SQL/XML publishing/querying

functions, full-text search, as well as full-text indexing

and XPath support. Furthermore, PostgreSQL stores an

XML document in its text representation, which results

Table 3 Delay and packet loss measurements

Host A Average ping
time (ms)

Succeed
count

Packet
lost (%)

Host A 0 10 0

Router A 7 10 0

Router G 9 10 0

Router E 10 10 0

Router F 10 10 0

Host G1 10 10 0

Router D 11 10 0

Host G2 11 10 0

Router B 13 10 0

Host E 16 10 0

Host B 17 10 0

Host F 21 10 0

Router C 22 10 0

Host C 26 10 0

Host D 34 10 0

Router D 80 10 0

Router E 80 10 0

Router F 80 10 0

Router B 86 10 0

Router C 93 10 0

Host H1 190 4 60

Router H 217 10 0

Host H2 217 3 70

El Barachi et al. Journal of Internet Services and Applications (2015) 6:3 Page 13 of 22

in fast information retrieval and adds flexibility in terms

of resources’ description by eliminating the need to

change tables’ schema whenever additional information

is added to the document. Upon receiving a resource

publication request, the publication engine validates and

parses the resource description, and stores the received

documents as is in the database. Resources are indexed

based on their identifier that is stored in a separate col-

umn. This enhances the selection process by eliminating

unnecessary parsing of an XML document since the re-

source identifier contains already the type of resource.

For the virtualization of substrate nodes, we used the

Xen Cloud Platform (XCP) [18] that includes the Xen

Hypervisor as well as Xen API (Xen Management API

or XAPI). Based on Para-virtualization principles, Xen

has proven to be the virtualization platform of choice due

to its capabilities in terms of performance, features, and

isolation level among virtual machines. XAPI provides

Figure 7 The virtual control plane prototype’s software architecture.

El Barachi et al. Journal of Internet Services and Applications (2015) 6:3 Page 14 of 22

programmatic access to, and remote administration of,

Xen-enabled virtual resources through XML-RPC services.

We implemented the Substrate Manager (SM) using

Xen Server’s SDK that is provided by Citrix. The SM is

responsible for automatically instantiating a virtual top-

ology as described in the VNet request. We automated

the resource provisioning process by eliminating the hu-

man intervention needed to create the requested virtual

resources and configure their network settings. For this

matter, we prepared a set of virtual machine templates

on which we deployed Shell scripts that enable the

addition or removal of Ethernet interface(s), the modifi-

cation of a VM’s IP address, as well as setting/removing

a static route between two nodes (in case of a virtual

router). In order to execute such scripts, the SM uses an

SSH connection to the targeted virtual machine. In

addition to creating and configuring virtual resources,

the SM monitors the status of the running resources

and displays their dynamic attributes on the PIP’s inter-

face. In this implementation, we selected Vyatta [19]

used in our first prototype to connect two or more vir-

tual networks.

4.2.1 Prototype setup and test scenarios

As shown in Figure 8, the experimental setup consisted

of two management nodes (one PMN and one VMN),

one broker node, and four nodes that represent sub-

strate resources. The PMN and VMN and the substrate

nodes are DELL Precision 390 machines equally equipped

with Intel Core™ Duo E6550, 2.33GHz processor and 4GB

of RAM, 10000 RPM HDD, and 100MBPS link. Since the

Broker node is expected to process all the incoming publi-

cation and discovery requests, we used an HP Z210 Work-

station machine. It is equipped with Quad Core™ i5

processor, 4GB of RAM (1333 MHz DDR3), 7200 RPM

HDD, and 100MBPS link. All the nodes are intercon-

nected with Ethernet links through a Cisco Catalyst 2950

series Switch forming a LAN.

We installed Linux operating system (Ubuntu 12.04

LTS) and the required tools and frameworks on the man-

agement and the broker nodes. On the remaining four

machines, we installed XCP and prepared a set of virtual

machines templates configured with 1CPU, 512 MB of

RAM, 20GB of disk space, and 5Mbps links. In this setup,

we run two to four VMs on the same node.

Prior to run the experiments, we have generated a set

of resource description XML documents containing all

the possible resources description to be used during the

evaluation process. Such documents were published into

the broker using a PUT REST message in order to popu-

late its repository with the required data.

We successfully tested the interactions related to the

virtual network instantiation scenario as depicted in

Figure 4. First, the PMN published the description of the

virtual machines and Vyatta routers that we installed on

the substrate resources to the broker. Then, the VMN

Figure 8 The virtual control plane prototype setup.

El Barachi et al. Journal of Internet Services and Applications (2015) 6:3 Page 15 of 22

sent a discovery request to the broker. Afterwards, the

broker node retrieved the information needed as de-

scribed in the request from its resource repository and

selected the resource candidates. After receiving the list

of selected resources that best match the discovery request

parameters, the VMN starts the resources’ negotiation

process by sending a negotiation request (containing a list

of requested resources and related constraints) to the

PMN. Upon receipt of the negotiation request by the

PMN, a notification message is displayed on the PIP

console. The negotiation process goes through two

phases. First, the PMN rejected the offer and sent back

the request to the VMN. Then the VMN sent another

request which was accepted by the PMN. Upon reaching

an agreement, the PMN instantiated the virtual topology

and started the virtual resources (using XAPI client).

When the requested resources started successfully, the

PMN updated their published information in the bro-

ker. Figures 9, 10, and 11 illustrate three of the screen

shots of our prototype operation – namely the VIP re-

source discovery view, the PIP resource publication

view, and the PIP virtual topology management view.

4.2.2 Basic performance evaluation

To assess the basic performance of the prototype, we

used the setup described in the previous section and

evaluated the interactions related to resource publication

(between the PMN and the BN), resource discovery (be-

tween the VMN and the BN), resource negotiation (be-

tween the VMN and PMN), and resource instantiation

(between the PMN and the machines representing sub-

strate resources). We used JMeter [20] to evaluate the

REST APIs’ performance, and we modified the applica-

tion logic that is deployed on the management nodes to

add support for measuring internal operations’ process-

ing times.

Table 4 shows the evaluation results. Each result rep-

resents the mean value calculated over 20 trials.

In the table, the response time for resource publication

is calculated at the PMN as the difference between the

time when the PMN’s publication module sends a publica-

tion request and the time it receives a response from the

BN. The time for publishing a resource includes the time

taken to extract description of resources from the REST

message’s body and the time to store it in the broker’s

Figure 9 VIP resource discovery screenshot.

El Barachi et al. Journal of Internet Services and Applications (2015) 6:3 Page 16 of 22

repository. The results shown in the table are the average

measurements over 20 trials. For each trial, we sent one

resource publication request containing a document de-

scribing 2 virtual resources. On average, it took 245 ms to

process this publication request, which generated 31.3

Kbytes of network load – values that we consider as

reasonable. However, as we increased the number of

publication requests, the response time and network

load measurements increased. This is due to the re-

quest processing overhead and the concurrent access to

the resources’ database.

The resource discovery response time, which gives an

indication about the performance of the selection algo-

rithm, is calculated from the moment the VMN’s discov-

ery module sends a discovery request until it receives a

response with the selected resources. This includes the

time used for the execution of the selection algorithm

and the database query time to get the list of potential

resources. To perform the resource discovery experi-

ments, we populated the resources’ repository with the

descriptions of 5000 different resources. The results

shown in the table are related to the tests done with one

resource discovery request of two virtual resources and

50 processed resources during the selection process. On

average, it took 183 ms and 23.2 KB of generated net-

work load to process such a request. Additional tests

show that as the number of discovered resources in-

creases, the response time and the network load increase

as well, due to the increased number of resources that

are taken into account by the selection algorithm and

the increase in size of the list of matched resources that

is sent back.

The resource negotiation response time, measured at

the VMN level, is calculated from the moment the

VMN’s negotiation module sends a negotiation request

until the response is received from the PIP. On average,

it took 187 ms and 34.9 KB of generated load to process

a resource negotiation request related to two virtual

resources.

Finally, for virtual topology instantiation, the response

time is measured at the PMN level from the moment a

VNet instantiation request is received until the booting

Figure 10 PIP resource publication screenshot.

El Barachi et al. Journal of Internet Services and Applications (2015) 6:3 Page 17 of 22

of the virtual machines and the configuration of their

virtual interfaces (through the XAPI client) is completed.

In our test scenario, the virtual topology consisted of

four Vyatta virtual routers connected by three links, as

shown in Figure 11. On average, it takes one minute and

10 seconds to create and configure a Vyatta virtual ma-

chine, while it takes 5 minutes 55 seconds to create and

configure a virtual topology consisting of four Vyatta vir-

tual routers and three virtual links.

Analyzing those results, we conclude that the system

yields an acceptable performance for the recurring

operations (i.e. resource publication, discovery, and ne-

gotiation). As for the virtual topology instantiation oper-

ation, it does result in a significant response time due to

its nature that requires the creation and configuration of

virtual machines and their connection to form the re-

quested topology. However, this operation is only re-

quired once, when the VNet is created. Furthermore, the

automation of virtual resources configuration using SSH

and shell scripts eases and speeds up the virtual topology

instantiation process. It should be noted that the virtual

topology instantiation time occurs during the first phase

Figure 11 PIP virtual topology management screenshot.

Table 4 Network load and response time measurements

Operations Interactions Response time (ms) Network load (KB)

Resource Publication [1 request/2 virtual resources published] PMN – BN 245 31.3

Resource Discovery/selection [1 request/2 virtual resources
discovered/50 resources processed during selection]

VMN – BN 183 23.2

Resource negotiation [1 request/2 virtual resources negotiated] VMN – PMN 187 34.9

Virtual Topology instantiation [4 virtual routers, 3 virtual links] PMN – substrate nodes 355000 142.2

El Barachi et al. Journal of Internet Services and Applications (2015) 6:3 Page 18 of 22

(i.e. the virtual networks instantiation phase shown in

Figure 4) and does not affect the performance of real-

time end user services (e.g. VoIP) during their usage and

operation (which constitutes the second phase shown in

Figure 5). In fact, virtual networks are typically instanti-

ated, the end user services are deployed on them at a

later stage, when needed.

4.2.3 Scalability testing

In order to evaluate the behavior of the system under

heavy load conditions, we conducted some stress tests,

focusing on the publication and discovery related inter-

actions. As test setup, we built a LAN consisting of 5

machines connected by a Cisco Catalyst 2950 series

switch. One of those machines (HP Z210 workstation)

acted as the Broker, while the other four machines

(DELL 390) acted as either a PMN or a VMN (depend-

ing on the test scenario). Different test scenarios in

which the nodes’ roles and the number of generated re-

quests were varied were conducted. Figures 12 and 13

show the stress testing results for the resource publica-

tion and discovery operations.

Analyzing the stress testing results, we notice that

Grizzly is a suitable application server for the hosting of

the broker node, due to its robustness and ability to han-

dle a very large number of simultaneous requests (up to

2000 requests/sec can be supported). Due to those cap-

ability, our broker was able to handle very high traffic

loads, without crashing. In fact, the system was tested

for up to 15,000 publication requests (describing up to

120,000 resources) without failure. As the number of

publication request increased, the response time to

process the requests increased in an exponential fashion,

while the network load increased in a linear fashion.

This exponential increase in response time is due to sev-

eral factors such as: Database overhead caused by read-

ing/writing records; description documents marshaling

and un-marshaling; and HTTP requests’ processing

overhead.

As for the discovery operation, the broker was success-

fully tested for up to 12,000 discovered resources, and

the response time and network load both showed expo-

nential growth patterns with respect to the number of

discovered resources. For 12,000 resources, the response

time reached 23.7 minutes, and the generated network

load reached 44.2 MB, due to the resource property in-

formation that is embedded in the response message.

5 Related work
Several management and control architectures have been

proposed for virtualized networks. However, to the best

of our knowledge, these proposals have not yet fully in-

vestigated a service-oriented hierarchical architecture, in

which different types of functionalities that could be of-

fered by a network resource (e.g., low level routing/

transport functionalities, high level application logics)

can be dynamically discovered, used and composed.

In [21], authors propose a layered network architec-

ture based on four planes: data, management, control,

and knowledge. These planes are implemented using dif-

ferent isolated virtual networks sharing the same phys-

ical infrastructure. This architecture enables the reuse of

the current Internet’s data plane and the deployment of

concurrent next generation Internet that provides new

Figure 12 Stress testing results for resources’ publication operation.

El Barachi et al. Journal of Internet Services and Applications (2015) 6:3 Page 19 of 22

network functionalities. However, network resource dis-

covery, usage and composition are not considered and

the network partitioning proposed in [21] is far from

what could be done by the architecture proposed in this

paper.

A few architectures have been proposed for virtualized

networks that support resources publication, discovery

and access. One example is the service-oriented frame-

work for composing network and cloud services [22].

That proposed framework is based on SOA architecture

and virtualization in cloud computing [23] as well as the

network virtualization business model described in [1].

The key drawback of this proposal is that a very coarse-

grained service-oriented architecture is proposed with

no detail on the service publication, composition, and

discovery.

The Service-oriented MGON (MultiGranular Optical

Network) [24] is fine-grained service-oriented network

architecture that has been proposed for cloud environ-

ment. This solution provides a mapping strategy of appli-

cation requests expressed in terms of QoS parameters

(e.g., delay, bandwidth) to technology-specific attributes

(e.g., burst size, wavelength, path) in order to offer differ-

ent levels of service granularity to clouds. However, it pro-

poses resource discovery strategy based on proprietary

control and management interface with new packet for-

mat specifically tied to optical networks. Moreover, unlike

the network virtualization environment where multiple

heterogeneous networks can be shared by different service

providers, MGON relies on a flat virtualized network

architecture with a traditional ISP business model.

A hierarchical architecture for virtualized network has

been proposed in [25]. It targets the virtual resource

management issue and proposes a framework to dis-

cover, select and use network resources in order to build

virtual networks. However, no detailed information is

given on how resources are discovered and selected.

In reference [26], the authors discuss how SOA (Service

Oriented Architecture) can be leveraged to realize the

concept of Network as a Service (NaaS), thus enabling the

convergence of virtual networking and cloud computing.

Different technologies related to the realization of the

NaaS concept are discussed in the paper, including net-

work service description, discovery, and composition solu-

tions. None of these solutions present an end-to-end

architecture for network virtualization.

6 Conclusions and lessons learned
Network virtualization is an emerging concept that en-

ables the dynamic creation of virtual networks over a

shared physical network infrastructure. There are several

motivations behind this concept, including increased flexi-

bility, diversity, and manageability in networking environ-

ments. We have previously proposed a service-oriented

hierarchical business model for virtual networking envi-

ronments. This model aims at creating a dynamic and

collaborative environment, in which a large pool of virtua-

lized networking resources, which are seen as services (of

different levels), can be dynamically discovered, used,

and composed. In this paper, we proposed an open vir-

tual multi-services networking architecture enabling

the realization of our business model. Furthermore, we il-

lustrated our architecture’s operation using a virtualized

QoS-enabled VoIP scenario. This paper also presented

performance analysis of a virtual routing platform that

was implemented using open source Vyatta router.

Figure 13 Stress testing results for resources’ negotiation operation.

El Barachi et al. Journal of Internet Services and Applications (2015) 6:3 Page 20 of 22

Furthermore, a proof-of-concept prototype of the virtual

control plane was implemented using a variety of tech-

nologies and tools, such as: Jersey, Grizzly Web server,

JAXB, PostgreSQL, Vyatta virtual router, and the Xen

Cloud Platform (XCP). Basic performance measurements

and stress testing results of the main operations were also

collected and analyzed.

During the course of this project, we learned several

important lessons. The first is that service-oriented con-

cepts can be very useful for building open, flexible, and

collaborative virtual networking environments, in which

various network functionalities are considered as ser-

vices that can be reused and composed, and roles are

considered to be distributed and loosely coupled entities

interacting via programmable interfaces. Another lesson

we learned is that the Vyatta routing solution is suitable

for small-size to mid-size network infrastructures with

performance behaviors almost comparable to those of a

physical network. A third lesson learned is that Vyatta

routing solution is not adapted to large-size networks

(e.g., backbone network). Indeed, we noticed that due to

overwhelming data traffic sent through the platform, the

Vyatta processor load increases very fast and therefore

the processor of the hypervisor (in our case VMWare)

quickly becomes saturated. Moreover, it may be difficult

to run a virtual machine that provides a network inter-

face with high data rates to ensure the transfer of higher

traffic load. However, servers with greater capacities than

those chosen in this paper should be considered to iden-

tify what would be the maximum traffic load supported

by such platform.

Abbreviations

VPNs: Virtual Private Networks; VNets: Virtual Networks; WSNs: Wireless Sensor

Networks; PIP: Physical Infrastructure Provider; VIP: Virtual Infrastructure

Provider; SRR: Services and Resources Registry; CIB: Context Information Base;

PMN: PIP Management Node; VMN: VIP Management Node; BN: Broker Node;

RDS: Resource Discovery and Selection Engine; XCP: Xen Cloud Platform;

SM: Substrate Manager; MGON: MultiGranular Optical Network; SOA: Service

Oriented Architecture; NaaS: Network as a Service.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MEB is the lead of the research team, proposing the research topic and

managing/coordinating research activities. NK is an expert in virtualization

and had contributions related to the business modeling and the

architecture. SR carried the design and implementation work related to the

virtual control plane prototype, and performed the related performance

evaluation. MF Worked on the virtual routing platform prototype

implementation and testing. All authors read and approved the final

manuscript.

Acknowledgement

This paper is an extended version of the article presented at IEEE CCNC 2012,

under the title of “Open Virtual Playground: Initial Architecture and Results”.

Author details
1College of Technological Innovation, Zayed University, Khalifa City B, P.O.

Box 144534, Abu Dhabi, United Arab Emirates. 2Department of Software and

IT Engineering, University of Quebec, 1100 Notre-Dame, West, Montréal,

Quebec, H3C 1 K3, Canada. 3Faculty of Engineering and Computer Science,

Concordia University, 1515 St. Catherine W, Montreal, Quebec, H4G 2 W1,

Canada. 4Ericsson Canada, 8400 Blvd, Décarie Montréal, Québec, H4P 2 N2,

Canada.

Received: 11 September 2014 Accepted: 22 December 2014

References

1. Chowdhury N, Boutaba R (2009) Network virtualization: state of the art and

research challenges. IEEE Commun Mag 47(7):20–26

2. Rosen E and Rekhter Y (2006) “BGP/MPLS IP Virtual Private Networks (VPNs),”

RFC 4364, Internet Engineering Task Force

3. Turner JS and Taylor “Diversifying the Internet”. In: Proceedings of IEEE

Global Telecommunications Conference (GLOBECOM’05), IEEE Press, St.

Louis, MO, USA, pp. 1-6.

4. Anderson T, Perterson L, Shenker S, Turner J (2004) Overcoming the internet

impasse through virtualization. In Proceedings of ACM HOTNETS, San Diego,

CA, USA

5. El Barachi M, Kara N and Dssouli R (2010) “Towards a Service-Oriented

Network Virtualization Architecture”. In: Proceedings of the 3rd ITU-T

Kaleidoscope Event 2010 (K-2010), pp 1–7.

6. El Barachi M, Kara N and Dssouli R (2012) “Open Virtual Playground: Initial

Architecture and Results”. In: Proceedings of the 9th IEEE Consumer

Communications and Networking Conference 2012 (CCNC 2012), pp 576–581.

7. “4WARD – Architecture and Design for the Future Internet: Project-wide

Evaluation of Business Use Cases”. Public deliverable No. FP7-ICT-2007-1-

216041-4WARD/D-1.2, European Union’s 7th Framework, Sweden,

December 2009.

8. Feldmann A (2007) Internet clean-slate design: What and why?”. SIGCOMM

CCR 37(3):59–64

9. Abowd G, Dey A, Brown P, Davies N, Smith M and Steggles P “Towards a

Better Understanding of Context and Context-Awareness”. In: Hans-Werner

Gellersen (Ed) Proceedings of the 1st international symposium on Handheld

and Ubiquitous Computing (HUC '99), Springer-Verlag, London, UK, UK, pp

304-307

10. Hasam M, Amarasinghe H and Karmouch A “Network Virtualization: Dealing

with multiple infrastructure providers”. In: Proceedings of the IEEE

International Conference on Communications (ICC 2012), IEEE Press, Ottawa,

ON, Canada, pp 5890–5895

11. Medhioub H, Houidi I, Louati W and Zeghlache D (2011) “Design,

implementation and evaluation of virtual resource description and clustering

framework”. 25th IEEE International Conference on Advanced Information

Networking and Applications 2011, IEEE Press, Biopolis, pp 83–89.

12. Houidi I, Louati W, Zeghlache D, Papadimitriou P and Mathy L (2010)

“Adaptive virtual network provisioning”. In: Proceedings of the ACM

SIGCOMM Workshop on Virtualized Infrastructure Systems and Architectures,

ACM Press, New York, NY, USA, pp 41-48.

13. El Barachi M, Rabah S, Kara N, Dssouli R and Paquet J (2013) “A Multi-Service

Multi-role Integrated Information Model for Dynamic Resource Discovery in

Virtual Networks”. In: Proceedings of the IEEE Wireless Communications and

Networking Conference 2013 (WCNC 2013), IEEE Press, Shanghai, China, pp

4777–4782.

14. “Jersey,” [Online]. Available: http://jersey.java.net/.

15. “Project Grizzly” [Online]. Available: http://grizzly.java.net/.

16. “JAXB Project” [Online]. Available: https://jaxb.java.net/.

17. “PostgreSQL Global Development Group” [Online]. Available: http://www.

postgresql.org/.

18. “Xen Cloud Platform” Xen Porject, [Online]. Available: http://www.xen.org/

products/cloudxen.html.

19. “Vyatta,” Brocade, [Online]. Available: http://www.vyatta.com/.

20. “JMeter™” Apache Software Foundation, [Online]. Available: http://jmeter.

apache.org/.

21. Jin D, Li Y, Zhou Y, Su L and Zeng L (2009) “A virtualized-based network

architecture for next generation internet”. In: Proceedings of the Third

International Conference on Anti-counterfeiting, Security, and Identification

in Communication, IEEE Press, Hong Kong, pp 58–62.

22. Qiang D (2011) “Modeling and performance analysis on network

virtualization for composite network-cloud service provisioning”. In:

Proceedings of the 11th IEEE World Congress on Services, pp 548–555.

El Barachi et al. Journal of Internet Services and Applications (2015) 6:3 Page 21 of 22

http://jersey.java.net/
http://grizzly.java.net/
https://jaxb.java.net/
http://www.postgresql.org/
http://www.postgresql.org/
http://www.xen.org/products/cloudxen.html
http://www.xen.org/products/cloudxen.html
http://www.vyatta.com/
http://jmeter.apache.org/
http://jmeter.apache.org/

23. Zhang L-J and Zhou Q (2009) “CCOA: Cloud Computing Open Architecture”,

In: the Proceedings of the 1st Symposium on Network System Design and

Implementation (NSDI ’09), IEEE Press, Los Angeles, CA, USA, pp 607-616.

24. Zervas G, Martini V, Qin Y, Escalona E, Nejabati R, Simeonidou D, Baroncelli

F, Martini B, Torkmen K, Castoldi P (2010) Service-oriented multigranular

optical network architecture for clouds. IEEE/OSA J Opt Commun Netw 2

(10):883–891

25. Lv B, Wang Z, Huang T, Chen J and Liu Y “Hierarchical Virtual Resource

Management Architecture for Network Virtualization”. In: Proceedings of the

6th International Conference on Wireless Communications Networking and

Mobile Computing (WiCOM 2010), IEEE Press, Chengdu, pp 1–4

26. Duan Q, Yan Y, Vasilakos AV (2012) A survey on service-oriented network

virtualization toward convergence of networking and cloud computing. IEEE

Trans Netw Serv Manag 9(4):373–392

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

El Barachi et al. Journal of Internet Services and Applications (2015) 6:3 Page 22 of 22

	Abstract
	Introduction
	The network virtualization concept: principles, goals, and motivating scenarios
	VoIP service with two-dimensional QoS scheme
	Context-aware value added services

	The open virtual playground architecture
	Overview of proposed business model
	The proposed architecture
	Functional entities and interfaces
	Illustrative session management scenario

	Solution validation
	Virtual routing platform prototype
	Virtual control plane prototype
	Prototype setup and test scenarios
	Basic performance evaluation
	Scalability testing

	Related work
	Conclusions and lessons learned
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgement
	Author details
	References

