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Abstract—Network devices for the home such as re-

motely controllable locks, lights, thermostats, cameras,

and motion sensors are now readily available and inex-

pensive. In theory, this enables scenarios like remotely

monitoring cameras from a smartphone or customizing

climate control based on occupancy patterns. However,

in practice today, such smarthome scenarios are limited

to expert hobbyists and the rich because of the high over-

head of managing and extending current technology.

We present HomeOS, a platform that bridges this gap

by presenting users and developers with a PC-like ab-

straction for technology in the home. It presents network

devices as peripherals with abstract interfaces, enables

cross-device tasks via applications written against these

interfaces, and gives users a management interface de-

signed for the home environment. HomeOS already has

tens of applications and supports a wide range of devices.

It has been running in 12 real homes for 4–8 months, and

42 students have built new applications and added sup-

port for additional devices independent of our efforts.

1 Introduction

Pop culture, research prototypes and corporate demos

have all envisioned a smart, connected home where mul-

tiple devices cooperate to cater to users’ wishes with lit-

tle or no effort. For instance, in a home with remotely

controllable lights, cameras and locks, it should be easy

to automatically adjust lights based on the weather and

time of day as well as remotely view who is at the door

before unlocking it. But such seamless home-wide tasks

are conspicuously absent from the mainstream despite

the fact that the needed hardware devices are reasonably

priced—wireless lightswitches, door locks, and cameras

can each be bought for (US) $50–100.

Studies of technology use in the home help explain

the gap between the longstanding vision of connected

homes and its reality [7, 8, 15, 22, 34]. They find that it

is increasingly difficult for users to manage the growing

number of devices in their homes. Further, application

software that can compose the functionality of these de-

vices is hard to develop because of extreme heterogeneity

across homes, in terms of devices, interconnectivity, and

user preferences. Finally, finding hardware and software

that is compatible with existing home technology is er-

ror prone at best. This is problematic as users prefer to

organically add a few devices or applications at a time.

We argue that this state of affairs stems directly from

the abstractions that home technology presents to users

and developers. There are two prevalent abstractions to-

day: an appliance and a network-of-devices. The appli-

ance abstraction is that of a closed, monolithic system

supporting a fixed set of tasks over a fixed set of devices.

Commercial security and automation systems [1, 12] and

many research efforts [29, 43] present this abstraction.

The closed nature of such systems means that end users

and third-party developers typically cannot extend them,

making it a poor fit for an environment where incremen-

tal extensions are desired.

The second abstraction is a decentralized network-of-

devices. Interoperability protocols such as DLNA [14],

Z-Wave [46] and SpeakEasy [16] provide this abstrac-

tion. It is also a poor fit for the home because it provides

limited or no support for users to manage their technol-

ogy or for developers to build portable applications that

span multiple devices.

In this paper, we advocate for a PC-like abstraction

for technology in the home—all devices in the home

appear as peripherals connected to a single logical PC.

Users and applications can find, access and manage these

devices via a centralized operating system. The op-

erating system also simplifies the development of ap-

plications by abstracting differences across devices and

homes. Further, it provides a central location to extend

the home by adding new devices and applications.

We present an architecture to provide the PC abstrac-

tion for home technology and its instantiation in the form

of a system called HomeOS. Its design is based on user

interviews and feedback from a community of real users

and developers. It has been under development for over

two years.

HomeOS uses (i) Datalog-based access control and

other primitives that simplify the task of managing tech-

nology in the home, (ii) protocol-independent services

to provide developers with simple abstractions to access

devices and (iii) a kernel that is agnostic to the devices

to which it provides access, allowing easy incorporation



of new devices and applications. HomeOS runs on a ded-

icated computer in the home (e.g., the gateway) and does

not require any modifications to commodity devices.

Our current prototype supports several device proto-

cols (e.g., Z-Wave and DLNA) and many kinds of de-

vices (e.g., lights, media renderers and door/window sen-

sors). It runs in 12 real homes and 42 students have

developed applications using it. These homes run ap-

plications varying from getting e-mail notifications with

photos when the front or back door is opened at unex-

pected times, to seamlessly migrating video around the

house. Students have built applications ranging from us-

ing Kinect cameras to control devices via gestures to per-

sonalized, face-recognition-based reminder systems.

The experiences of these users and developers, along

with our controlled experiments, help validate the use-

fulness of the PC abstraction and our design. Users were

able to easily manage HomeOS and particularly liked

the ability to organically add devices and applications

to their deployments. Developers appreciated the ease

with which they could implement desired functionality

in HomeOS, without worrying about low-level details of

devices and protocols. These experiences also point to-

ward avenues for future work where we could not pro-

vide a clean PC abstraction. For instance, connectivity

to network devices, especially wireless ones, is harder to

diagnose than for directly connected PC peripherals.

In summary, we make three main contributions. First,

we propose using a PC abstraction for technology in the

home to improve manageability and extensibility. Sec-

ond, we implement this abstraction in HomeOS. While

we do not claim the pieces of our design are novel, to our

knowledge, their use in addressing the challenges of the

home environment is novel. Third, we validate the PC

abstraction and our design with both controlled experi-

ments and real users and developers.

2 A new abstraction for home technology

Our proposal to use a PC-like abstraction for technol-

ogy in the home is motivated by our own recent study

of home technology [7] as well as the work of oth-

ers [8, 15, 22, 34]. We first summarize the challenges

uncovered by this work, then explain why existing ab-

stractions for home technology cannot meet those chal-

lenges, and finally present the PC abstraction.

2.1 Challenges

Home technology faces three main challenges today.

1. Management Unlike other contexts (e.g., enterprise

or ISP networks), the intended administrators are non-

expert users. But the management primitives available to

users today were originally designed for experts. As a

result, most users find them hard to use. Worse, devices

often need to be individually managed and each comes

with its own interface and semantics, rather than having

a single, unified interface for the home.

The management challenge is particularly noteworthy

when it comes to security and access control where users

are frequently forced to choose between inconvenience

and insecurity [7, 22]. When they are unable to eas-

ily and securely configure guest access for devices (e.g.,

printers) on their home networks, they either deny access

to guests or completely open up their networks.

2. Application development Users want to compose

their devices in various ways [34] and software should

be able to do just that, but heterogeneity across homes

makes it difficult to develop such application software.

We identify four primary sources of heterogeneity.

• Topology: Devices are interconnected in different

ways across homes. Some homes have a Wi-Fi-only

network while others have a mix of Wi-Fi, Ether-

net and Z-Wave. Further, some devices use mul-

tiple connectivity modes (e.g., smartphones switch

between home Wi-Fi and 3G).

• Devices: Different devices, even of the same type,

support different standards. For example, light

switches may use Z-Wave, ZigBee or X10; and TVs

use DLNA, UPnP A/V or custom protocols.

• User control: Different homes have different re-

quirements as to how activities should occur [22].

Some homes want the Xbox off after 9 PM and

some want security cameras to record only at night.

• Coordination: If multiple tasks are running, simul-

taneous accesses to devices will inevitably arise.

Such accesses may be undesirable. For instance, a

climate control application may want the window

open when a security application wants it closed.

3. Incremental growth Users frequently want to

grow their technology incrementally, as their preferences

evolve [7, 22]. Such growth is difficult today because

users cannot tell if a given piece of technology will be

compatible with what they currently have. This difficulty

corners them into buying from one vendor (creating lock-

in), seeking expensive professional help, and making sig-

nificant upfront investments (e.g., buying a home-wide

automation system with many features before knowing

which features fit their lifestyle). Supporting incremen-

tal growth is further complicated by the rapid innovation

in hardware and software; users’ existing systems fre-

quently do not support these new technologies.



2.2 Prevalent abstractions

Today, home technology can be seen as presenting one

of two abstractions to users and developers. The first is

the appliance abstraction that provides the same inter-

face that a monolithic, fixed-function device would. It is

used for most home security and home automation sys-

tems where the set of devices and tasks are both closed.

This has the advantage of offering (potentially) simpler

user interfaces and simpler integration across the set of

involved devices. However, it inhibits extensibility and

application development because integration with third-

party devices and software is typically not possible. As a

result, the security, audio-video, and automation systems

are mutually isolated in many homes [7, 22].

The second abstraction is a network-of-devices,

which arises from interoperability protocols offering

standardized interfaces to devices. This means that, in

theory, applications can remotely control devices and de-

vices can be integrated to accomplish tasks. For instance,

DLNA allows some TVs to play media content from a

computer. In practice, it leaves too much for users and

developers to do for themselves. Users interact with each

device’s own management interface and application de-

velopers must deal with all the sources of heterogeneity

mentioned above.

2.3 The PC abstraction

The abstractions prevalent today demonstrate the inher-

ent tension between ease of management on one side

and extensibility (for both applications and devices) on

the other. The appliance abstraction can provide simple

user management (at least for the included devices), but

typically does not accommodate new devices and appli-

cations. On the other hand, the network-of-devices ab-

straction readily incorporates new devices, but does not

provide the needed support for developing cross-device

applications or simple management tools.

We propose to resolve this tension by presenting the

abstraction of a PC. Network devices appear as con-

nected peripherals, and tasks over these devices are akin

to applications that run on a PC. Users extend their home

technology by adding new devices or installing new ap-

plications without any guesswork with respect to com-

patibility. They implement desired access control poli-

cies by interacting with the operating system, rather than

with individual devices and applications. Finally, appli-

cations are written against higher-level APIs, akin to ab-

stract PC driver interfaces, where developers do not have

to worry about low-level details of heterogeneous de-

vices and their connectivity. Our proposal is inspired by
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Figure 1: Layers in HomeOS and their considerations

current PC OSes that make some network devices (e.g.,

printers) appear local. We take this design to its logical

extreme, making all network devices appear local, while

tackling other challenges of the home environment.

3 HomeOS architecture

HomeOS uses a layered architecture (Figure 1) to bri-

dle the complexity of the home environment and address

the challenges mentioned in the previous section. Be-

low, we describe each of the four layers in detail, but

briefly, the key elements of our approach are: (i) pro-

viding users with management primitives and interfaces

that align with how they want to manage and secure their

home technology, (ii) providing application developers

with high-level APIs that are independent of low-level

details of devices, and (iii) having a kernel that is inde-

pendent of specific devices and their functionality. Our

design borrows heavily from traditional OSes but also

differs from them in a few key ways.

3.1 Device connectivity layer

The Device Connectivity Layer (DCL) solves the prob-

lems of discovering and associating with devices. This

includes dealing with issues arising from protocols de-

signed to operate only on one subnet (e.g., UPnP) as

well as connecting to devices with multiple connectivity

paradigms (e.g., a smartphone on WiFi vs. 3G).

The DCL provides higher layers with handles for ex-

changing messages with devices, but it attempts to be as

thin as possible, avoiding any understanding of device

semantics. There is one software module in the DCL for

each protocol (e.g., DLNA and Z-Wave). This module

is also responsible for device discovery, using protocol-

specific methods (e.g., UPnP probes). If it finds an un-

known device it passes that up to the management layer

where the proper action can be taken.

The DCL frees developers from worrying about some

of the most pernicious issues in using distributed hard-



Pan, Tilt and Zoom Camera

GetImage() → bitmap

GetVideo()† → bitmaps

Up()

Down()

Left()

Right()

ZoomIn()

ZoomOut()

DLNA Media Renderer

Play(uri)

PlayAt(uri, time)

Stop()
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Dimmer Switch

Get()† → percent
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Figure 2: Example HomeOS roles and their operations. ‘†’

indicates that the operation can be subscribed to

ware by having a different layer take care of discovering

and maintaining connectivity to devices.

3.2 Device functionality layer

The Device Functionality Layer (DFL) takes the handles

provided by the DCL and turns them into APIs that de-

velopers can easily use. These APIs are services that are

independent of device interoperability protocols (§3.2.1),

and the DFL is architected to allow easy incorporation of

new devices and interfaces whether they are similar to

existing ones or not (§3.2.2).

3.2.1 Protocol-independent services

DFL modules provide device functionality to applica-

tions using a service abstraction. We refer to service in-

terfaces as roles, and each role contains a list operations

that can be invoked. For instance, the “lightswitch” role

has two operations, “turnOn” and “turnOff,” each tak-

ing no arguments. Role names are unique with seman-

tics; “lightswitch” implies functionality that is the same

across device vendors and homes. Operations may return

results immediately and/or allow subscription to events

of interest (e.g., when a light switch is physically tog-

gled). Figure 2 shows a few example roles in HomeOS.

In HomeOS, DFL specifications only capture device

functionality (and no other detail), and thus the applica-

tions that use them do not require changes unless device

functionality itself evolves. (We describe below how we

handle changing device functionality.) In contrast, the

common method today for applications to use network

devices is to use a device protocol. For instance, an ap-

plication might use DLNA to play videos on a remote

TV. Using device protocols is problematic because there

are many such protocols and they continue to evolve.

We believe that continuous evolution of device pro-

tocols is inevitable because they tend to be fat, spanning

many layers and concerns. For instance, Z-Wave speci-

fies not only device functionality but also MAC and PHY

layer details, and UPnP requires the use of HTTP, SOAP,

DFL

DCL

(a) (b) (c)

Figure 3: The organization of software modules in HomeOS

(a) and two alternative organizations (b) and (c); Solid regions

represent protocol-specific code and hatched regions represent

protocol-independent code

XML and TCP/IP. As technology changes or new con-

cerns arise (e.g., low-energy, low-bandwidth), new pro-

tocols emerge to meet engineering needs.

3.2.2 Extensibility

Introducing new devices in HomeOS is straightforward.

A new device can either use an existing role or, if it is a

new type of device, a new role can be registered for its

functionality. Applications can then be written against

this new role, without the need to upgrade HomeOS itself

because the kernel is completely agnostic to the services

spoken across it. This behavior is different from periph-

eral APIs in current PC OSes which typically require OS

updates to provide common support for new peripher-

als to application developers. Simplifying the introduc-

tion of new functionality is important in the home where

new devices arrive frequently. Just in the last five years,

devices like depth cameras (Kinect), Internet connected

DVRs, and digital photo frames have gone from nearly

non-existent to commonplace.

Similarly, if a new capability for an existing device is

developed, a new role that exposes the capability can be

registered. The DFL module for this device can export

both the old and new roles for backward compatibility.

Currently, each role in HomeOS is independent; we are

considering arranging them in a class hierarchy in which

subclasses correspond to more specialized functionality.

3.2.3 Alternative architectures

The HomeOS architecture splits device interactions into

two separate layers—a device-agnostic layer (DCL) for

basic connectivity and device-specific layer (DFL) that

builds on this basic connectivity to mediate between ap-

plications and devices. Figure 3(a) illustrates the soft-

ware organization for three devices that share the same

underlying protocol. It is similar to what occurs in PC

OSes for USB devices, with a USB-specific module and

a device-specific module. However, for network devices,

where no universal device protocol exists, this organiza-

tion may appear ill-advised. The knowledge of a device

protocol is spread across two layers, and incorporating a

new protocol requires changes to both.



In the home setting, this design has important advan-

tages over alternatives. Figure 3(b) shows one alterna-

tive that follows a “one driver per protocol” architecture.

It is convenient if there are one or a small number of

supported devices in the protocol, but quickly becomes

cumbersome to maintain as the number of devices in the

protocol grows. A more traditional “one driver per de-

vice” architecture produces the software organization in

Figure 3(c) where both connectivity and functionality are

mediated by a single piece of software for each device.

This not only results in DCL functionality being repli-

cated if multiple devices use the same protocol, but also

necessitates coordination among modules communicat-

ing to different devices. For instance, Z-Wave only al-

lows one live message in the Z-Wave network at a time

requiring coordination among any software modules that

might send Z-Wave messages. Thus, after experimenting

with these alternatives, we chose to split device commu-

nication across DCL and DFL as shown in Figure 3(a).

3.3 Management layer

The management layer in HomeOS provides two key

functionalities. First, it provides a central place to add

and remove applications, devices, and users as well as

to specify access control policies. Second, it mediates

potentially conflicting accesses to devices ensuring that

applications do not need to build their own mechanisms

to handle shared devices.

We provide both functionalities using the same prim-

itives. A key goal for their design is that they be sim-

ple and translate into management interfaces with which

users can easily implement desired policies. Otherwise,

we risk not only user frustration but also misconfigu-

rations with serious security and privacy consequences,

given the sensitive nature of many devices (e.g., cameras

and locks). To gain insights on the design requirements,

we conduct a study of households with existing automa-

tion. We describe the study in §3.3.1 and the primitives

in §3.3.2. While these primitives do not extend the state

of the art beyond what researchers have proposed in the

past, their simplicity and universal application across an

OS goes beyond commodity OSes.

3.3.1 Understanding management requirements

Users have complex needs of home technology. While

different than those of experts, their own mental mod-

els are often refined. To understand these mental models

and common user activities, we visited households with

home automation already installed (e.g., remote lighting

and locks, security cameras). While we expect HomeOS

to enable tasks not possible today, these households can

give us insight into their experience with current tech-

nology as well as how they would like to manage home

technology in the future. We present results on the for-

mer elsewhere [7] and focus here on the latter aspect.

We interviewed 31 people across 14 homes (1 in the UK,

rest in the USA), with different systems such as Elk M1,

Control4 and Leviton.

Our visits revealed that households want access con-

trol primitives that differ from those present in traditional

OSes. We summarize four important differences below.

1. Time-based access control Our participants wanted

to control access to devices based on time. Parents men-

tioned restricting children from using certain devices af-

ter certain times (e.g., “If my daughter wanted watch

[Curious] George at 11 o’clock at night, I wouldn’t want

to do that”). While social interaction suffices to address

some of these concerns, many parents asked for technical

means as well. Time-based access control is also needed

to give households an ability to grant a variety of access

durations for guests (e.g., a few hours to babysitters and

a few days to house guests).

Current commodity OSes provide coarse-grained

parental controls that can limit whole accounts to certain

times of the day, but they lack flexible controls that can

easily implement policies such as those above.

2. Applications as security principals Users high-

lighted a desire to be able to limit applications’ abilities

to access devices. One participant said “I don’t want to

grant it [the application] access to everything, just my

laptop.” A participant in a different home commented

about another application: “if it said my DVR and my TV

I would say fine, ... if it had my phone or my computer I

would want to be able to choose [what it can access].”

This observation requires treating applications as

first-order security principals, in addition to users. In

current PC OSes, users alone are the primary security

principals (with some exceptions such as firewall rules

in Windows), and applications simply inherit users’ priv-

ileges. While smartphone OSes treat applications as se-

curity principals, they are solving the simpler problem of

regulating single-user, self-contained resources.

3. Easy-to-understand, queryable settings As ex-

pected, users complained about complicated interfaces

to configure devices (and especially security), but they

also bemoaned the lack of a simple way to verify secu-

rity settings. They had no way convince themselves that

they had correctly configured their settings. For exam-

ple, to ask if guests can access security devices or if a

given application cannot unlock the door after 10 PM.

Providing reliable answers to such questions is diffi-



cult in current OSes due to issues such as dynamic dele-

gation [10]. In the home, the consequences of incorrect

configurations can be severe, requiring even more con-

fidence in security. The lack of such a capability can

scare users away from the idea of using new or poten-

tially dangerous capabilities, even if it is possible they

are correctly configured. For instance, a participant with

electronic door locks said he had not hooked up remote

access because he was not “100% certain of its security.”

4. Extra sensitive devices Our users showed height-

ened sensitivity for the security and use of certain devices

(e.g., locks and cameras). They wanted support to ensure

accidentally granting access to such devices was difficult.

3.3.2 Primitives

The requirements for security and access control out-

lined above are in conflict. The first two call for primi-

tives that are richer than those in current OSes. However,

non-experts find it hard to configure and understand even

those primitives [10, 33]. We reconcile the conflict by

noting that the home is a much simpler environment that

does not need much of the complexity motivated by en-

terprise environments (e.g., dynamic delegation, highly-

customizable ACLs and exceptions).

Datalog access control rules We formulate access

control policies as Datalog [9] rules of the form (r, g, m,

Ts, Te, d, pri, a), which states that resource r can be ac-

cessed by users in group g, using module m, in the time

window from Ts to Te, on day of the week d, with prior-

ity pri and access mode a. Time window and day of the

week lets users specify policies by which something is

allowed, for instance, on Sundays 7–9 PM. Groups such

as “kids” and “adults” are configured separately. Prior-

ities are used to resolve conflicting access to the same

resource. Access mode is one of “allow” or “ask.” With

the latter, the users have the option to permit or deny ac-

cess interactively when the access is attempted. Studies

show that users prefer this flexibility rather than having

to specify all possible legal accesses a priori [5, 33]. Any

access that is not in the rule database is denied. While

these rules may seem complex for users at first, they are

amenable to visualization and English sentences like “Al-

low residents to access the living room speakers using the

music player from 8 AM to 10 PM.”

Expressing access control as Datalog rules meets our

requirements. Users can configure time-based policies as

well as restrict an application to accessing only certain

devices. They can also easily understand their config-

uration by queries such as “Which applications can ac-

cess the door?”, “Which devices can be accessed after

10 PM?” or “Can a user ever access the back door lock?”

to fully understand their risk. Reliably providing such

views is straightforward because they can be formulated

as Datalog queries. Answering these queries is fast de-

spite there being many dimensions per rule. Because the

policies are straightforward, as we show later, even non-

experts can configure and understand them.

The main advantage of Datalog over ACLs is its sim-

plicity. ACLs can be more expressive, assuming we ex-

tend them to include time and applications. But they are

hard for users to program [33] and hard to aggregate and

summarize. We are not the first to propose the use of

Datalog for access control, but its use can require major

extensions to accommodate policies of complex environ-

ments [32]. We find that the needs of the home environ-

ment can be met without such extensions.

Past systems looking to simplify access control have

explored using a simple table [38] with the principals

along one axis and the objects along the other with

each cell specifying if access should be allowed. While

promising, this approach does not scale well beyond two

dimensions and our interviews indicated that time and

application were both required dimensions.

Time-based user accounts In addition to the use of

time in access rules, user accounts in HomeOS can have

an associated time window of validity. This window is

used to simplify guest access, which studies have shown

to be both common and particularly problematic [22, 33].

Home owners can start access for a user at a certain time

(e.g., for a future guest) and terminate access at a certain

time (e.g., when the guest is expected to leave). The data

corresponding to the guest (e.g., access privileges) are

not deleted automatically after the validity window, to

simplify reinstating access at a later time.

Hierarchical user and device groups Groups in

HomeOS are arranged in a tree hierarchy. In contrast,

groups in current OSes can be independent sets. We

picked the tree organization because of its simplicity.

When a user group is given access, it enables an easier

determination of which users are given access. A user

who is not part of this group will not inadvertently gain

access because she is part of another group.

For devices, we use a tree hierarchy that is rooted in

space because that matches how users think of resources

in the home. It also aligns well with physical access as it

is delineated by rooms. To our knowledge, current OSes

do not support such device groups. We find that device

groups simplify management; users can specify policies

for groups rather than individual devices.

Orthogonal to spatial grouping, HomeOS has a high-

security group. Users can deem certain devices as high-

security to avoid accidental access to such devices and

simplify the task of keeping the home network secure.



Applications are not given access to secure devices by

default, and the user must explicitly provide access to

such devices. We add some common classes of devices

(e.g., cameras, locks) automatically to this group; users

can later add or remove devices to or from this group.

Access control also forms the basis for privacy in our

design. Applications cannot access sensor data unless

they are granted access to those devices. Further, net-

work access is disabled by default, so they cannot leak in-

formation externally. (Software updates are downloaded

and applied by HomeOS.) Thus, we coarsely control pri-

vacy at the granularity of applications and devices. In the

future, we will consider finer-grained control [42, 44].

3.4 Application layer

The application layer is where developer-written code

runs. The key feature this layer provides, beyond the

ability to use and compose devices, is the ability to de-

termine if an application is compatible with the home and

what services and/or devices are missing if it is not.

Today, users have little assurance that a given piece

of software will work in their home. To address this

uncertainty, HomeOS requires that applications provide

a manifest describing what services they need. This

enables it to determine if an application will function

with the current device services in the home. (A simi-

lar approach is being used to manage handset diversity

in smartphones today.) If the manifest indicates an ap-

plication is not compatible, HomeOS can also determine

what additional devices or services are needed.

A manifest has mandatory and optional features.

Each feature is a set of roles, at least one of which is

needed. For instance, an application may specify {“TV”,

“SonyTV”}, {“MediaServer”} as mandatory features,

indicating that it needs a service with at least one of the

two TV roles and a service that exports a media server. It

might have {“Speaker”} as an optional feature if it offers

enhanced functionality with that role.

Our current manifest descriptions cannot encode

complex requirements (e.g., if an application needs de-

vices to be in the same room). They handle what we

deem to be the common case. Should the need arise, it

would be straightforward for us to enhance manifest de-

scriptions.

4 Design and implementation

HomeOS is an implementation of the above architecture

as a component-based OS. All functionality that is not

central to the platform is implemented by software com-

ponents called modules. Modules that sit in the applica-

tion layer are applications, and those that sit in the DCL

and DFL are drivers.

4.1 Modules

Modules are the basic unit of functionality in HomeOS

and, whether applications or drivers, they implement the

API described in Figure 4(a).

Before a module can be run, it must be installed.

Driver modules are installed when new devices are dis-

covered on the home network; applications are installed

in response to explicit user directives. Modules are in-

stalled by copying the binaries and accompanying meta-

data (e.g., manifests) to a specific directory. Installation

is carried out only if the module is deemed compatible

with the devices in the home. This check is also per-

formed each time the application is run to deal with con-

figuration changes. During installation, users specify if

the module should be started automatically upon system

(re)start or only upon explicit user request. Module up-

dates and uninstallation are carried out by HomeOS and

not by the module itself.

Running modules are isolated to prevent any interac-

tion except via the APIs to the HomeOS platform and the

service interface. By default modules are denied access

to the network. DCL modules are the exception as some

must use the network to control their associated devices.

Even then, when possible we limit connectivity to only

those devices. A module’s file system access is limited

to its own working directory where it can store its data

and configuration.

HomeOS relies on DCL modules to discover new de-

vices on the home network by running protocol-specific

discovery protocols. (We also support a mode where

users can also manually add a device if HomeOS is un-

able to do so automatically.) Once a new device is dis-

covered, HomeOS installs a DFL module for it based on

a database of device type to driver mappings. The de-

vice type is reported by the DCL module and is protocol-

specific. The DFL module is granted access to the ser-

vice that the DCL module exports for this device.

4.2 Services

Services are the only way that modules are allowed to

interact with each other. They do so using a standard-

ized API described in Figure 4(b). Modules advertise the

services they offer to HomeOS which keeps a history of

offered services to enable future compatibility testing.



Start: Called to start a module; modules are garbage

collected when it returns

Stop: Called to request a module to stop; where state

can be cleaned up before exit

SvcRegistered: Called when a new service becomes

active; used to listen for services of interest

SvcDeregistered: Called when a service becomes in

active; used to avoid using inactive services

AsyncReturn: Called whenever a subscription gener-

ates an event or asynchronous call returns

(a) API for HomeOS modules

InitSvcAndCapability: Creates a service and a capability to access it; returns the

service handle back

RegisterSvc: Registers the service as active advertising it to other modules

DeregisterSvc: Marks a service as being inactive and notifies other modules

GetAllSvcs: Returns a list of all active services

GetCapbility: Requests a capability to access a given service

IsMySvc: Returns whether a given service belongs to this module

Invoke: Used to call an operation either synchronously or asynchronously

Subscribe: Subscribe to notifications from an operation

SpawnSafeThread: Create new thread which safely propagate its failures

(b) API For finding and interacting with HomeOS services

Figure 4: The APIs for modules (a) and services (b) in HomeOS

Modules inform HomeOS about services of interest

to them using role names and/or locations. (Note that ex-

pressing interest does not grant access to a service other

than to know of its existence and description.) When a

service is registered, modules that have expressed inter-

est in it are notified. A module can then query the service

for its description as well as its location. Querying for the

existence of a service does not require access privileges.

When a module needs to invoke an operation on a ser-

vice, it requests a capability [31] from HomeOS. As part

of the request, the module passes the credentials of the

user it is running on behalf of. Without valid credentials,

the request is successful only if the access is legal for all

users. Drivers are handled slightly differently and typi-

cally have rules that give them access to their correspond-

ing devices regardless of the user. User-controlled policy

is applied when applications access the driver rather than

when the driver accesses the device.

The legality of the requested access is evaluated by

HomeOS based on the user, module, service, and time of

day, by formulating the check as a Datalog query over

the users table and access rules. If legal, a capability

is generated and returned. A copy of the capability is

then passed to the target service; this makes it easier for

HomeOS to revoke the capability later if needed. Subse-

quently, the requesting module can use the capability to

make calls directly to the service. HomeOS capabilities

have an expiration time based on access rules.

An operation’s callers must also include input param-

eters of the right type. HomeOS supports both primitive

and complex types, which are passed by reference across

isolation boundaries to avoid the overhead of serializa-

tion. Finally, operation invocations include a timeout.

Unless the called service responds within this time limit,

a timeout error code is returned.

4.3 HomeStore

To simplify the process of finding new applications and

devices, inspired by smartphone app stores, HomeOS is

coupled with HomeStore which hosts all HomeOS appli-

cations and drivers. It indexes application manifests as

well as drivers’ associated devices and exported services.

It helps users find applications that are compatible with

their homes, by matching manifests against services in

their home. If an application is not compatible, it can rec-

ommend additional devices that meet the requirements.

4.4 Management tasks

To explain how users manage their homes using

HomeOS we describe four important management tasks.

1. Adding a new application Users can browse appli-

cations and view their compatibility within HomeStore.

Upon installing an application, HomeOS walks the user

through setting up access control rules for the applica-

tion. The core of this task is specifying which devices (or

services1) the application should be allowed to access.

Since there may be hundreds of devices, we use the

application manifest and service descriptions to show

only compatible, non-secure services. Once the user se-

lects which services the application can access, HomeOS

uses the Datalog rule database to detect if the new appli-

cation could access a device at the same time as other ap-

plications. If so, it asks the user which application should

have a higher priority.

2. Adding a new device Once a new device is reg-

istered, users need to specify its location and whether

it should be marked secure. They also need to config-

ure which existing applications should have access to the

device. This task is again simplified using application

manifests, as only applications compatible with the new

device are presented as valid options.

3. Verifying access rules To verify access con-

trol configuration, HomeOS allows users to view the

rules from different vantage points using faceted brows-

ing [25] (found on shopping Web sites to filter content

1HomeOS devices are exposed as services, as are features like no-

tification and face recognition. To ease exposition, we refer to devices.



Figure 5: A GUI screen capture showing how applications are

given access to devices

along multiple dimensions). This enables users to pose

questions such as what devices an application can access

or what devices can be accessed at night by a user group.

The questions are answered using Datalog queries.

4. Adding new users When a new user account is

added, the administrator must specify their group (e.g.,

guest) and the time window of account validity.

We have built a complete user interface (UI) to sup-

port these tasks. An example screenshot is shown in Fig-

ure 5 which occurs during the course of adding applica-

tions. We omit detailed description of the UI for space

constraints, but note that it closely mirrors our system

primitives and includes heuristics designed to minimize

the exposure to risk even if users click OK repeatedly

during configuration activities. Evaluation of its usabil-

ity, which we discuss later, also evaluates the manage-

ability of our primitives.

4.5 Implementation

We implemented HomeOS in C# using the .NET 4.0

Framework. We use the System.AddIn model which al-

lows dynamic loading and unloading modules. It also of-

fers module version control allowing the HomeOS kernel

and individual modules to evolve independently. We iso-

late modules using AppDomains, a lightweight sandbox-

ing mechanism [2]. Each module runs inside a domain.

Direct manipulation is not allowed across domains. In-

stead, communication is done only through typed objects

exchanged through defined entry points and subject to
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Figure 6: Our implementation testbed

access control. As our evaluation shows, the overhead of

this isolation mechanism is low enough to support inter-

active applications. However, it does not provide perfor-

mance or memory pressure isolation; these are subjects

of future work. For Datalog query evaluation, we use

Security Policy Assertion Language (SecPAL) [40], af-

ter modifying it to support time comparisons.

In addition to the HomeOS kernel, we devel-

oped drivers to interact with a diverse set of off-the-

shelf devices that includes Z-Wave lighting controls,

door/window sensors, smartphones, network cameras,

TVs capable of receiving DLNA streams, Windows PCs,

and IR (infra-red) transmitters. Figure 6 shows one of

our testbeds with some of these devices.

Interoperability protocols greatly simplified the task

of making these devices work with HomeOS because a

module corresponding to the protocol can communicate

with different devices. For instance, the same DLNA

module works with both Windows 7 computers and the

Sony TV; and the Z-Wave lightswitch module works with

both Aeon and Intermatic devices. Greater adoption of

interoperability protocols will make it easier to integrate

devices with HomeOS. See below, however, for some

shortcomings of current interoperability protocols.

We developed 18 applications that use these devices

and run on our testbeds. While some applications require

access to only one device (e.g., turn on or off a light), oth-

ers are quite complex. For example, a media application

transparently redirects a music stream from one room to

another, depending on how lights are turned on or off in

each room (using lights as a proxy human presence in

the room). We also implemented a two-factor authenti-

cation application that triggers a configured action (e.g.,



open a lock) when the same person authenticates with

their voice on the phone (speech recognition) and with

their face on the camera (face recognition).

Each of the 18 applications is less than 300 lines of

C# code and took only a few hours to develop. Because

applications are written against high-level abstractions,

most of the effort went toward application-specific logic.

As we report below, other developers also found applica-

tion development in HomeOS to be easy.

5 Experience

HomeOS currently runs in 12 real homes and 42 develop-

ers have written modules for it. These field experiences

validate key aspects of the HomeOS architecture. They

also evaluate the utility of the PC-like abstraction for

home technology as well as situations in which HomeOS

was more or less able to preserve that abstraction. Gen-

erally, the experiences were positive even for people with

no prior home automation experiences. However, the ex-

periences did reveal some rough edges of our prototype

and limitations of current interoperability protocols.

We describe the main findings below, based on infor-

mal surveys of our users and developers. The next sec-

tion presents results from controlled experiments.

5.1 Developers

We gave the HomeOS prototype to ten academic research

groups, for use as a platform for both teaching and re-

search on home applications. As part of this program,

42 undergraduate and graduate students developed tens

of HomeOS applications and drivers.

They extended HomeOS in several directions [3, 4,

26, 27]. They wrote drivers for new devices including en-

ergy meters, different network cameras, appliance con-

trollers and IM communication. They wrote new appli-

cations such as energy monitoring, remote surveillance,

and reminders based on face recognition. The PC-like

abstractions of drivers and applications enabled them to

build software quickly and in reusable modules. More-

over, as a testament to the flexibility and extensibility of

its architecture, we were not required to—and did not—

modify HomeOS to support these development efforts.

As an example, one group extended HomeOS to sup-

port the Kinect RGB-D camera and built an application

which allowed users to control lights via gestures (Fig-

ure 7). They were able to do this without having to

wait for Kinect integration with a large commercial sys-

tem (e.g., Control4) and were able to get it to interact

Figure 7: A student demonstrating how to turn on and off

lights via gestures with a Kinect

with existing devices. Another group built an applica-

tion that plays audio reminders based on who is rec-

ognized on cameras. This works with webcams, secu-

rity cameras, Kinect or IP cameras and with any device

HomeOS can play audio through (right now PCs, DLNA

TVs, and Windows Phones). This underlines the power

HomeOS gives to application developers to easily span

multiple types of devices (security, PC, phone, entertain-

ment, etc.). Commercial systems today support only a

subset of devices related to their target scenario (e.g., se-

curity systems focus on cameras and motion sensors).

Layering and programmability Developers who

wrote applications found the protocol independence of

the APIs appealing. Developers who wrote new drivers

for devices with existing DCL modules (e.g., a Z-Wave

appliance controller) liked that they did not have to con-

cern themselves with the low-level connectivity details

and could instead focus exclusively on device semantics.

Interestingly, developers who extended HomeOS to

devices without an existing DCL module (e.g., ENVI en-

ergy meters [19]) started by building one module that

spanned both the DCL and DFL. For them, the split was

unnecessary overhead as only one device used the con-

nectivity protocol. However, in one case a group had

to support multiple devices with the same connectivity

protocol based on IP to Z-Wave translation. This group

found value in separating functionality across two layers

indicating it was not just an artifact or our experience.

Hardware-software coupling Our developers some-

times wanted to use device features that were not ex-

posed to third-parties over the network. For instance,

one developer wanted to insert a text notification on a

TV without otherwise interrupting the on-screen video.

Today, some set-top boxes have this capability (e.g., for

cable TV operators to signal caller identity of incoming

calls), but they do not expose it to third-party software.

This points to an inherent advantage of vertically in-

tegrated software—being able to better exploit device

capabilities—that open systems like HomeOS lack. This



is unsurprising in retrospect as the closed nature of cur-

rent solutions and devices is what HomeOS attempts to

combat. However, the systematic way vendors can ex-

pose device capabilities in HomeOS should encourage

them to make their capabilities available to applications.

Media applications and decentralized data plane A

few developers had difficulty in writing media applica-

tions. HomeOS centralizes the control plane but not the

data plane to avoid creating a performance bottleneck.

If two devices use the same protocol, we assume that

they can directly exchange data. Thus, we assume that

a DLNA renderer can get data directly from a DLNA

server once provided with a media URI. The DLNA pro-

tocol turns out to not guarantee this because of video

encoding and/or resolution incompatibilities. While we

currently use heuristics to provide compatible formats

when transcoding is available, they are not perfect.

For reliable operation, we also plan to use HomeOS as

a transcoding relay (thus, centralizing the data plane and

more closely mirroring the PC abstraction) when data

plane compatibility between nodes is not guaranteed. As

high-quality open source transcoders exist [21], the main

technical challenge is to generate profiles of what input

and output formats devices support. This requires pars-

ing device protocols like DLNA. Although this means vi-

olating HomeOS’s agnostic kernel, we believe that media

applications are common and important enough to justify

an exception.

5.2 Users

Twelve homes have been running HomeOS for 4–8

months. We did not actively recruit homes but many ap-

proached us after becoming aware of the system. We lim-

ited our initial deployment to 12 homes. Ten of them had

no prior experience with home automation. Beyond pro-

viding the software and documentation, we did not assist

users in running or managing HomeOS. These homes are

using a range of devices including network cameras, we-

bcams, appliance and light controllers, motion sensors,

door-window sensors and media servers and renderers.

Organic growth What our users found most attractive

was being able to start small and then expand the sys-

tem themselves as desired. At first, they typically did not

know what they wanted and only discovered what they

found valuable over time. HomeOS let them start small

(at low cost) and extend as needed. It thus provided a sys-

tem that was much more approachable than commercial

systems today that require thousands of dollars upfront.

It was also more likely to satisfy users by allowing them

to evolve it to meet their needs rather than requiring them

to make all decisions during initial installation [7].

Indeed, all users employed an organic growth strat-

egy. One user started running HomeOS with only one

network camera to view his front yard on a smart-

phone while away from home. He later added two more

cameras—a webcam and a network camera from a differ-

ent vendor—and was able to continue using the same ap-

plication without modification. He then added two sen-

sors to detect when doors were opened so that he could

be notified when unexpected activity occurred. This used

our door-window monitoring application sends email no-

tifications, which can contain images from any cameras

in the home. The user later added two light controllers

and another application to control them. What started

off as simply wanting to see his front yard from work

evolved into a notification system and lighting control.

Diagnostic support in interoperability protocols On

the negative side, at least two homes had problems di-

agnosing their deployments. For instance, when appli-

cations that use Z-Wave devices behaved unexpectedly,

users could not easily tell if it was due to code bugs, de-

vice malfunctions or poor signal strength to the device.

Disambiguation requires effort and technical expertise

(e.g., unmount the device, bring it close to the controller,

and then observe application behavior).

This difficulty is an instance where the added com-

plexity of network devices, in contrast to directly con-

nected peripherals, becomes apparent. Countering it re-

quires diagnostic tools but they are hard to build today

because interoperability protocols have limited diagnos-

tic support. We thus recommend that device protocols be

extended to provide diagnostic information. Even some-

thing akin to ICMP would be a step forward.

6 Evaluation

In addition to our experience with real homes and de-

velopers, we evaluate HomeOS through controlled ex-

periments, focusing on its ease of programming, ease of

managing and system performance. This gives us quan-

titative validation to confirm our real-world experiences

above. We find that developers can write realistic appli-

cations within 2 hours, that users can use our manage-

ment interfaces with similar success to other carefully

designed systems and that system performance is good

enough to easily support rich, interactive applications.

6.1 Ease of programming

To evaluate how easy it is to write a HomeOS applica-

tion, we conducted a study where we recruited student

and researcher volunteers to develop HomeOS applica-

tions. (Different from the students mentioned in §5.)



We provided our participants with a brief introduction to

HomeOS, some basic documentation on our abstractions,

all the drivers, and four simple applications that use only

one driver each—image recognition, camera snapshot,

DLNA music player, and light-switch controller. Each

participant got a total of five-minutes of verbal instruc-

tions (with no demonstration of code) on the goal of the

study and pointers to these resources. We left the par-

ticipant and the testbed, with the HomeOS server con-

sole running an IDE (Visual Studio) configured to use

HomeOS binaries. We provided little assistance beyond

the initial training, though on three occasions the partic-

ipants uncovered bugs in our system that we had to fix

before they could proceed.

We gave each participant the task of writing one of

two applications for our testbed. “Custom Lights Per-

User” (CLU) will adjust the lights in any room based on

its occupant’s preferences. This application needs to find

cameras in the house to which it has access, continuously

poll them, use the image recognition service to identify

the occupant (if any), and set the “dimmers” in the cam-

era’s room to the occupant’s preferences. For testing,

we gave each participant two photographs on which the

image recognition service was trained and the user-to-

lighting preference chart.

The second application—“Music Follows the Lights”

(MFL)—was one we previously built but did not pro-

vide to participants. This application finds all lights and

media devices in the house, registers for changes to the

lights’ status and plays music (from a media server) on

an audio device in rooms with lights that are on.

We recruited ten participants for this study via a mail-

ing list within our organization. Seven were graduate stu-

dents and three were researchers. Only one had prior ex-

perience with home automation, and none had significant

prior experience with programming service-based ab-

stractions (e.g., WSDL or SOAP). This level of expertise

is at the low-end of what we expect of future HomeOS

developers. We gave each participant two hours to write

an application. Half of the participants were given the

first application and half were given the second.

Figure 8(a) summarizes the results of our study. The

time reported was computed from the end of verbal

instructions until the participant was done, minus any

breaks the participant took and the time we spent correct-

ing bugs. Eight participants developed complete appli-

cations within approximately two hours (126 minutes).

Of the two who did not finish, one spent the bulk of

the time developing a “slick GUI” for the application in-

stead of its core logic and the other did not realize that

HomeOS drivers were not running by default. This prob-

lem stemmed from a misinterpretation of instructions

and could have been avoided with clearer instructions.

In the exit interview, almost all participants (even

those who did not finish) reported that HomeOS was

“very programmable” and the APIs were “natural.”

However, they also expected more syntactic support in

the IDE for invoking operations. We are addressing this

issue by defining a C# interface for each role.

These results suggest that it is easy to develop appli-

cations for HomeOS. Even without prior experience, de-

velopers were able to implement realistic applications in

just a couple of hours. We do not mean to suggest that

all HomeOS applications can be developed in two hours.

Our study emphasized the use of HomeOS’s basic ab-

stractions and did not require the developers to focus on

consumer-facing issues such as a richer GUI. However,

it does provide evidence that the base programming ab-

stractions are a good fit for applications in the home.

6.2 Ease of managing

Our second study evaluates whether our management

primitives and interfaces are easy enough for non-expert

home users to use. We find that with no training, typi-

cal home users are able to complete typical management

tasks correctly around 80% of the time.

Methodology We began each session by explaining the

background and goals of the study and the three security

principals—users, devices and applications. We asked

participants to pretend to be a member of the following

imaginary family. Jeff and Amy are husband and wife.

Dave and Rob are their eight-year and seven-month old

kids. Jeff’s brother Sam, who visits occasionally, has a

guest account. The house has 29 devices of nine different

types. Three of the devices—camera and microphone in

Rob’s room, and the front door lock—are high-security.

The family has four applications for lighting, monitoring,

and temperature control, and fourteen rules specifying

access controls policies. We assigned the male partici-

pants to play Jeff and females to play Amy.

We then asked them to perform the 7 management

tasks show in Figure 8(b) using our UI. These tasks re-

flect what we expect users to do with HomeOS and span

key management tasks (§4.4). Tasks 1, 2 and 6 require

configuring applications, including restricting their use

to certain users, devices and times of day. Task 3 requires

configuring a new device with group and application ac-

cess. Task 4 requires adding a new guest. Tasks 5 and 7

require verifying policies based on specific concerns.

At the same time, our tasks stress the ability of primi-

tives in HomeOS to simplify management. For instance,

Tasks 1 and 2 use application manifests, Datalog rules,



app LoC mins

1 CLU 183 84

2 CLU 193 62

3 CLU 156 66

4 CLU 172 113

5 CLU 221 107

6 MFL 224 95

7 MFL 244 126

8 MFL 239 102

9 MFL 303 93*

10 MFL 130 100*

(a) Programming study

Task �

1. Configure your new EcoMonitor app. Let it access all but high-security devices for everyone. 11

2. Configure your new MusicFollowsMe app. Let it access all motion detectors and speakers but no

high-security devices. All residents can use it but kids cannot not play music in the parents’ bedroom

9

3. Configure your new kitchen security camera. Mark it high-security and let HomeMonitor access it. 11

4. Give guest access to Jane, who will be visiting until September 6th. Place her in the Guests group

so that she can use appropriate apps during her visit.

12

5. Check the rules and tell the facilitator which apps can access high security devices. 1

6. Configure your new OpenFrontDoor app. Residents can use it any time. Sam (guest) cannot use it

at all. Jane (guest) can use it only during the day (8 AM to 8 PM).

11

7. Check if only adults can access the camera in Rob’s room and only using HomeMonitor. 10

(b) Management study

Figure 8: Results of our two studies: (a) The application developed and time taken by each participant, ‘*’ implies an incomplete

program; (b) Assigned management tasks and the number of participants (of 12) that completed each accurately

and user and device groups, whereas Task 4 uses time-

based user accounts and user groups. Ideally, we would

evaluate each primitive separately but we found manage-

ment tasks that stress only one primitive to be unrealistic.

We simulated a real-world setting by not training our

participants in using the technology they are required to

manage. Instead we provided manuals for each task type

and told them that reading the manuals was not required

but they could refer to them anytime if they wanted.

Participants We had twelve participants (eight male,

four female) from the Greater Puget Sound region in

Washington state. We recruited the participants through a

professional recruiting service. We screened them to en-

sure they are somewhat familiar with home technology.

They were required to own at least one TV, one com-

puter, and three types of electronic devices (e.g., wireless

router, security camera, smartphone, etc.). They were

also required to be able to conduct basic administrative

tasks (e.g., set up an account on a computer)2.

Results Figure 8(b) shows the number of participants

that completed each task correctly. We see that the ac-

curacy rate is high. Overall, it is 77%; ignoring Task

5 (discussed below), it is 89%. This result is encour-

aging because it was obtained without any training and

many participants did not use the manual. For reference,

we note that our accuracy rate is similar to that obtained

with careful design of system semantics and interfaces

for file system access control [38] and firewall configu-

ration [37]. Our participants took one to four minutes to

complete individual tasks.

While the errors in most tasks were simply forgetting

a single click, Task 5 was particularly problematic. Only

one participant was able to complete it correctly. Others

had difficulty forming the correct query for the task us-

ing our faceted browsing interface. (Forming the query

for Task 7, which also used the same interface, was not

as problematic.) They could correctly and easily tell that

2While this may seem to exclude typical home users, homes typi-

cally have at least one experienced tech guru [36].

the HomeMonitor application was using the camera, but

did not realize that so was another application. We plan

to address this by augmenting the UI to reduce the work

needed to detect things that are unexpected or the ab-

sence of use by other applications. We believe that the

underlying primitives do not need modification.

In the exit interview, we asked the participants how

easy HomeOS was to use and learn, on a 7-pt. Likert

scale from “Strongly Disagree” (1) to “Strongly Agree”

(7). The participants found the system easy to learn (avg.

6.0), easy to use (avg. 6.0), and intuitive (avg. 5.5).

6.3 System performance

In addition to easy programming and management,

HomeOS must have acceptable performance. Our goals

are to have latency that is low enough to run respon-

sive, interactive applications and to offer scalability and

throughput that can handle large, complex homes. To

quantify the overhead of layering in HomeOS, we com-

pare against a hypothetical, monolithic system without

layering and isolation.

Experimental setup To gather performance data about

HomeOS, we ran a simple benchmarking application us-

ing a virtual device on a quad-core Intel Xeon 2.67 GHz

PC. Unless otherwise specified, there is one application

and one driver running. The application generates load

by creating ten continuous tasks that attempt to invoke an

operation on the device at a fixed rate, but are scheduled

by .NET ThreadPool which dynamically picks a number

of threads to execute based on current performance.

Latency of operation invocation Figure 9 shows the

latency of an operation invocation with no arguments un-

der different loads. While we incur higher overhead than

without isolation, the difference is approximately only

25% or a few hundred microseconds. Even under heavy

load, we are able to keep latencies below 2 ms. This is

two orders of magnitude lower than the interactive re-

sponse time guideline of 100 ms [18], which means that



Figure 9: Operation invocation latency as a function of of-

fered load with and without Application Domain isolation

Figure 10: Operation invocation throughput as a function of

offered load with and without Application Domain isolation

applications can compose several services and allow for

network delays before responding to the user.

The odd increase in latency when the offered load is

low (between 100 and 3000 operations per second, re-

spectively) is an artifact of the ThreadPool scheduling

rapidly switching between threads when each thread of-

fers substantially lower load than what the machine can

handle. We found it to persist across other microbench-

marks as well.

Throughput of operations To evaluate the load that

HomeOS can handle, we tracked the throughput of the

system at different offered loads both with and without

AppDomain isolation. Figure 10 shows that the through-

put of the two modes mirror each other until the system

is driven near peak throughput. With AppDomain iso-

lation, HomeOS handles approximately 8,250 operation

invocations per second, while with no isolation the sys-

tem can handle nearly 11,300 operation invocations per

second. Beyond that load, ThreadPool scheduling backs

off. If an application does not use this or a similar mech-

anism, latencies climb substantially when the system is

driven past the load it can handle as one would expect.

This level of performance has been well-beyond what

was required for any of our current deployments.

Figure 11: Cumulative fraction of operation invocations com-

pleted within a given latency for varying numbers of applica-

tions and devices

Scalability To understand how HomeOS scales to a

large home with many devices and applications, we ex-

amine the latency of operation invocation in an extreme

setting. We emulate a large home with a varying num-

ber of rooms, each room containing 4 devices and one

highly-active application querying each device 10 times

per second. Figure 11 shows the operation invocation

latency in this setting. As we increased the number of

rooms from 25 to 50 to 100 (1,000, 2,000 and 4,000 total

operations per second), we see a median latency of 3–5.5

ms depending on the number of applications. The latency

in this experiment is higher than those presented earlier

at the same total load because of the added overhead

of having 125–500 modules running rather than two.

The threads across modules are not managed as part of

the same ThreadPool. Despite this additional overhead,

the vast majority of operations complete within 10 ms,

which is an order of magnitude below the interactive

guideline of 100 ms. This result suggests that HomeOS

can easily scale to large, well-connected homes.

7 Related work

While we draw on many strands of existing work, we are

unaware of a system similar to HomeOS that provides

a PC abstraction for home technology to simplify man-

agement and application development while remaining

extensible. We categorize related work into five groups.

1. Device interoperability Many systems and stan-

dards for providing device-to-device interoperability in

the home exist. They include DLNA [14], UPnP [41], Z-

Wave [46], ZigBee [45], and Speakeasy [16]. HomeOS

is agnostic to what interoperability standards are used

and can incorporate any of these. But, as discussed ear-

lier, while interoperability is helpful, it does not provide

enough support for users and developers.



2. Multi-device systems Many commercial home au-

tomation and security systems integrate multiple devices

in the homes. Like HomeOS, they centralize control, but

such systems tend to be monolithic and hard for users

to extend. For instance, Control4 [11]—one of the most

extensible automation systems—allows for only its own

devices and a limited set of ZigBee devices; and offers

only a limited form of programming based on rules of

the form “upon Event E, do Task T .” Further, the tech-

nical complexity of installing and configuring Control4

and other systems (e.g., HomeSeer [28], Elk M1 [17]

and Leviton [30]) can be handled only by professional

installers (which is expensive) or expert hobbyists. In

the research community, EasyLiving [29] was a mono-

lithic system with a fixed set of applications integrated

into the platform. In contrast to such systems, we focus

on building a system that can be extended easily with

new devices and applications by non-experts.

3. Programmability for the home We proposed the

idea of a home-wide OS in a position paper [13]. This

paper presents an architecture based on our experiences,

a more complete system, and its evaluation.

Newman proposes using “recipes,” [34] which are

programs in a domain-specific language that compose

devices in the home. He also advocates using market-

places to disseminate recipes. With HomeOS applica-

tions, our vision is similar. Newman does not discuss

how recipes can be realized in practice, which requires

tackling challenges similar to those we address.

Previous work also advocates using a central con-

troller to simplify integration [20, 39]. They have a

different scope than HomeOS. For instance, Rosen et

al. [39] (incidentally, also called HomeOS), focus on

providing context such as user location to applications.

These works offer little detail about their design and im-

plementation.

Other systems have employed services in the home

environment. iCrafter is a system for UI programma-

bility [35]. ubiHome aims to program ubiquitous com-

puting devices inside the home using Web services [24].

While our use of the service abstraction is similar to these

systems, we engineer a more complete system for pro-

gramming and managing devices in the home.

4. Management challenges in the home Calvert et al.

outline the various management challenges in the home

network [8], and like us, argue for centralization. We go

beyond management issues and also focus on simplify-

ing application development. Further, in contrast to their

proposal, we do not require device modifications.

5. OSes for network devices Researchers have

designed OSes over multiple devices in other domains.

iROS aims to simplify programming devices such as dis-

plays and white-boards in collaborative workspaces [6].

NOX aims to simplify managing switches in enterprise

networks [23]. While conceptually similar, HomeOS

handles complexities specific to the home environment.

8 Conclusions and future work

HomeOS simplifies the task of managing and extending

technology in the home by providing a PC-like abstrac-

tion for network devices to users and developers. Its de-

sign is based on management primitives that map to how

users want to manage their homes, protocol-independent

services that provide simple APIs to applications and a

kernel that is agnostic of the functionality and protocols

of specific devices. Experience with real users and de-

velopers, in addition to controlled experiments, help val-

idate the usefulness of the abstraction and our design.

This experience also reveals gaps where we could not

cleanly implement the abstraction due to limitations of

device protocols (e.g., little support for diagnosis and in-

compatible implementations across vendors) or due to

limited features being exposed by devices over the net-

work. We plan to address these limitations in the future.

More broadly, our hope is that this work spurs the re-

search community to further explore the home as a future

computing platform. While we cannot outline a complete

agenda for work in this area, we point out two fruitful di-

rections based on our experience:

1. Foundational services Over the years PC appli-

cations have come to expect some essential services that

the OS provides (e.g., a file system). Are there simi-

lar services for the home environment? Such services

should not only be broadly useful but also almost uni-

versally implementable. For instance, consider occu-

pancy information—which rooms are currently occupied

by people. It can benefit many applications (e.g., lighting

control, thermostat control, and security), but depending

on the devices in the home, it may be difficult to infer

reliably (e.g., motion sensors can be triggered by pets;

cameras are more reliable). Making occupancy an essen-

tial service requires each home to possess the necessary

devices, thus increasing the cost of a basic HomeOS in-

stallation. (This is akin to PC or smartphone OSes speci-

fying minimum hardware requirements.) Thus, careful

consideration is needed to determine which services a

system like HomeOS should provide in all homes.

2. Identity inference Some desired reactions to phys-

ical actions in the home depend on the identity of the

user or who else is around. For instance, users may want

to play different music based on who entered and turned



on the lights, or parents may not want their children to

turn on the Xbox in their absence. Currently, HomeOS

can either not support such policies (lightswitches have

no interface to query user identity) or support them in

an inconvenient manner (ask parents for their password).

A promising avenue for future work is to build non-

intrusive identity inference (e.g., using cameras in the

home, or users’ smartphones), and then allow users to

express policies based on that inference. A key challenge

in realizing this system is to maintain safety in the face

of possible errors in identify inference.
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