
An OpenFlow Extension for the OMNeT++ INET Framework

Dominik Klein
University of Wuerzburg, Germany

dominik.klein@informatik.uni-
wuerzburg.de

Michael Jarschel
University of Wuerzburg, Germany

michael.jarschel@informatik.uni-
wuerzburg.de

ABSTRACT

Software Defined Networking (SDN) is a new paradigm for com-

munication networks which separates the control plane from the

data plane of forwarding elements. This way, SDN constitutes a

flexible architecture that allows quick and easy configuration of

network devices. This ability is particularly useful when networks

have to be adapted to changing traffic volumes of different appli-

cations running on the network. OpenFlow is currently the most

prominent approach which implements the SDN concept and of-

fers a high flexibility in the routing of network flows.

In this paper, we describe the implementation of our model of

the OpenFlow system in the INET framework for OMNeT++. We

present performance results to show the correctness of our model.

As a first application, we use the simulation model to assess the

round-trip-times in a theoretical OpenFlow deployment in a real

topology of a North-American Testbed.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network Proto-

cols—Protocol verification, Routing protocols; I.6.4 [Simulation

and Modeling]: Model Validation and Analysis

General Terms

Design, Experimentation, Standardization, Verification

Keywords

OMNeT++, INET, OpenFlow, SDN

1. INTRODUCTION
The current Internet architecture struggles with several issues

like missing routing scalability and mobility support as well as traf-

fic engineering capabilities even for smaller domains. The under-

lying problem is the rigid and inflexible nature of the current In-

ternet architecture. Missing common interfaces and heterogeneous

hardware vendors make these issues even worse. Hence, there is a

demand for a flexible architecture which also allows quick and easy

configuration of network devices.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OMNeT++ 2013 March 5, Cannes, France.
Copyright 2013 ICST, ISBN .

OpenFlow [6] is seen as one of the promising approaches to over-

come the limitations of the current Internet stack. The development

of the OpenFlow standard is managed by the Open Networking

Foundation (ONF) [11]. The ONF promotes the development and

use of Software Defined Networking (SDN) [10] technologies and

OpenFlow is an example. OpenFlow offers a high flexibility in the

routing of network flows and allows to change the behavior of a part

of the network without influencing other traffic. This is achieved

by separating the control plane in network switches from the data

plane. A remote controller is responsible for all routing decisions

and may change the forwarding rules of the switch.

OpenFlow and the first controller implementations are already

deployed in networks. However, as the number and size of produc-

tion networks deploying OpenFlow increases, relying on a single

controller for the entire network might not be feasible for several

reasons. The amount of control traffic directed towards the con-

troller grows with the number of switches. In addition, the flow

setup times increase, since the system is bounded by the process-

ing power of the controller. So, there is the question what would

be a better controller architecture with respect to performance, re-

liability, and scalability required to process new flows and program

the switches.

There are several approaches for controller architectures with

different advantages and disadvantages. So far, a single central-

ized controller is mainly used. But a network could also be split

up in several parts and each part is managed by its own controller.

Furthermore, a hierarchical structure is possible with a master con-

troller that synchronizes all other controllers. In order to derive

quantitative results, which are required for an appropriate dimen-

sioning of the architecture with respect to the underlying physical

network, a detailed performance evaluation framework is needed.

Until now, only few performance evaluations of OpenFlow archi-

tectures exist. Testbeds are often limited to smaller topologies, but

the mentioned problems of a controller especially occur on larger,

geographically distributed architectures. Simulation tools are much

more suitable for this task since they allow to evaluate the scalabil-

ity of the chosen controller. Furthermore, they allow to validate

mechanisms before their deployment. Additionally, changes in the

specification of the investigated technology can easily be integrated

in the simulation model.

In this work, the OpenFlow components are integrated in the

network simulation environment OMNeT++ [14]. Using the INET

Framework [13], an OpenFlow switch and a basic controller are

developed. For the controller, three possible behaviors are defined.

In order to compare different controller architectures, a topology of

34 network nodes was created. The nodes represent cities across

the USA which are part of a real network that is being established

currently.



(a) First packet in flow from host 1 to host 2. (b) Response packet from host 2 to host 1.

Figure 1: Communication between two nodes in an OpenFlow enabled network.

The remainder of this paper is structured as follows. In Sec-

tion 2 we give a short overview of the related work. Section 3

provides an overview of OpenFlow and describes a simple com-

munication scenario in an OpenFlow enabled network. Section 4

describes the implemented OpenFlow model and presents design

choices. In Section 5, the performance of different controller ar-

chitectures is evaluated for a real OpenFlow production network.

Finally, Section 6 concludes this work.

2. RELATED WORK
An early approach towards simulating OpenFlow networks was

made in 2009 with OpenFlowVMS [15]. This approach was based

on using virtual machines to emulate OpenFlow-enabled devices.

However, as virtual machines have a significant resource overhead,

the system did not scale very well. Furthermore, it was designed for

real-time functional OpenFlow testing rather than the simulation

and evaluation of arbitrary scenarios. This is also true for Mininet,

which is described by Lantz et al. in [5]. Mininet is a common tool

to emulate network topologies for functional testing of OpenFlow

controllers and applications. It abandons virtual machines in favor

of lightweight namespaces to separate the emulated devices, thus

reducing the overhead. The popular network simulator NS-3 also

offers an OpenFlow simulation model [8]. However, this model in

its current version does not model the OpenFlow controller as an

external entity. Therefore, it is not possible to quantify the effects

of the control channel or simulate multiple switches connected to a

single OpenFlow controller.

3. OPENFLOW OVERVIEW
OpenFlow is an open standard that enables researchers to run

experimental protocols in networks. It is added as a feature to com-

mercial Ethernet switches, routers, or other network nodes. It pro-

vides a standardized hook to allow researchers to run experiments,

e.g. to test and design new protocols, without requiring vendors to

expose the internal workings of their network devices. In a classical

router or switch design, the fast packet forwarding (data path) and

the routing decisions (control path) occur on the same device. An

OpenFlow switch separates these two functions. The data path por-

tion still resides on the switch while routing decisions are moved to

a separate controller, typically a standard server.

3.1 Connection Setup
Upon startup, the switch initiates a secure channel with the con-

troller over TCP which is used by the controller to manage the

switch via the OpenFlow protocol. The required IP address of the

controller is known by configuration to the switch. It may also

be possible that the controller has detected the switch and initiates

the connection setup. Either way, once the secure TCP connec-

tion between switch and controller is established, both switch and

controller exchange hello messages to learn the highest OpenFlow

version which is supported by both entities. When an OpenFlow

version supported by both is found, the controller requests the ca-

pabilities of the connecting switch via a features request message.

The receiving switch answers the features request message with a

features reply message and thereby informs the controller about its

supported functionality.

3.2 Packet Processing
Upon reception of an Ethernet frame, an ordinary Ethernet switch

usually looks up the destination MAC address in its MAC table

which stores the mapping from MAC address to output switch port.

This information is then used to forward the frame on the stored

switch port. In addition, the mapping from source MAC address to

ingress switch port is learned for incoming frames and stored in the

MAC table.

In contrast, the data path of an OpenFlow switch contains one or

more flow tables. Each flow table in the switch contains a set of

flow entries where each entry contains match fields, counters, and

instructions. An entry is identified by its extensible match fields

which comprise the switch ingress port and different packet header

fields. For received packets on the data path, the switch tries to

match the ingress port and packet headers with the match fields in

the different flow entries. The packet matching may span several

tables and starts at fully defined entries and continues to less de-

fined entries. To resolve possible draws of similar defined entries,

a priority field indicates which entry should by chosen in that case.

The considered packet match fields in the flow table lookups de-

pend on the packet type and typically include various packet header

fields like for example the Ethernet source address or IPv4 destina-

tion address. A packet matches a flow table entry, if the values in

the packet header fields utilized for the lookup match those defined

in the flow table entry. If a flow entry field is wildcarded and has



a value of ANY, it matches all possible values in the header. Only

the highest priority flow entry that matches the packet must be se-

lected. The counters associated with the selected flow entry must

be updated and the included instruction set must be applied.

If a matching entry is found, the instructions associated with the

specific flow entry are executed. If no match is found in a flow

table, the outcome depends on the switch configuration. The de-

fault in the OpenFlow switch specification version 1.2 [9] is to send

packets to the controller over the OpenFlow channel via a packet-in

message. Another option is to drop the packet. The packet-in mes-

sage may either contain the entire packet or just a fraction of the

packet header. In the second case, the packet is stored in a buffer at

the switch and the packet-in message contains the buffer ID of the

stored packet.

3.3 Controller Behavior
As explained in the prior section, the controller is connected via

the secure channel to the switch and uses this channel to manage

the flow entries in the flow table of the OpenFlow switch. In case

the controller receives a packet-in message from the switch, it first

examines the packet headers and checks whether a new flow entry

needs to be created or what actions should be applied. If a new

entry is required, the controller sends a flow-mod message to the

switch which then installs the corresponding flow entry. In addi-

tion, the controller also sends a packet-out message which tells the

switch to send the packet out of a specified port.

By specifying the OpenFlow protocol as a standard interface

through which entries in the flow table can be defined externally,

researchers can influence the switch behavior without the need to

program the switch directly. The controller can add, update, and

delete flow entries in flow tables by using the OpenFlow protocol.

3.4 Communication Example
The following example of an OpenFlow network consists of two

hosts as well as an OpenFlow switch and an OpenFlow controller.

The controller in this example implements ordinary learning switch

behavior. The OpenFlow switch is connected to host 1 via port 1

and to host 2 via port 2. For both hosts, the corresponding MAC

addresses are shown. In Figure 1a, host 1 with MAC address 08-

00-20-3A-00-4F wants to send a packet to host 2 with MAC ad-

dress 08-00-2A-0B-FE-FD. In this example, the flow table of the

OpenFlow switch is empty and so the switch does not know how

to forward the packet. Hence, depending on the configuration, the

switch either sends the entire packet or just the packet header to

the connected controller. The controller decides about the actions

that should be applied for this new flow and how this first packet is

handled. In this case, the controller implements learning switch be-

havior and hence, the action in the packet-out message is flooding

on all ports of the OpenFlow switch except the ingress port.

In addition, the mapping from source MAC address to ingress

port is learned by the controller but no flow entry is installed in the

switch as the destination MAC address has not yet been learned.

Flow entries are first installed via flow-mod messages if the map-

pings for both addresses have been learned. This behavior is impor-

tant because otherwise, the controller is unable to learn the source

address in response packets as a flow entry with wildcarded source

address prevents subsequent response packets from being sent to

the controller.

The opposite direction for this communication is shown in Fig-

ure 1b. Host 2 now sends a return packet to host 1 which again

arrives at the OpenFlow switch. As there is still no flow entry

in the flow table, either the entire packet or the packet header is

sent to the connected controller. The controller learns the mapping

Figure 2: Implemented OpenFlow messages.

from source MAC address to ingress port and looks up the map-

ping for the destination MAC address. Now, both mappings are

available and hence, the controller installs the corresponding flow

entries via flow-mod messages in the flow table of the connected

switch. In addition, the controller triggers the forwarding of the

packet on port 1 via a packet-out message to the connected switch.

Subsequent packets of this flow can be sent without controller in-

teractions because of the installed entries in the flow table of the

switch.

4. SIMULATION MODEL
In this section, we describe our simulation model of the Open-

Flow protocol as well as the implemented messages, network nodes,

and utility modules.

4.1 Model Overview
Our model of the OpenFlow protocol is based on the OpenFlow

switch specification version 1.2 [9] and uses the INET framework

[13]. For the implementation of the model, we used the open-

flow.h header file to model the protocol and its defined messages

as close as possible. The implemented nodes comprise the Open-

Flow switch and OpenFlow controller as well as the most impor-

tant messages which are required for the communication between

switch and controller on the OpenFlow channel. In addition to the

OpenFlow nodes, utility modules were implemented which pro-

vide further required functionality like a spanning tree module and

a controller placement module. More details and chosen design

options are presented in the following subsections.

4.2 OpenFlow Messages
The implemented messages of the OpenFlow protocol can be

seen in Figure 2. Not all messages are implemented in the cur-

rent state but the implemented subset nevertheless allows exhaus-

tive simulations of OpenFlow enabled networks. All messages are

sub-classes of the OFP_Header message class which includes the

OpenFlow message header definition and the corresponding C++

structs so that the messages model their real counterparts as close

as possible.

The implemented messages comprise the OFP_Features_Request

and the OFP_Features_Reply which are required for the initializa-

tion of the OpenFlow channel between switch and controller. The

OFP_Packet_In message is used by the switch to inform the con-

troller about an unmatched incoming packet or to send an incom-

ing packet to the controller if it is the associated action of a match.

The message either contains the encapsulated packet or simply the

buffer ID of the buffered packet. In the controller-to-switch direc-

tion, the OFP_Packet_Out message is used by the controller to send

a packet out of a specified port at the switch. Finally, the controller

can manage the flow table of the switch via the OFP_Flow_Mod

message type which includes the packet match fields as well as the

corresponding actions.



Figure 3: Implemented model of the OpenFlow switch.

4.3 OpenFlow Nodes
In this section, we give more implementation details and explain

design choices for the two OpenFlow nodes.

4.3.1 OpenFlow Switch

The model of the OpenFlow switch can be seen in Figure 3. In

the figure, we have highlighted the separation of data plane and

control plane. The data plane contains an EtherMAC module which

is connected to the outside and receives the incoming messages on

the data plane. The received Ethernet frames are passed up with-

out any modifications to the OF_Processing module which imple-

ments the OpenFlow switch functionality on the data plane. This

functionality comprises flow table lookups for all incoming pack-

ets to find a possible match or informing the OFA_Switch module

on the control plane about packet-in events of unmatched pack-

ets. As the applied operations may have different complexities,

the OF_Processing module considers this fact by applying a ser-

vice time which delays the simulation for the configured amount

of time. This service time models the processing time of a real

OpenFlow switches. In [4] for example, we have investigated this

property for an OpenFlow switch and found out that the forward

queue has an average service time of 9.8 µs.

For the inter-module communication between data plane and con-

trol plane, the OMNeT++ signal concept is used (see Section 4.14

in the OMNeT++ user manual). Hence, the OF_Processing module

emits a no-match-found signal and the OFA_Switch module sub-

scribes to this signal. The OFA_Switch module implements the

OpenFlow switch functionality on the control plane and is respon-

sible for the communication with the OpenFlow controller. Hence,

on module startup, the OFA_Switch module establishes a TCP con-

nection to the controller and negotiates the supported OpenFlow

version and capabilities. In case of a no-match-found event, the

OFA_Switch module takes the unmatched packet and prepares an

OFP_Packet_In message for the controller. This message either

contains the encapsulated complete packet or just the buffer ID.

In case only the buffer ID is added, the Buffer module stores the

packet until the OFP_Packet_Out message from the controller ar-

rives. The option whether the packet is buffered or not can be con-

figured via a configuration parameter of the switch.

The other modules in the control plane of the OpenFlow switch

are part of the TCP/IP stack and are required as the OFA_Switch

module is modeled as a TCP application because the OpenFlow

channel uses a TCP connection. Over this channel, the OFA_Switch

Figure 4: Implemented model of the OpenFlow controller.

module receives OFP_Packet_Out and OFP_Flow_Mod messages

from the controller. For each received OFP_Flow_Mod message

from the connected controller, the OFA_Switch module takes the

contained match and set of actions and adds a corresponding flow

entry to the FlowTable module.

For received OFP_Packet_Out messages, the OFA_Switch mod-

ule needs to trigger the OF_Processing module to apply the speci-

fied output action. This action could be either flood-packet or send-

packet. For both actions, a corresponding event is emitted. Hence,

the OF_Processing module is also subscribed to the associated ac-

tions signal. The emitted event may either contain the complete

packet or just the buffer ID with which the packet can be retrieved

from the Buffer module.

4.3.2 OpenFlow Controller

The model of the OpenFlow controller can be seen in Figure 4.

The control plane part contains TCP/IP stack relevant modules as

well as the OFA_Controller application module which realizes the

controller functionality. Similar to the OFA_Switch module, the

OFA_Controller module includes a service time parameter which

considers the processing time of real OpenFlow controllers. Ac-

cording to [4], the average service time for the controller is set to

240 µs. However, this module only provides public methods which

can be used to send OFP_Packet_Out and OFP_Flow_Mod mes-

sages to the connected OpenFlow switch. The actual controller be-

havior is realized in a separate module called OF_Controller_App.

This is a controller module interface which is implemented by the

different controller behavior modules. This way, it is very easy to

configure as the desired behavior can be chosen via a configuration

parameter.

The communication between the OFA_Controller module and

the OF_Controller_App is again realized via the OMNeT++ signal

concept. For each received OFP_Packet_In message, the OFA_

Controller module emits a packet-in signal and includes the re-

ceived packet. The OF_Controller_App module subscribes to this

signal and takes the included packet. Other signaling messages

like OFP_Features_Reply message are handled directly by the OF_

Controller module which maintains a list of all connected Open-

Flow switches and their supported OpenFlow version and switch

capabilities. This stored information may be requested by the OF_

Controller_App module, if the implemented function requires this

knowledge about the connected switches.

As explained above, the OF_Controller_App module is a dummy



(a) Switch behavior.

(b) Forwarding behavior.

Figure 5: Comparison between Switch and Forwarding behav-

ior for communication between source and destination host.

module which can be replaced by different controller behaviors and

which receives packet-in signals from the OF_Controller module.

Depending on its implemented behavior, the received signal in-

duces different operations and once finished may trigger the re-

quired public methods at the OFA_Controller module. Currently,

there are three implemented controller behaviors which are Hub,

Switch, and Forwarding behavior.

Hub and Switch behavior modules model ordinary Ethernet hub

and switch functionality and were implemented as a test for the

OpenFlow protocol. A more sophisticated controller behavior is the

Forwarding behavior. In the following, we explain the difference

between Switch and Forwarding behavior by means of Figure 5 as

this is required later on in Section 5.

Figures 5a and 5b both show the same network with three hosts

and two OpenFlow switches interconnecting these hosts. Both Open-

Flow switches are connected to the same OpenFlow controller. In

Figure 5a, the data packet from host 1 arrives at the first OpenFlow

switch which has no flow entry yet and hence sends a OFP_Packet_

In message to the controller. The controller answers with OFP_

Packet_Out and OFP_Flow_Mod messages and the data packet is

forwarded to the second switch which also has no flow entry yet.

Hence, the signaling process between the OpenFlow switch and the

OpenFlow controller is repeated. Eventually, the packet arrives at

host 2. In Figure 5b, the same communication example is shown

for an OpenFlow controller with Forwarding behavior. The for-

warding behavior module has complete knowledge about the net-

work and hence knows which other OpenFlow switches are located

on the path to host 2. This knowledge is now used to signal the

complete path from host 1 to host 2 in reverse order starting at the

second switch. This way, the second OpenFlow switch already has

the correct flow entry when the data packet arrives which reduces

the total end-to-end delay and the number of signaling messages

at the OpenFlow controller. In Section 5, two different controller

behaviors for a real network topology will be compared.

4.4 Utility Modules
In this section, we describe two utility modules which have been

implemented to ease the setup of larger networks. The first module

ensures loop-free Ethernet networks by applying a spanning tree

algorithm and the second module places an OpenFlow controller in

a network at different locations.

4.4.1 Spanning Tree

For Ethernet switched networks where the underlying topology

is not loop-free, the spanning tree protocol calculates loop-free

spanning trees to avoid broadcast radiation where broadcast frames

are for example repeatedly replicated in a loop of connected Eth-

ernet switches. A similar functionality is implemented in the NOX

controller [2] for OpenFlow networks. The basic spanning tree

module builds a spanning tree but does not interact with the stan-

dard spanning tree protocol.

The spanning tree module in our model applies the same calcu-

lation but is realized in a separate module and is not part of the

controller module. The spanning tree module has complete knowl-

edge about the OpenFlow switch topology and builds the spanning

tree at simulation start. Each OpenFlow switch interface on the

data plane has a NO_FLOOD bit which is used for that purpose.

If the bit is set, the corresponding link is not part of the spanning

tree topology. The processing of received packets at OpenFlow

switches hence needs to take the NO_FLOOD bit into account.

For each received packet on the data plane, the OpenFlow switch

first identifies whether the ingress port of the data packet is part of

the spanning tree (NO_FLOOD bit = false). In case the link is part

of the tree, the packet is processed as usually. However in case

the link is not part of the spanning tree, the packet is only further

processed if the destination MAC or IP address is known. This way,

packets which are broadcast on a link outside the spanning tree are

not further processed at the next switch as the NO_FLOOD bit is

set on the ingress port of that switch. A detailed description of the

implemented spanning tree algorithm can be found in [1].

4.4.2 Controller Placement

The motivation for the controller placement module is to eval-

uate the effect of different controller placements on a variety of

performance metrics, for example the mean round-trip-time for the

hosts in the investigated network. In the current version, only a

single OpenFlow controller is dynamically placed in the network

and directly connected via a separate link to the different Open-

Flow switches. This approach can be compared with out-of-band

signaling where signaling messages are transmitted via a separate

management connection. To account for different controller place-

ments, the link delay between switch and controller is set according

to the shortest path on the data plane.

5. EVALUATION
In this section, we present a brief evaluation with respect to the

mean round-trip-time in an OpenFlow enabled network for two dif-

ferent controller architectures.

5.1 Simulation Setup
In [3], different controller placements were evaluated for the

Open Science, Scholarship, and Services Exchange (OS3E) infras-

tructure topology [7]. The OS3E infrastructure is one of the first

production deployments of OpenFlow technology and hence it is

an ideal reference scenario. Our model of this topology can be

seen in Figure 6a and we conduct a similar evaluation as in [3] to

prove the correctness of our implemented model.

The topology comprises 34 locations which are represented by

OpenFlow domains. Each domain consist of an OpenFlow switch,

several hosts and optionally an OpenFlow controller. The number

of hosts can be defined by the user. The different domains are con-



(a) OMNeT++ network model.

Index Location Index Location

1 Vancouver 18 Louisville

2 Seattle 19 Nashville

3 Portland 20 Memphis

4 Sunnyvale 21 Jackson

5 Los Angeles 22 Baton Rouge

6 Missoula 23 Cleveland

7 Salt Lake City 24 Pittsburgh

8 Phoenix 25 Atlanta

9 Denver 26 Jacksonville

10 Albuquerque 27 Buffalo

11 El Paso 28 Ashburn

12 Minneapolis 29 Raleigh

13 Kansas City 30 Washington DC

14 Dallas 31 Miami

15 Houston 32 Philadelphia

16 Chicago 33 New York

17 Indianapolis 34 Boston

(b) Domain indices

Figure 6: Simulation model and domain indices for OS3E infrastructure topology

nected via a new channel type which uses the geographical distance

between two locations to calculate the delay on that link. The link

delay for fiber cable can be calculated as the distance divided by

the propagation speed for optical fiber. The propagation speed is

defined as the speed of light divided by the refraction index which

is 1.5 for fiber cable. Hence, the link delay is obtained by dividing

the geographical distance by two thirds of the speed of light.

As the performance metric for our evaluation is the mean round-

trip-time (RTT), each host contains a modified ping application.

For each sent echo request message, the application chooses a ran-

dom host among the available 34 domains and then measures the

RTT for the received echo reply message. After a ping has been

performed, the application waits two seconds and then starts the

next ping to another random destination. The simulation time for

each run is set to 500 seconds which results in about 250 RTT mea-

surements per domain. Over these 250 measurements, we compute

the mean RTT per domain in seconds which indicates, how well

the domain is connected to other domains in terms of RTT. This is

done for all domains per run which results in one mean RTT value

per domain and 34 mean RTT values in total. In addition, we repeat

each run eight times with different random number seeds in order

to exclude simulation artifacts and to obtain mean and confidence

intervals over the different repetitions.

5.2 Multiple Controllers
In the first scenario, each location has its own OpenFlow con-

troller which implements Ethernet switch behavior. The OpenFlow

switches are configured to buffer the packets and send the header

fields to the connected controller. The entire network uses Ethernet

links and there is one endhost per OpenFlow domain.

As the evaluated topology is not loop-free, the spanning tree

module needs to be placed in the network. As an example, the green

links in Figure 6a show the calculated spanning tree for KansasC-

ity as root. When choosing the root, care has to be taken because

a bad spanning tree may negatively influence the mean round-trip-

time for a certain location as data packets only take the links on the

spanning tree which are not necessarily part of the shortest path.

At simulation start, the controllers with switch behavior have not

yet learned any mappings from MAC address to port and hence,

all packets are broadcast along the links of the spanning tree. This

way however, the controllers only learn ports which correspond to

the spanning tree links possibly resulting in much longer paths. In

Figure 6a for example, Jacksonville and Atlanta are directly con-

nected but this link is not part of the spanning tree. Hence, data

packets take a large detour via among others Houston, KansasCity,

Chicago, and Nashville.

To further investigate that effect, we conduct the mean round-

trip-time evaluation for each location as root of the spanning tree

and hence obtain 34 different runs. Figure 7 shows the results as

boxplot. The x axis shows the spanning tree root location index

(see Table in Figure 6b) and the y axis shows the mean RTT per do-

main. The indexing of the OpenFlow domains starts at Vancouver

in the northwest and continues to Boston in the northeast. Hence,

domains with an index lower than 11 are located in the western

part of the map while domains with an index larger or equal 11 are

located in the eastern part.

For each spanning tree root location, the central red line in the

blue box denotes the median over all mean RTTs while the edges

are the 25th and 75th percentiles. The whiskers extend to extreme

outliers but are at most 1.5 of the inter-percentile difference. Data

points which lie outside the whisker range are drawn as red crosses.

The boxplot representation gives a nice understanding about how

the mean RTT values are distributed for a specific spanning tree.

For a good spanning tree, not only the median should be small but

also the mean RTT values should be relatively dense around the me-

dian which shows that each domain has a similar mean RTT. The

pure median would not be sufficient because it does not consider

extreme outliers. The spanning trees which are for example rooted

at location 13 (Kansas City) and 16 (Chicago) offer similar median

and percentiles but Chicago has the larger whisker range which de-

notes domains with a very high mean RTT. Considering that, the

spanning tree which is rooted at Kansas City offers the best mean

RTT over all domains. The worst spanning tree is rooted either at

location 1 (Vancouver) or location 2 (Seattle) and has the highest

median and the most extreme outliers. For that tree, all paths from

southern domains to northern domains go through Seattle which

results in a very high mean RTT.

The presented multiple controller scenario should mainly demon-

strate that our Ethernet switch implementation inside the OpenFlow

controller works and that the entire network behaves like an Ether-



5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

M
e
a
n
 R

T
T

 p
e
r 

d
o
m

a
in

 [
s
]

Spanning tree root location index (see Table in Figure 7b)

Best spanning tree: Kansas City

Worst spanning tree: Vancouver or Seattle

Figure 7: Boxplot of mean RTT per domain for all 34 different

spanning tree roots.

net network. A typical OpenFlow deployment however would not

comprise an OpenFlow controller per domain but usually would in-

volve only a few controllers which allow a central management of

the entire network. Considering that, we present another extreme

scenario with only one OpenFlow controller for the entire network

in the next section.

5.3 Single Controller
In the second scenario, there is only one central OpenFlow con-

troller which is connected via separate control links to all possible

34 domains. We use the controller placement module (see Section

4.4.2) to simulate different placements of the OpenFlow controller

by setting the control link delay according to the theoretical place-

ment of the OpenFlow controller. This way, we want to investigate

what would be the best location for the controller with respect to

mean RTT of the different domains.

The central controller in this scenario has complete knowledge

about the network and uses the Forwarding behavior module as ex-

plained in Figure 5b for the set up of flow entries. The spanning

tree module is also required as the underlying Ethernet topology

remains the same as in the first evaluation. However, the spanning

tree has less influence as the Forwarding behavior module calcu-

lates and installs the shortest path towards the destination MAC

address in all OpenFlow switches on the shortest path towards the

destination. Only the initial ARP request messages are broadcast

and traverse the spanning tree. Subsequent echo request and echo

reply message are unicast and follow the installed shortest path.

To get a general feeling about the effect of the different controller

placements, Figure 8 shows a graphical representation of the dif-

ferent mean RTT values per domain and per controller placement.

The x axis shows the different possible controller placements rep-

resented by the index of the domain in which the controller has

been placed. The y axis shows the different domains for which the

mean RTT has been measured to all other domains. The color of

the rectangle denotes the value of the mean RTT according to the

color bar shown on the right hand side of the figure. Blue colors

denote a low mean RTT while red colors denote a high mean RTT

value. The green rectangle at (8,1) shows for example that if the

controller is placed in domain 8 (Phoenix), domain 1 (Vancouver)

has a medium mean RTT of about 0.12 s to all other domains.

The brighter areas in the lower right and upper left corner of the

plot constitute measurements with higher mean RTT values and

can be explained due to the large distance between domain and

controller location in those cases. The distance between switch and

Figure 8: Surface plot of mean RTT per domain for different

controller placements.

controller is highest if the controller is for example located in the

western part while the switch is located in the eastern part or vice

versa. This is true when the controller index is low and the domain

index is high or the controller index is high and the domain index

is low. The two red spots in the lower right corner for example

correspond to controller placements in Jacksonville (index 26) and

Miami (index 31). For those placements, the three domains located

in the northwest (Vancouver, Seattle, and Portland with index 0, 1,

and 2) have a great distance to the controller and hence, the mean

RTT is larger than 0.15 s. The large dark blue area from the center

to the upper right corner corresponds to controller placements and

domain indices larger than 11. Domains with index larger than 11

are in the eastern part of the network where the topology is dense

and well connected. Placing the controller there results in a very

low mean RTT for those domains and in a moderate mean RTT

for the domains in the western part except for the two controller

placements in Jacksonville (index 26) and Miami (index 31).

The presentation in Figure 8 gives a nice understanding about

the correlation between controller placement and mean RTT per

domain but it is difficult to see which placement is the best. For

that purpose, Figure 9 shows the results again as boxplot. The x

axis shows the controller location index (see Table 6b) and the y

axis shows the mean RTT per domain. For each controller loca-

tion, the central red line in the blue box denotes the median over

all mean RTTs while the edges are the 25th and 75th percentiles.

The whiskers extend to extreme outliers but are at most 1.5 of the

inter percentile difference. Data points which even lie outside the

whisker range are drawn as red crosses.

It is apparent that the controller placements in the core of the

topology (indices 16 till 19) provide the best results with respect

to the mean RTT per domain. From these four possibilities, the

placement in Nashville with index 19 has the lowest median mean

RTT while the placement in Louisville with index 18 has a some-

what higher median but the whisker range is smaller. So the place-

ment choice depends on whether the median should be smaller or

the worst case mean RTT should be smaller. These results differ

from those in [3] but can be explained due to not considered effects

like the spanning tree and a slightly different performance metric.

Our evaluation involves the simulation of an Ethernet network with

all comprised effects and as performance metric, we use the mean

RTT of a single domain to all other domains. The authors in [3]

solve a theoretical facility location problem and hence consider the

mean latency between controller and the different domains as met-

ric. Both approaches are suitable while ours offers more flexibil-



5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

M
e
a
n
 R

T
T

 p
e
r 

d
o
m

a
in

 [
s
]

Controller location index (see Table in Figure 7b)

Figure 9: Boxplot of mean RTT per domain for different controller placements.

ity for example with respect to different realizations of distributed

controller architectures. We are currently working on that feature

so not only single controller scenarios can be evaluated.

6. CONCLUSION
In this work, we presented the integration of the OpenFlow pro-

tocol version 1.2 [9] in the INET framework for OMNeT++. The

implemented simulation model comprises OpenFlow switch, Open-

Flow controller, and the most important messages required to sim-

ulate OpenFlow enabled networks. Whenever possible, we used

the openflow.h header file to model the protocol and its messages

as close as possible.

As first evaluation scenarios, we evaluated different controller

architectures for the Open Science, Scholarship, and Services Ex-

change (OS3E) infrastructure topology which is one of the first

OpenFlow productive networks. The presented single controller

scenario demonstrates for example what is possible with our im-

plementation of the OpenFlow protocol in INET. However, the cur-

rently implemented OpenFlow model is restricted to single con-

troller deployments and distributed controller architectures are not

possible in the current state.

As future work, we will extend our model so that it can be used

as generic framework for the simulation of more sophisticated dis-

tributed controller architectures, which use for example a hierar-

chical approach. Therefore, it is necessary to introduce different

controller domains which partition the network. This approach

further requires inter-controller communication and a master con-

troller which manages the different domains and ensures connectiv-

ity. As a last step, also resilience should be considered, for example

by introducing backup controllers. The current implementation is

available at [12] so that other researchers may use and extend our

OpenFlow simulation framework.

7. ACKNOWLEDGEMENTS
The authors would like to thank Christian Rachor for the imple-

mentation as well as Rastin Pries and Prof. Tran-Gia for the support

in this work. This work was funded by Deutsche Forschungsge-

meinschaft (DFG) under grant TR257/23-3. The authors alone are

responsible for the content of the paper.

8. REFERENCES
[1] G. Gibb. Basic Spanning Tree for NOX Controller.

http://www.openflow.org/wk/index.php/Basic_Spanning_Tree,

Nov 2010.

[2] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,

N. McKeown, and S. Shenker. NOX: towards an operating

system for networks. SIGCOMM Comput. Commun. Rev.,

38(3):105–110, Jul 2008.

[3] B. Heller, R. Sherwood, and N. McKeown. The controller

placement problem. In Proceedings of the first workshop on

Hot topics in software defined networks, HotSDN ’12, pages

7–12, New York, NY, USA, 2012. ACM.

[4] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and

P. Tran-Gia. Modeling and Performance Evaluation of an

OpenFlow Architecture. In 23rd International Teletraffic

Congress (ITC 2011), San Francisco, CA, USA, Sep 2011.

[5] B. Lantz, B. Heller, and N. McKeown. A network in a

laptop: rapid prototyping for software-defined networks. In

Proceedings of the Ninth ACM SIGCOMM Workshop on Hot

Topics in Networks, page 19. ACM, 2010.

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford, S. Shenker, and J. Turner.

OpenFlow: enabling innovation in campus networks.

SIGCOMM Comput. Commun. Rev., 38(2):69–74, Mar 2008.

[7] Network Development and Deployment Initiative (NDDI).

Open Science, Scholarship, and Services Exchange (OS3E).

http://www.internet2.edu/network/ose/, 2012.

[8] NS-3 v3.16. OpenFlow switch support.

http://www.nsnam.org/docs/release/3.16/models/html/

openflow-switch.html, Dec 2012.

[9] Open Networking Foundation. OpenFlow Switch

Specification - Version 1.2 (Wire Protocol 0x03).

https://www.opennetworking.org/images/stories/

downloads/specification/openflow-spec-v1.2.pdf, Dec 2011.

[10] Open Networking Foundation. Software-Defined

Networking: The New Norm for Networks. In ONF White

Paper, Apr 2012.

[11] D. Pitt. Open Networking Foundation.

https://www.opennetworking.org/, 2012.

[12] University of Wuerzburg. Openflow research activities.

http://www3.informatik.uni-wuerzburg.de/research/

ngn/openflow.shtml, Feb 2013.

[13] A. Varga. INET Framework for the OMNeT++ Discrete

Event Simulator. http://github.com/inet-framework/inet,

2012.

[14] A. Varga and R. Hornig. An overview of the OMNeT++

simulation environment. In International Conference on

Simulation Tools and Techniques for Communications,

Networks and Systems, Mar 2008.

[15] K.-K. Yap. OpenFlowVMS - Simulating OpenFlow

Network(s). http://www.openflow.org/

wk/index.php/OpenFlowVMS, Mar 2011.


