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Abstract—One of the most effective ways of attacking a cryptographic device is by deliberate fault injection during computation, which

allows retrieving the secret key with a small number of attempts. Several attacks on symmetric and public-key cryptosystems have

been described in the literature and some dedicated error-detection techniques have been proposed to foil them. The proposed

techniques are ad hoc ones and exploit specific properties of the cryptographic algorithms. In this paper, we propose a general

framework for error detection in symmetric ciphers based on an operation-centered approach. We first enumerate the arithmetic and

logic operations included in the cipher and analyze the efficacy and hardware complexity of several error-detecting codes for each such

operation. We then recommend an error-detecting code for the cipher as a whole based on the operations it employs. We also deal

with the trade-off between the frequency of checking for errors and the error coverage. We demonstrate our framework on a

representative group of 11 symmetric ciphers. Our conclusions are supported by both analytical proofs and extensive simulation

experiments.

Index Terms—Cryptography, symmetric cipher, error-detecting code, parity code, residue code, fault attacks, fault detection.
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1 INTRODUCTION

RECENTLY, schemes for detecting faults in hardware
implementations of several symmetric key encryption

algorithms have been developed. The motivation behind
the increased interest in such detection schemes is based on
two important observations. First, ciphered communication
is very sensitive to errors in the input data or faults
occurring during the computation due to the strong
nonlinearity of the encryption functions. The analysis of
the effect of faults occurring during the encryption process
for the Advanced Encryption Standard (AES) algorithm [6]
and for RC5 [7] has shown that even a single-bit error leads,
after a few rounds of the algorithm, to a completely
corrupted result. The second reason for the increased
importance of error detection is the observation that attacks
based on fault injection are feasible [9]. The authors in [9]
show that a cryptographic device computing the Data
Encryption Standard (DES) can be compromised by inject-
ing a fault during the computation. Depending on the
cipher employed, useful data can be extracted by analyzing
the resulting erroneous output. By detecting the fault, either
the output can be blocked (by producing a constant value
such as all zeros) or a random output can be generated,
misleading the attacker.

Techniques for injecting faults into a cryptographic
device are readily available and inexpensive; see [5] for a
recent and comprehensive review thereof and [24] for the
detailed description of an experimental fault injection
attack. Such techniques range from the simple exposure of
the device to a camera flash, to the injection of an electrical
glitch into the power supply, or the use of a laser beam.

The importance of avoiding errors during encryption
was first discussed in [11], where it is shown how an
erroneous Rivest-Shamir-Adleman (RSA) signature can
lead to an easier factorization of the modulus and the
breaking of the cryptosystem. This approach was later
applied to more recent algorithms such as AES [10], [18],
[29]. Fault injection attacks have been developed for other
public-key ciphers. In [17], it is shown how an error in some
parameters of an Elliptic Curve Cryptosystem may reveal
information that could lead to the secret key and, in [4], new
fault injection attacks against RSA-capable smart cards were
studied.

Hence, fault diagnosis has gained importance in recent
research [12] and some preliminary studies of fault
detection schemes have already been performed. In [20],
use of the existing hardware for an immediate decryption of
the ciphertext was proposed, relying on the fact that the
decryption unit is normally not used during encryption.
The authors propose three different approaches for detect-
ing faults in the encryption process with different impacts
in terms of time and complexity. The simplest solution
(with the longest detection latency) executes online decryp-
tion after the encryption has completed. The other two
perform the checks for faults after every single round or
after each single operation within the round.

Such an approach is generic and does not exploit any
specific property of the encryption algorithm, except the
presence of the dual (ciphering-deciphering) components.
Hence, it can be applied to virtually any round-based
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cipher, which describes most symmetric key cryptosystems.
Conceivably, more effective solutions can be devised when
targeting a specific cipher. In [16], the embedding of error
detection capabilities in DES was proposed: Additional bits
are generated from the input and provided to the ciphering
device in parallel with the plaintext. These bits, acting as
check bits for the error-detecting code (EDC), are propa-
gated and updated during the encryption process. The
cipher’s substitution tables are extended in order to include
the code check bits. Checking for inconsistencies at the end
of the process may thus reveal a possible error in the
computation.

Although this approach accomplishes its goal, it suffers
from several drawbacks. First, the path that the code must
traverse from input to output is interruptedwithin the round
due to the bit permutation, necessitating an additional check
within the encryption data path rather than at the end of the
round or encryption. This makes the design more complex.
Moreover, due to the combination of expansion and sub-
stitution boxes (S-boxes), which forbids a simple and
affordable prediction rule for the check bits, these must be
recomputed using the then available data bits. The codemay
hence be consistent even if the data is already corrupt.
Furthermore, this approach is less useful formodern ciphers,
where the substitution tables (or S-boxes) are just one ofmany
operations executed in each round. Applying a table
approach to other types of operations (for example, data-
dependent rotations or arithmetic operations) would require
excessively large tables.

A different approach is needed when the operations are
more complex than substitution. In [6], a parity-based error
detection code was proposed for the AES cipher using one
parity bit for each byte of the 128-bit-long input. The
redundancy level was determined based on the round
operations (that include SubBytes, ShiftRows, MixColumns,
and AddRoundKey, which are byte-oriented logical functions
(for a complete description of these operations, see [19] or
[27]). The work presented in [6] also shows how the parity
code can be propagated through all of the round operations,
achieving an impressive fault coverage (fault detection
probability): All odd-order faults (that is, an odd number of
bit errors has been injected) aredetected (the theoretical proof
isgiven in [8]) andtheoverall fault coverage isover99percent.
An implementation of the detection schemewas presented in
[14], where it was shown that a simple architecture can be
augmented with error detection capabilities and acceptable
overheads (both in terms of space and time).

In [7], a similar approach is applied to RC5 [31]. The
operations included in the RC5 encryption process cover a
wider spectrum than those used in AES and include a mix
of logical operations (for example, data-dependent rotation
and exclusive OR) and arithmetic operations (for example,
natural integer addition and subtraction). This mixture of
operations makes the selection of a fault detection code
nontrivial. The parity code fits logical operations better than
arithmetic codes, whereas the opposite is true for a code
based on residues [28]. Moreover, RC5 operates on words
whose size is machine-dependent. It turns out that the level
of redundancy can be tuned to the machine word size or
can be set to a finer level (for example, one parity bit per

byte). The work presented in [7] shows that, when using

such simple codes, a high detection probability is obtained,

depending on the level of redundancy.
Karri et al. later proposed in [21] the use of a single parity

bit for the whole data block. The coverage is still complete

for single-bit errors and the cost is lower due to the lower

redundancy. In [36], they developed a concurrent error

detection approach for involution ciphers (those where

encryption and decryption functions coincide), exploiting

the ambivalence of the encryption process.
Different methods of protecting the RSA cryptosystem

include [34], where Shamir proposed using a multiplicative

masking to foil timing and fault attacks, and [35], where

Walter suggested the use of residue codes to protect the

modular arithmetic operations in RSA. The error coverage

of such codes depends on the value that is chosen for the

base modulus of the residue, whereas their cost is

comparable to the cost of an extra digit in the operands.
The approaches described in the literature focus only on

specific ciphers and attacks. In this paper, we present a

general operation-centered approach to error detection. We

first list the different types of basic logic and arithmetic

operations employed by the various encryption ciphers and

the different EDCs that can be used for each such operation.

Next, we recommend an EDC for each cipher based on the

operations it uses and the hardware complexity of the EDCs

that fit them. We then discuss the frequency of error

checking, which can be done at different granularities—

after every operation, after every round, or only once, at the

end of the encryption. The latter is clearly the cheapest, but

involves the risk of missing some error indications due to

error masking. When determining the checking frequency,

we take into account this trade-off between hardware

overhead and error coverage, supporting our findings by

both analytical and simulation results.
The paper is organized as follows: In Section 2, we

introduce the basics of symmetric cryptosystems and

describe the spectrum of operations found in a selected list

of 11 ciphers on which we concentrate. The fault models

that we use and our approaches to fault detection are

presented in Section 3. In Section 4, we show which error

detection codes are suitable for each operation. In Section 5,

we outline our recommendations regarding the most

appropriate code to be used for each of the 11 ciphers on

our list based on the estimated hardware overhead. The

appropriate frequency of checkpoints with the objective of

maximizing fault coverage for single-bit faults is discussed

in Section 6. The ciphers AES, DES, and the International

Data Encryption Algorithm (IDEA) are used as examples

and the proof of the complete fault coverage for RC5 is

given in Appendix B. The discussion is extended to the

coverage of multiple errors in Section 7, based on simula-

tion experiments. Appendix A lists the techniques for check

bits prediction for the various operations. Finally, conclu-

sions are presented in Section 8.
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2 INTERNAL OPERATIONS IN SYMMETRIC CIPHERS

2.1 Symmetric Ciphers

We discuss in this paper a list of 11 symmetric ciphers (see
Table 1), which is far from being exhaustive. Still, it includes

all of the finalists of the last encryption standard competi-
tion in addition to some other well-known algorithms, like

DES [25], Blowfish [32], CAST-256 [1], and RC5 [31]. All of
these ciphers have software implementations and have been

used in practice to some extent. DES and, more recently,
Rijndael (AES) are more commonly used and have

dedicated VLSI devices for their computation. Most of the

other ciphers in Table 1 are also well suited for VLSI
implementations. RC5 and RC6, for example, would yield

very low cost implementations due to their extreme
simplicity; specifically, RC5 has recently gained popularity

in sensor networks.
Symmetric ciphers usually have an iterative structure.

Encrypting a data block consists of repeating a number of

identical rounds (or several alternating round types). Each

round consists of a series of internal transformations and
uses a round key derived from the secret key. Decryption

is simply the inverse process of encryption and has a
similar structure. All ciphers consist of three main parts:

encryption, decryption, and key schedule. The key
schedule is the auxiliary algorithm for computing the
round keys and has an iterative structure as well. The set
of all round keys is called the key material. In some cases,
an inverse key schedule is implemented as well unless the
key material is computed only once and kept stored as long
as the secret key is not replaced.

Although most of the ciphers listed in Table 1 accept a
128-bit input (in order to comply with the requirements
imposed by the US National Institute of Standards and
Technology (NIST)), the older ones usually have smaller
inputs or keys (but some can admit up to 256 bits). The
width of the input and output and the secret key size are
summarized in Table 1 for the 11 symmetric ciphers on
which we concentrate.

2.2 Internal Operations

The internal operations used by each cipher differ greatly
and the combined list is quite extensive, including almost
all obvious elementary logical and arithmetic operations
(integer and modular). Table 2 shows the internal opera-
tions and the sizes of their operands for the ciphers listed in
Table 1. For simplicity, we restrict ourselves to the
encryption data path only. The key schedule is usually
built around the same operations used in encryption and
feasible solutions for encryption will apply to the key
schedule with little additional effort. Decryption simply
consists of the reverse rounds of encryption, repeatedly
applied in reverse order. The operations listed in Table 2 are

. bitwise XOR (exclusive OR)—this is a modular
arithmetic (modulo-2) operation,

. bitwise AND and OR—these are logical operations,

. modular addition, subtraction, and multiplication of
integers—the modulus varies depending on the
cipher, but is usually of the form 2w or 2w þ 1,

. expansion—meaning that the data block is expanded
to a larger number of bits,

. S-box—this is a peculiar internal transformation of
many different ciphers, consisting of replacing bytes
or words using a lookup table, with the purpose of
introducing nonlinearity into the algorithm,
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. rotation and shift of the bytes or words of the data
block,

. permutation of the bits, bytes, or words of the data
block, and

. polynomial modular multiplication with, usually,
one of the operands fixed, reducing it to scaling.

Consider the permutation operation as an example: 1 means

that individual bits are exchanged in the data block, 8 that

bytes are exchanged, 32 thatwords are exchanged, and so on.

For the S-box, both the input and the output size are listed

(since they may differ). The sizes of the data block and secret

key are listed in Table 1 and are not repeated here.
Some operations in Table 2 are invertible (for example,

addition, subtraction, and rotation), while others are not

(for example, AND, OR, and shift). Remember that every

cipher must be invertible for decryption to be possible. The

presence of noninvertible operations is compensated for by

preserving their input operands in some way during the

process and forwarding them so that they can be recon-

structed during decryption. Such multiple data flows add

an extra challenge to fault detection.
The basic operations are chosen based on the need to

achieve the following important cipher properties: diffusion

—each bit of the input affects every bit of the output—and

confusion—all of the regularities of the input are obscured in

the output while processing the input data block. These

requirements are achieved by

. Mixing linear and nonlinear operations—linear
operations are low cost and helpful for diffusion,
whereas nonlinear ones are more expensive but
make the cipher harder to invert (thus preventing
cryptanalysis).

. Mixing algebraic structures of different types to
prevent the existence of a simple mathematical
descriptionof the cipher that couldbeused to attack it.

The presence of explicitly nonlinear operations (for exam-

ple, in AES) makes error detection more difficult. The

mixture of different and incompatible algebraic structures

(for example, in RC5) may also pose a problem: A technique

that is efficient for one structure may be very inefficient

when applied to another.
Some additional details regarding Table 2 can help in

understanding the rest of the paper:

. The operators “þ” and “�” are integer addition
and subtraction, respectively, modulo 2w with w ¼
16 or 32.

. The operator “�” is integer multiplication modulo
232 or 216 þ 1 (the latter modulus is used by IDEA).

. Expansion is used only by DES, transforming 4-bit
nibbles into sequences of 6 bits.

. S-box is a substitution of bit sequences (with the
exact definition depending on the cipher), with the
most frequent case being a byte substitution. These
are one-to-one functions.

. Rotation and shift are simple operations; the
number of bit positions may be either constant or
data-dependent.

. Permutation means exchanging bits, bytes, or words.

. Polynomial multiplication is defined over the finite
field GF ð28Þ (that is, it operates on bytes).

The next section describes the model we use to determine
suitable error detection techniques for the operations and,
consequently, for the ciphers.

3 FAULT MODEL AND DETECTION TECHNIQUES

We assume that the basic architecture of each of the ciphers
studied here consists of the implementation of one encryp-
tion round by means of a dedicated device which is
activated sequentially for the required number of rounds.
This is the most natural and straightforward way to
implement a cipher in VLSI. For high performance applica-
tions, pipelined implementations can be considered; the
fault detection analysis in the pipelined case will not be
much different.

The fault model we focus on is the transient bit error
model. Thismodel assumes that each bit can be flipped (0 to 1
or vice versa) with some probability p and that the error goes
away after a very short time. This model fits both random
errors and security attacks; most benign random hardware
faults are short-lived and an attacker is interested in inflicting
only a transient failure and not in breaking the device.

As for the number of simultaneous errors, we deal with
two cases: One allows at most a single-bit error per data
block, whereas the other one allows multiple errors. Again,
both cases are practical for either random failures or attacks.
Random failures can be either of the single-bit error type or
of the correlated type that causes multiple errors in
neighboring bits. An attacker may try to flip exactly one
bit (gaining more information this way), but, since current
attack tools are not very precise [5], [24], either one or
several bits will actually be flipped.

For the single-bit-error case, we will present analytical
results, whereas, for the multiple-error case, we will rely on
simulations. In our simulations, we considered transient
faults with up to 20 bit errors for a single plaintext,
occurring at random locations and at random times.

We consider two types of error detection techniques:
1) duplication followed by comparison of the results (the
brute force solution) and 2) the use of EDCs.

Clearly, duplication can be applied to every cipher and
will achieve a 100 percent fault coverage. This is true for both
the single and the multiple-bit errors and for both random
errors and fault attacks as long as the fault is transient. It is
highly unlikely that two random transient faults in the
duplicated units will have the same effect and produce the
same wrong result. As for attacks, an attacker will often be
able to inject a fault but not to precisely control its location. In
both cases, the two encrypted results will differ and the fault
will be detected after output comparison.

EDCs may prove to be either more or less efficient than
duplication, depending on the structure of the selected
code. Although simple ciphers like RC5 and RC6 may
possibly be completely duplicated, for other more complex
ciphers, EDCs may achieve a relatively high coverage with
a lower hardware overhead. EDCs are especially attractive
since the size of the data block is usually high and most
codes add to the data block only a fixed and limited number
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of check bits, a number that grows slower than the data size
[28]. Moreover, EDCs could be applied to the entire data
block or to parts thereof (bytes, words), allowing more
flexibility in the design.

Therefore, we focus in this paper on error detection
through EDCs, the basic ones being parity codes and
arithmetic residue codes with the modulus 3, 7, or 15.
Although all of these codes can be applied to any operation,
residue codes are more suited to modular arithmetic
operations, whereas parity codes are more appropriate for
logical and polynomial (in GF ð28Þ) ones. The reader
interested in the formal definitions of these codes and in
their prediction rules can refer to Appendix A.

The use of EDCs requires a code generator circuit (to be
used initially and following every checkpoint), a set of
code prediction circuits (one for each internal operation),
and a comparator for checking the generated check bits
against the predicted ones at each checkpoint. The
scheduling of the checkpoints must also be determined
and it depends on the trade-off between the desired fault
coverage and the acceptable hardware and performance
overheads. Since all ciphers are iterative, scheduling the
checkpoints means deciding on their frequency in the
round flow and on their placement either in the middle of
the round or between two rounds.

All of the above listed EDCs can be applied at different
levels of data granularity. Since most internal operations
work on data of byte size (8 bits) or word size (16 or 32 bits)
(see Table 1), these are the right levels to select from. A
global code (operating on the entire data block) is not a
good choice since the data block is large and is always
fragmented into shorter bit sequences for processing; the
prediction overhead for such a code will be too large.

To the best of our knowledge, there exists no specific and
well-defined criterion for designing reliable and fault-
resistant symmetric ciphers. Moreover, none of the ciphers
listed in Table 1 have been implemented in a way that
specifically addresses the reliability issue. We propose
dealing with this issue by matching an appropriate EDC
to each operation listed in Table 2 and then matching a
single EDC to the whole cipher based on the operations it
employs (changing EDCs within the cipher would impose a
heavy hardware overhead.) Our objective is to achieve as

high an error coverage as possible with as little hardware

overhead as possible.

4 COMPLEXITY OF EDCS FOR VARIOUS

OPERATIONS

All of the operations in Table 2, considered in isolation,

admit specific error detection codes, yet some operations

are so simple and inexpensive as to allow duplication.

There does not seem to exist an EDC that is inherently

optimized for all of the operations. The generation and

prediction techniques of the EDCs we consider for the

various operations are reported in Appendix A. Based on

these equations, we calculated the complexity of imple-

menting the various EDCs (that is, generation, prediction,

and comparison of the check bits) when applied to the

operations listed in Table 2. The results are shown in

Table 3. The hardware complexity figures in this table are

normalized with respect to the complexity of an XOR gate.

An EDC is considered too expensive or not applicable (an

“NA” entry in the table) if its overhead is much larger than

that of duplication. Some special cases in Table 3 are

discussed next. Appendix A should be consulted for a

complete justification of the comments below:

. Residue base 15 is not considered at the byte level
since it uses 4 check bits—a 50 percent bit over-
head—unacceptable for an EDC. It is considered for
words of 16 or 32 bits, where the overhead is
25 percent and 12.5 percent, respectively.

. Both parity and residue codes are reasonable for
bitwise XOR, although parity is obviously better.

. Both parity and residue codes (and any conceivable
EDC) are expensive for bitwiseAND andOR; theywill
cause an overhead larger than that of duplication.

. Both parity and residue codes are feasible for integer
modular addition and subtraction. Still, residue is
better suited since, for predicting the parity bits, the
intermediate carries must be available, which im-
poses restrictions on the design of the adder/
subtractor circuit. A simple ripple-carry design
satisfies this requirement and, for a single byte, this
design may be an acceptable solution.
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. Residue code is appropriate for integer modular
multiplication. Parity is expensive since all the
intermediate carries must be considered and these
are not generated by optimized multiplier designs.

. Expansion is used only by DES as it applies eight
S-boxes of the type 6 ! 4 to a word of 32 bits (half
the data block size). Due to this fine-grained and
unconventional size of the input to the S-box, any
code is expensive. Further details are provided in
Section 6.4.

. Both parity and residue codes incur a reasonable
overhead for rotation at the byte and word level,
with the exception of residue base 7, due to the fact
that 7 ¼ 23 � 1 and 3 is not a divisor of either 8, 16, or
32; this is further explained in Appendix A.

. Shifting is generally expensive because the shifting
amount may not be known a priori. However, we
deal with only small shifting amounts (for example,
shifting by 3 or 7 bits in Serpent), yielding a
reasonable overhead for word parity. It is compar-
able to byte parity for rotation or residues for integer
multiplication. The results in Table 3 apply to data-
dependent shifting; hence, the actual implementa-
tion may be cheaper.

. Both parity and residue codes have reasonable
overheads for permutations at the byte and word
levels.

. Parity is feasible for polynomial multiplication in
GF ð28Þwhen one of the two factors is fixed (scaling);
see [6]. The values reported in Table 3 apply to AES
MixColumns and its inverse, but they have general
validity.

. Residue code is expensive for polynomial multi-
plication in GF ð28Þ. If the number of bits of each
factor is n, then polynomial multiplication consists
of XORing all of the n rows (of n bits each) of the
partial product matrix and applying reduction to the
most significant n bits of the result word (of 2n bits),
which requires XORing the generator polynomial (of
n bits as well) n times. In total, there are Oðn2Þ XOR

operations. Although the prediction of residue for a
bitwise XOR of n bits is feasible, for n2 bits (with
n ¼ 8), it is very expensive.

4.1 EDCs for S-Box

S-box is a nonlinear substitution and its treatment is,
therefore, more complex than that of the other operations.
S-box is usually implemented by means of a lookup table.
Two kinds of faults are possible: those affecting the contents
of the lookup table and those affecting the address decoder.
To protect against faults in the data, the address is extended
by concatenating the check bits of the input. In the entries of
the lookup table for valid address code words, the corre-
sponding correct output codewords are stored (data bits plus
check bits), whereas the remaining entries contain a deliber-
ately incorrect code word (for example, the data can be all 0
with invalid check bits). This way, the data section of the
memory is protected but not the address decoder.

To protect the latter, an auxiliary and independent
memory unit is needed, storing only the check bits of the
correct output. The two memories are operated in parallel

and the two sets of check bits are compared. A mismatch
indicates a fault in the address decoder. When this happens,
the system must output a deliberately incorrect code word,
as before.

For both types of EDCs, the address is extended by
concatenating the check bits. Only the parity code has an
acceptable overhead since it doubles the size of the
memory, resulting in an overhead similar to that of
duplication. Residue codes with modulus 3, 7, or 15 would
increase the size of the memory by a factor of 4, 8, or 16,
respectively, which is unacceptable. The auxiliary memory
(for detecting address decoder faults) is much smaller than
the main memory and its overhead is relatively small.

Since the data bits of the deliberately incorrect output
code words associated with incorrect input code words can
be assumed to be constant, it is not necessary to actually
store them in the lookup table as they could be generated
upon request. This would reduce the size of the data section
of the lookup table (but not that of the addressing section).
Such a memory architecture is, however, unconventional
and requires a specialized design. Moreover, with the
residue code, the size of the addressing section is still larger
than that with duplication. Therefore, the above conclusion
regarding the applicability of only parity codes still holds.

Some ciphers use S-boxes whose content is selected
arbitrarily by the original designers (for example, DES) and,
hence, does not obey any apparent mathematical law. In
such cases, the only way to compute the S-box is using a
lookup table. Ciphers may employ a circuit for computing
the S-box and a prediction circuit for the check bits could be
envisioned. This circuit will be very large as it computes
nonlinear functions, will heavily depend on the cipher, and
is not considered here.

5 EDCS FOR CIPHERS

The operations discussed above provide a full spectrum of
the most common components of symmetric ciphers. We
next make recommendations regarding the choice of a
single EDC for each cipher, based on both Tables 2 and 3.
Our recommendations are summarized in Table 4. The
following comments explain some of our recommendations:

. Expansion in DES and polynomial multiplication in
AES and Twofish are better suited to parity codes,
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which are therefore our choice for these three
ciphers.

. We choose residue codes when the cipher employs
integer multiplication, such as in RC6, as integer
multiplication allows only for residue prediction.

. Ciphers using S-boxes, for example, Blowfish and
Camelia, require that the parity code be used since
residue is more expensive than duplication.

. MARS uses both S-box and integer multiplication
and, thus, has conflicting recommendations. In such
a case, a more detailed overhead comparison must
be performed. Having done that, we selected the
residue code for MARS.

. IDEA uses only XOR, natural addition, and modular
multiplication. Multiplication is modulo ð216 þ 1Þ,
making the parity code a bad choice. Even residue
codes are expensive since the unusual modulus
results in a very complex computation of the
corrective term (see (14) in Appendix A). In this
case, a residue code based on the modulus 2s (and
not 2s � 1, as was considered so far) is more
appropriate, leading to a simpler prediction rule
for multiplication. On the other hand, such a code is
less effective for the remaining operations since it
protects only the least significant bits of the whole
word. See Section 6.5 for further details.

. RC5 uses operations that have affordable prediction
rules for both codes. Parity is better suited to XORs,
whereas residues are simpler for arithmetic opera-
tions; still, both codes are good choices for RC5.

6 CHECKING FREQUENCY—SINGLE-BIT ERRORS

In the previous sections, we examined only the hardware
overhead of the various options for detecting faults in
symmetric ciphers. In this section, we take into account the
error coverage of the EDCs, based on the frequency of
checking for errors. All of the EDCs we described are
capable of detecting 100 percent of single-bit transient faults
(see, for instance, [28]) if checking for errors is performed at
the end of each internal transformation of every round.

This is, however, a very high checking frequency with
considerable overhead. Since the ciphers are all iterative
and consist of repeating a basic round, it might be possible
to perform the checking less frequently, either at the end of
each round or only once, at the end of the entire sequence of
rounds. This will speed up the clock rate and reduce the
time latency. In a pipelined architecture, reducing the check
frequency allows us to implement fewer checkers and thus
reduce the hardware overhead as well.

We next show analytically that, for the single-bit error
model, a single checkpoint at the end of the entire
encryption procedure guarantees 100 percent coverage in
two of the previously mentioned ciphers, namely, Rijndael
(AES) and RC5. DES and IDEA behave differently and are
analyzed separately in what follows. We selected these four
ciphers since they exhibit different behaviors and are good
representatives of the rest.

6.1 Analytic Model for Error Coverage

We define the error signature as the difference between the
real values and the predicted values of the check bits for the

data block. We then develop an error propagation model for
each cipher and verify whether and how far the signature of
an error caused by a single-bit transient fault in the middle
of the encryption process propagates without disappearing
throughout the subsequent steps of the encryption.

The exact error propagation model depends on the
particular cipher. We derive these error propagation models
based on the following assumptions:

. The key scheduling algorithm is fault free.

. The rounds following the one that has been affected
by the fault are fault free and, consequently, they
either propagate the error signature, possibly spread-
ing it to a larger number of bits, or cancel it.

To determine how an error signature propagates through-
out the cipher, it is necessary to examine how the predicted
values of the check bits at the output of each transformation
contained in the round step depend on the predicted values
of these bits at the input of the transformation.

Denote the data block to be processed by D ¼ ½dj� for
1 � j � m, where dj are the elements (bytes or words) of the
data block. The error signature is represented by a vector
E ¼ ½ej� for 1 � j � m, satisfying ej ¼ rj � pj, where the bits
rj and pj are defined as follows:

. rj is the real check bit of the jth element (byte or
word) of the data block.

. pj is the predicted check bit of the jth element (byte or
word) of the data block.

The difference operator ð�Þ depends on the algebraic
structure over which the EDC is defined. In the absence
of errors, rj ¼ pj and the null vector O is the signature
corresponding to the error-free case.

The way in which the error signature vector is modified as
it propagates throughout the subsequent rounds must be
analyzed. We assume that a single transient error is injected
at the beginning of the encryption round. In this case, the
rounds preceding the injection of the error are, in some
sense, irrelevant. However, more realistically, the error
might be injected in the middle of the round. This requires
the detailed analysis of one round and usually leads to the
same conclusions as in the case of injecting a fault at the
beginning of a round, as we have observed in [6].

In general, the prediction rule of the EDC check bits in any
internal transformation of the round has the following form:

p0j ¼ fjðp1; p2; . . . ; pm; DÞ;

where pj are the predicted check bits from the preceding
transformation, that is, the bits carrying the information
about the presence of prior errors. Ideally, the new
predicted check bits p0j will depend only on pj (which
sometimes happens), but, in most cases, there is also a
dependence on part of the data block D. Note, however,
that only the dependence on the pj is essential to allowing
the propagation of the errors. If, for some special values of
D (or even for all values thereof), p0j were independent of pj,
then the propagation chain of the error signature would be
interrupted and a checkpoint would have to be inserted.

By definition, the element e0j of the error signature at the
output of an internal transformation is thedifference between
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the values of the output check bits computed assuming that

the input (predicted) check bits are correct and their values

computed assuming that the input check bits are those

produced by the preceding transformation. Thus,

e0j ¼ fjðr1; r2; . . . ; rm; DÞ � fjðp1; p2; . . . ; pm; DÞ:

The above equation can be rewritten as follows:

e0j ¼ fjðp1 þ e1; p2 þ e2; . . . ; pm þ em; DÞ

� fjðp1; p2; . . . ; pm; DÞ:
ð1Þ

Equation (1) provides the propagation rule of the error

signature. In simple cases, the right-hand side depends only

on ej (and not on pj or D). Furthermore, it is frequently

possible to separate the dependence on ej from that on pj

and the data block D, although it is not always true and

must be confirmed in every case. We stress that, should this

be false, the analysis of the propagation of the error

signature would be more complex.
The error signature is updated as follows: E0 ¼ F ðEÞ,

where F is a function determined by fj through (1). In most

cases, F is either linear or is reducible to a composition of

linear functions, considerably simplifying the error signa-

ture propagation rules.
The error propagation analysis is therefore heavily

dependent on the cipher. The analysis for AES is partially

outlined in [6] and can serve as a guideline for the

remaining ciphers.

6.2 Coverage of Single-Bit Errors in AES

We first analyze the Rijndael (AES) cipher with parity at the

byte level, assuming that the key schedule procedure is

error free. For a detailed description of the cipher, see [27].
The error signature of the encryption algorithm is a 4� 4

matrix (with single-bit entries) and is denoted by E ¼ ½er;c�

for 0 � r, c � 3.
The AES round consists of four internal transformations:

S-box (a byte substitution), ShiftRows (a byte permutation),

MixColumns (a linear transformation working indepen-

dently but in the same way on each of the four columns

of E), and AddRoundKey (addition, byte by byte, of the

round key). In [6], it was proved that

. S-box maps E to itself.

. ShiftRows only permutes the entries of E.

. MixColumns maps each column of E through a
linear transformation, which is the same for all four
columns and which has a nonsingular coefficient
matrix.

. AddRoundKey maps E to itself.

Clearly, S-box, ShiftRows, and AddRoundKey cannot cause

a nonnull error signature to map to the null vector O. This is

true for MixColumns as well since its coefficient matrix is

nonsingular. Therefore, a nonnull error signature propa-

gates through an AES round with no error cancellation.

Thus, error checking in AES can be deferred to the end of

the last round, while still achieving 100 percent coverage of

single-bit transient faults.

6.3 Coverage of Single-Bit Errors in RC5

For the RC5 encryption, both the parity and the residue
EDCs applied at the word level (32 bits) with a single
checkpoint at the end of the last round allow detection of all
single-bit errors. The proof is, however, different from that
of AES since, for instance, a nonlinear behavior is
encountered for the residue code. The parity and residue
codes will therefore be analyzed separately. The equation
describing the basic iteration of the kernel loop is

Aiþ1 ¼ððAi �BiÞ <<< BiÞ;

Biþ1 ¼ððBi �Aiþ1Þ <<< Aiþ1Þ;

where 1 � i � n is the round counter. The addition of the
round keys is removed since key scheduling is assumed to
be fault free, leaving XOR ð�Þ and data rotation ð<<<Þ as
the only interesting operations within our model. The
detailed proof appears in Appendix B.

6.4 Coverage of Single-Bit Errors in DES

The widely used DES cipher belongs to the class of Feistel
architectures in which the algorithm modifies only half of
the input block at each round and then swaps the two
halves. We consider here a parity EDC either at the byte or
at the word level.

The operations used in DES are very difficult to deal
with from the point of view of error detection. Hence, we
decided to analyze the behavior of the code at three
different frequencies of checking: at the end of encryption,
at the end of each round, and within the round, between the
S-boxes and the bit permutation. The first two are obviously
interesting, whereas the third is motivated by the need to
deal with bit-level permutation and byte-level parity. These
three choices are discussed briefly in Section 7.

We consider two codes of different granularities, namely,
byte-level parity, where four parity bits are associated with
each 32-bit word, and word-level parity, with only one
parity bit per word. Both schemes present some difficult
issues: Although permutation preserves parity at the word
level, this is not the case when implementing byte parity.
The expansion (which generates 48 from 32 bits by
replicating some of them) requires parity to be updated
properly, taking into account the duplicated bits. Further-
more, the S-boxes are finer grained than the parity codes
used; hence, it is necessary to recompute the output parity
from the smaller nibbles. The following paragraphs detail
the parity schemes.

6.4.1 Parity at the Byte Level

Examining Table 2, one observes that each DES round
contains a permutation at the bit level. The permutation
operates on 32 bits and is very irregular (see [25]). There is
no simple way of predicting the four parity bits of the four
output bytes generated by the permutation, starting from
the four input parity bits and allowing a reasonably limited
dependence on the data bits. Due to the low hardware cost
of permutation, duplicating the permutation block and then
comparing the outputs would require approximately the
same hardware overhead as predicting the parity bits.

Therefore, the propagation chain of the predicted parity
bits must be interrupted at each round iteration, soon before
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executing the permutation, and a checkpoint must be
inserted. The permutation is then duplicated, the outputs
compared, and the parity bits regenerated soon afterward.
Hence, using parity at the byte level in DES implies that
checking must be done in the middle (not the end) of each
round. This does not change even if parity is applied at a
finer grained level, for example, at the nibble level, as
shown in Section 7.

6.4.2 Parity at the Word Level

This is the simplest solution to the permutation issue; any
permutation of a single word does not modify its parity.
The only issues are the expansion, which needs to consider
the duplicated bits, and the substitution table, where the
global parity has to be recomputed from the outputs of the
S-boxes. Note that using a single parity bit for an entire
32-bit word means a very low degree of fault detection,
which must be balanced with more frequent checks in order
to obtain an acceptable fault coverage.

6.5 Coverage of Single-Bit Errors in IDEA

IDEA is a 64-bit block cipher that uses 128-bit-long keys
[23]. Its unique characteristic is that it uses only XOR,
natural addition, and multiplication with the somewhat
unconventional modulus 216 þ 1. Multiplication breaks the
linearity of the cipher and acts like a 16-to-16-bit S-box [30].
This operation is computed on the fly since the size of a
substitution table in memory would be prohibitive. The fact
that a substitution table does not exist makes the prediction
of check bits for both parity and residue codes very difficult.
Instead, the check bits of the operands are verified prior to
the computation of the product and, if the check is
successful, the multiplication is performed and new check
bits are generated. If, however, the check fails, an error is
signaled or deliberately propagated (see Section 4.1).

The paradigm check the code–compute the result–compute
new check bits was used in DES, where it was made
necessary by the bit permutation at each round. However,
IDEA has four multiplications, necessitating four check-
points at every round, compared to one for DES [13], which
makes prediction more expensive; moreover, since IDEA
uses modular multiplication, the predicted value has to be
corrected by using the most significant bits of the inter-
mediate result. This explains the fact that the coverage of
single-bit errors is not complete since the code is con-
taminated by the data.

6.6 Additional Considerations

The granularity of the code must be chosen carefully,
depending on the operations that are actually used in the
cipher. This is not only aimed at optimizing the detection
rate of the code, but also at avoiding gaps in the
propagation chain and, hence, delays in the computation
due to excessively large-grained codes. This is especially
true for ciphers using S-boxes. Since tables must be small
enough to fit into the memory (unless the required values
are computed on the fly, which is an exception and not the
rule), they are usually targeted for 8-bit or smaller inputs.
This is important when using parity at the word level or a
residue code. In these cases, the approach described in
Section 4.1 is not effective since we have no access to the

check bits related to a single S-box input. In order to protect
the S-box, we are compelled to check the correctness of the
code before accessing the table, compute the correct (or the
deliberately wrong) output, and, finally, generate the check
bits for the output word. In summary, a larger grained code
provides worse detection rates, reduces the freedom in
choosing the frequency of checkpoints, and possibly
increases the overall latency of the computation.

7 CHECKING FREQUENCY—MULTIPLE-BIT ERRORS

Since an exact analysis of the multiple-bit error case is very
complicated, we present in this section the results of
extensive simulation experiments we conducted, dealing
with the trade-off between the frequency of checking and
the error coverage for the same four ciphers, namely, AES,
DES, RC5, and IDEA.

In [6], we studied the AES cipher with respect to the
parity code at the byte level. We bring here only a summary
of these results. We showed in Section 5 that the parity code
is a natural choice due to the use of polynomial multi-
plication in GF ð28Þ. It yields impressive results due to the
reasonable amount of required redundancy and the high
regularity and symmetry of AES. In particular, the byte-
level parity code is capable of detecting all of the faults that
cause an odd number of bit errors (see [8] for the proof).
Those with an even number of errors are mostly detected,
but complete coverage is not guaranteed, with the most
common omission being two errors in the same byte,
intrinsically not detectable by the parity code. An imple-
mentation of the code is described in [14].

The results of simulations with the RC5 and IDEA
ciphers are described in [13] and summarized here. There
were several degrees of freedom in choosing the parameters
for the simulation experiments, including

. the type of code—parity or residue,

. the level of redundancy—one or four bits per word
in the case of parity codes and two or four bits per
word in the case of residue codes (residue modulus 3
or 15, respectively), and

. the frequency of checkpoints—at the end of each
round or only at the end of the encryption.

The detection rate for multiple-bit errors is strictly
dependent on the level of redundancy: the higher the
redundancy, the better the detection rate. On the other
hand, the percentage of undetected faults when checking at
the end of each round decreases with the number of bit
errors according to an exponential law (see Figs. 1 and 2).
This is due to the fault model we selected, where each fault
is uniformly distributed over all the rounds. Note that
residue code modulo 15 is the only code that is able to
detect the faults in all of the test cases since the very few
fault sets that are not detectable constitute a tiny portion of
all possible events. All odd-order faults are fully detected
only by the round-level check of parity codes, both byte-
level and word-level ones. Similar experiments were
conducted for the DES cipher and the results are shown
in Figs. 3 and 4. For the parity code studied, the only choices
were the level of redundancy and the frequency of
checkpoints. Note that using parity codes allows detecting
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all odd-order faults. One parity bit per word gives very
poor results: Checking at the end allows detecting only half
of the injected faults because parity bits must be regener-
ated after the S-boxes anyway, even if the data is already
corrupted. Moreover, there is no difference between
checking at the end of each round and checking within
the round. A finer grained checking gives results similar to
those obtained with RC5, that is, the percentage of
undetected faults decreases as the number of bit errors
allowed by the model increases.

If we increase the level of redundancy by using four
parity bits per word, the behavior of the parity code
depends heavily on the frequency of checkpoints. Checking
at the end of each round provides a good protection against
even-order faults and it scales well with an increased
number of injected bit errors, just like the codes in the RC5
cipher. Checking within the round allows detecting all
injected faults, with the only drawback being the existence
of some false positives. Finally, checking the four parity bits
only at the end of the encryption results in a percentage of
detected faults ranging from about 90 percent to 99 percent.
Similar experiments were performed on the IDEA cipher
using residue codes, which are the only choice due to the
uncommon 16-bit multiplication. Checkpoints were sched-
uled at three different levels (as for DES), where the internal
ones were located just before multiplication. The conclu-
sions for DES hold here as well, with some interesting
differences. First, only the finest grained checkpoint

frequency allows us to detect all single-bit errors. Moreover,

the detection percentage is poor when compared to that of

AES and internal checkpoints are mandatory if we want to

break the 99-percent detection barrier. Round-level check-

points are a good compromise, whereas a single final

checkpoint gives the lowest detection rate. The situation

improves when using the modulus-15 residue code, but its

overhead becomes as high as 25 percent, not including the

additional cost due to the prediction units and comparators.

8 CONCLUSIONS

Fault attacks are becoming a serious threat to hardware

implementations of ciphers and proper countermeasures

must be adopted to foil them.Wehavepresented in this paper

an operation-centered approach to the incorporation of fault

detection into cryptographic device implementations

through the use of EDCs. Based on the operations employed

in the cipher, we select an EDC (such as parity or residue

code) with the least hardware overhead. We analyzed

11 ciphers and recommended an EDC for each and, for four

of them (namely, AES, DES, RC5, and IDEA), we evaluated

the trade-off between the checkpoint frequency and the error

coverage. Although our analysis was restricted to symmetric

block ciphers, our approach can be extended to public-key

cryptosystems (such as RSA) as well.
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Fig. 1. Undetected faults in the RC5 encryption data path.

Fig. 2. Undetected faults in the RC5 encryption data path.

Fig. 3. Undetected faults in the DES encryption data path with word

parity.

Fig. 4. Undetected faults in the DES encryption data path with byte

parity.



We believe that error detecting codes can provide a

useful protection against fault attacks and, in general,

against errors occurring during the encryption process.

They can often provide full coverage of single-bit errors and

high coverage of multiple-bit errors. The actual coverage

depends on many configurable parameters, such as

redundancy, granularity, and validation frequency;

although duplication can provide better coverage figures,

it has a base overhead that is much larger than that of EDCs.
EDCs can protect against single-bit errors occurring in

the data path, which are most likely benign faults and,

when injected maliciously, are the most dangerous fault

attacks. Moreover, EDCs can provide high coverage for

multiple-bit errors, which are the most common in fault

attacks. In this case, the coverage depends heavily on the

fault pattern and on the redundancy. Some initial imple-

mentations have already been presented with encouraging

results, showing that EDCs are a viable solution for RSA

and AES. We have reported a negligible performance

degradation (�3 percent) with a reasonable area overhead

(33 percent) in an AES architecture. We have also

embedded fault tolerance capabilities (up to 4-bit errors)

with an overhead lower than duplication. Other existing

countermeasures for AES have lower performance [20],

lower coverage [21], or higher overhead due to the use of

more complex codes.

APPENDIX A

CHECK BITS PREDICTION FOR VARIOUS OPERATIONS

This appendix provides the details of the use of parity and

residue codes to detect errors. In particular, we present

equations for generating the code check bits initially and

equations for predicting the output check bits for each of the

basic operations and data sizes in Table 2.
In what follows, we distinguish between the parity and

residue codes, which are mathematically different and can

be computed at different levels of granularity (byte or

word), not necessarily equal to the size of the data of the

internal operations. Therefore, for prediction, we distin-

guish between the cases when a code corresponds to m bits,

but the operation operates on data of size

. m bits as well—the simple case—and

. n bits with n > m—a more complicated case—the
granularity of operation ishigher than that of theEDC.

Clearly, it does not make sense to consider a code at a

coarser level of granularity than that of the operation.

A.1 Parity at the Same Level as the Operation

A single parity bit is associated with a single byte or word

of w ¼ 8; 16; 32 bits, depending on the cipher.

Definition. The word parity bit pðAÞ of A is obtained by XORing

all of its w bits, that is,

pðAÞ ¼ pðaw�1 . . . a0Þ ¼
M

w�1

i¼0

ai ¼ aw�1 � . . .� a0; ð2Þ

where a0 ðaw�1Þ is the least (most) significant bit and w is the

byte or word size.

Prediction for modular addition. It is well known (see [26]

for a recent review) that, when the modulus is 2w, the parity

of the sum of two natural integers can be obtained by

XORing the parities of both summands and of all carries

propagated between any two adjacent bits plus the possible

carry-in into the least significant position. Hence,

pðAþBÞ ¼ pðAÞ � pðBÞ � Cin �
M

w�2

i¼0

C
ðiÞ
out; ð3Þ

where C
ðiÞ
out is the internal carry from the ith bit to the

ðiþ 1Þth bit in the addition of A and B.
Prediction in modulo-2 addition. The parity of the sum is

the XOR of the parities of the summands, that is,

pðA�BÞ ¼ pðAÞ � pðBÞ: ð4Þ

Prediction in left/right rotation by k � 0 positions. Ob-

viously, the parity of A is left unaltered,

pðA <<< kÞ ¼ pðAÞ; ð5Þ

and similarly for right rotation.
Prediction in left/right shift by k � 0 positions. The parity of

A is changed by subtracting the parity of the bits shifted out

and adding the parity pcðkÞ of the bits shifted in, that is,

pðA << kÞ ¼ pðAÞ þ pðaw�1 . . . aw�k�1Þ þ pcðkÞ: ð6Þ

A similar rule applies to right-shift operations.

Prediction in polynomial multiplication. When the poly-

nomial multiplication reduces to scaling (that is, one of the

coefficients is fixed), the prediction is very simple. For

example, in AES, the coefficients of the MixColumns matrix

are 01h, 02h, and 03h (in hexadecimal). The predicted

values must take into account the possible polynomial

reduction, which has to be performed for the most

significant half of the product. The contributions from both

these most significant bits and the reduction polynomial

can be considered as a single correcting term. Denote

A ¼ ða7a6 . . . a1a0Þ, B ¼ ðb7b6 . . . b1b0Þ, and � ¼ �7�6 . . .�1�0,

then

pðA�B mod �Þ ¼ pðAÞ �
M

7

j¼1

ðbjpðA >> 8� jÞpð�ÞÞ

¼ pðAÞ �
M

7

j¼1

bj
M

8�j

i¼7

aipð�Þ

 !

:

ð7Þ

It can be seen that, if both operands are unknown a priori,

each bit bj must be evaluated at least once. Furthermore, the

prediction rule requires that a partial evaluation of A is

computed at each iteration, thus resulting in a complex

design. However, if B is restricted to a small number of

possibilities, then the parity prediction is simpler: AES uses

the scaling coefficients 01h, 02h, and 03h; Twofish uses 01h,

5Bh, and EFh, yielding simple prediction rules.
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Prediction in permutation. For a permutation at the same
level of the parity code, prediction is trivial since nothing
changes:

Ah 7! Ak ) pðAkÞ ¼ pðAhÞ: ð8Þ

A.2 Parity at a Finer Level than the Operation

Parity can be applied at the byte level in cases when the
operation is applied to words of size w ¼ 16; 32 bits. The
propagation rules are not shown here for brevity. We only
point out that most propagation rules of Appendix A.1 still
hold, provided that possible external contributions are
considered. These include carries between bytes or migrat-
ing bits in rotation and shifting.

A.3 Residue at the Same Level as the Operation

Definition. The residue rsðAÞ of A is defined as

rsðAÞ ¼ rsða31 . . . a0Þ ¼ A mod ð2s � 1Þ: ð9Þ

We focus on the residue codes for small moduli 3, 7, and 15,

which correspond to s ¼ 2; 3 and 4, respectively, in (9). In

practice, the rules for performing arithmetic operations with

the above defined residues are those of one’s complement

arithmetic, as taking modulo ð2s � 1Þ is equivalent to stating

that 2s � 1 ¼ 0 (for example, [22]). Since this implies 2s ¼ 1,

(9) can be rewritten as rsðAÞ ¼
P31

i¼0 ai2
i mods mod ð2s � 1Þ.

Prediction in integer modular addition. The residue of the
sum is the sum modulo ð2s � 1Þ of the residues of the
summands, minus a correction term.

rsðAþBÞ ¼ ½rsðAÞ þ rsðBÞ � csðA;BÞ�

mod ð2s � 1Þ for s ¼ 2; 3; 4:
ð10Þ

The correction term csðA;BÞ takes care of the possible carry
out when adding A and B as words of w bits. In fact, when
s ¼ 2 or 4, the arithmetic weight of the carry out is 2w and,
observing that the chosen values of s divide w (8, 16, or 32), it
follows that 2w mod ð2s � 1Þ ¼ ð2sÞ

w
s mod ð2s � 1Þ ¼ 1

w
s ¼ 1.

Thus, s ¼ 2 or s ¼ 4 implies

csðA;BÞ ¼ carry out of the addition AþB: ð11Þ

Prediction in modulo-2 addition. This case is more complex
than natural addition. The predicted residue of the result is

rsðA�BÞ ¼ ½rsðAÞ þ rsðBÞ � 2rsðA ^BÞ�

mod ð2s � 1Þ for s ¼ 2; 3; 4:
ð12Þ

To justify (12), observe that, when ai ^ bi ¼ 1, the contribu-
tion of these two bits disappears since ai � bi ¼ 0. The
required correction is the negative term �2rsðA ^BÞ mod

ð2s � 1Þ in (12). When s ¼ 2, �2 ¼ 1 mod 3, and the
correction term simplifies to þr2ðA ^BÞ mod ð2s � 1Þ.

Prediction in left rotation by k � 0 positions. Denote by
<<<

n
the left rotation of a word of n bits. Then,

rs A<<<
w

k

� �

¼ rs
X

w�1

i¼0

ai2
i

 !

<<<
w

k

 !

¼ rs
X

w�1

i¼0

ai2
ðiþkÞ mod w

 !

¼
X

w�1

i¼0

ai2
ððiþkÞ mod wÞ mod s mod ð2s � 1Þ

¼
X

w�1

i¼0

ai2
ðiþkÞ mod s mod ð2s � 1Þ

¼ rsðAÞ<<<
s

ðk mod sÞ

ð13Þ

for s ¼ 2; 4 and w ¼ 8; 16; 32. The simplification

ððiþ kÞ mod wÞmod s ¼ ðiþ kÞ mod s

is possible because the chosen values of s divide w. In

practice, the residue of A<<<
w

k is obtained by rotating the

original residue of A (which is a sequence of s bits) by

k mod s positions.
Prediction in integer modular multiplication. This case

resembles the rules used in natural addition, as might be

expected. The residue of the product is the product of the

residues minus a correction term. Such a term is again due

to the overflow of the result with respect to the size of the

field; the final result must eventually be represented within

the modular domain since the correction term can lead to a

negative value:

rsðA �BÞ ¼ rsðAÞ � rsðBÞ �
A �B

2w

� �

mod 2s � 1ð Þ: ð14Þ

The correction term can be easily computed since the ratio is

actually a w-bit shift: The w least significant bits of the

product are the actual result, whereas the remaining bits are

the correction term. Multipliers can be modified to provide

this value at the cost of an additional output port.
Prediction in permutation. Since the permutation occurs at

the same level as the residue code, the prediction rule is the

same as (8):

Ah 7! Ak ) rsðAkÞ ¼ rsðAhÞ: ð15Þ

A.4 Residue at a Finer Level than the Operation

The purpose of having a parity code at a finer granularity

than the operation is to increase the amount of redundancy

and thus improve the detection rate of the code (see

Section 7). In the case of residue codes, increasing the

amount of redundancy can be achieved by increasing the

value of s. Using residue codes at a finer level than the

operation is thus useless and can lead to unnecessary

overhead and cost.

APPENDIX B

PROOF OF COMPLETE SINGLE ERROR COVERAGE

IN RC5

Let E ¼ ½eA; eB�
T denote the initial (column) error signature

associated with the register pair A, B, and, similarly, Ei ¼

½eAi
; eBi

�T after i � 1 rounds.
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B.1 Parity

The error propagation analysis for the RC5 encryption with

parity at the word level is relatively simple. It is

summarized in the following statement:

Statement 2.1. Using parity at the word level (32 bits) for RC5

encryption and scheduling a single checkpoint at the end of the

last round yields 100 percent coverage of single-bit errors.

Proof. The predicted parity after one round has the

following form, where Ai and Bi represent the values

of the registers A and B (of w ¼ 32 bits each) at the end of

round i, with 1 � i � n:

pðAiþ1Þ ¼ p ðAi �BiÞ<<<
w

Bi

� �

¼ pðAiÞ � pðBiÞ;

pðBiþ1Þ ¼ p ðBi �Aiþ1Þ<<<
w

Aiþ1

� �

¼ pðBi �Aiþ1Þ ¼ pðBiÞ � pðAiþ1Þ

¼ pðBiÞ � pðAiÞ � pðBiÞ ¼ pðAiÞ:

Let pAi
and pBi

ð1 � i � nÞ be the predicted parity bits of

the words A and B, respectively, at the end of round i.

By applying rules (4) and (5) for predicting the parity of

bitwise XOR and rotation, we obtain pAiþ1
¼ pAi

� pBi
and

pBiþ1
¼ pAi

, which can be rewritten as

pAiþ1

pBiþ1

� �

¼ M
pAi

pBi

� �

where M ¼
1 1

1 0

� �

:

Clearly, detðMÞ ¼ 1, that is, the matrix M is nonsingular.

Thus, using (1), we obtain

eAiþ1

eBiþ1

� �

¼ M
pAi

þ eAi

pBi
þ eB

� �

�M
pAi

pBi

� �

¼ M
eAi

eBi

� �

:

As a result, En ¼ MnE and, if E 6¼ O, En 6¼ O for any

n � 1 since the matrix M is nonsingular. Therefore, a

nonnull error signature is propagated throughout any

number of rounds and can always be detected at the end

of the last round. Since single-bit errors cannot cause a

null error signature, their detection coverage is

100 percent. tu

Note that the error propagation model for the RC5

encryption with the parity code is linear (over GF ð2Þ).

B.2 Residue

The error propagation analysis for RC5 encryption with

residue modulo s ðs ¼ 2; 4Þ at word level is more complex

than that for the parity code and is summarized below.

Statement 2.2. In RC5 encryption, using the residue modulo s

ðs ¼ 2; 4Þ EDC at the word level (32 bits) and scheduling a

single checkpoint at the end of the last round yields a

100 percent coverage of single-bit errors.

Proof. The predicted residue (modulo s ¼ 2; 4) after one

round has the following form (use rules 12 and 13):

rsðAiþ1Þ ¼ rs ðAi �BiÞ<<<
w

Bi

� �

¼ ðrsðAi �BiÞÞ<<<
s

ðBi mod sÞ

¼ ½rsðAiÞ þ rsðBiÞ � 2rsðAi ^BiÞ�<<<
s

ðBi mod sÞ;

rsðBiþ1Þ ¼ rs ðBi �Aiþ1Þ<<<
w

Aiþ1

� �

¼ rsðBi �Aiþ1Þ<<<
s

ðAiþ1 mod sÞ

¼ ½rsðBiÞ þ rsðAiþ1Þ � 2rsðBi ^Aiþ1Þ�

<<<
s

ðAiþ1 mod sÞ:

Let rs;Ai
and rs;Bi

ð1 � i � nÞ be the predicted residue
check bits of the words A and B, respectively, at the end
of round i. Then, the above results can be rewritten as
follows:

rs;Aiþ1
¼ ½rs;Ai

þ rs;Bi
� 2rsðAi ^BiÞ�<<<

s
ðBi mod sÞ

rs;Biþ1
¼ ½rs;Bi

þ rs;Aiþ1
� 2rsðBi ^Aiþ1Þ�

<<<
s

ðAiþ1 mod sÞ:

Using (1), we obtain

es;Aiþ1
¼
h

ðrs;Ai
þ es;Ai

þ rs;Bi
þ es;Bi

� 2rsðAi ^BiÞÞ<<<
s

ðBi mod sÞ
i

�
h

ðrs;Ai
þ rs;Bi

� 2rsðAi ^BiÞÞ<<<
s

ðBi mod sÞ
i

;

es;Biþ1
¼
h

ðrs;Bi
þ es;Bi

þ rs;Aiþ1
þ es;Aiþ1

� 2rsðBi ^Aiþ1ÞÞ<<<
s

ðAiþ1 mod sÞ
i

�
h

ðrs;Bi
þ rs;Aiþ1

� 2rsðBi ^Aiþ1ÞÞ<<<
s

ðAiþ1 mod sÞ
i

:

The addition ðþÞ of residues is computed modulo

ð2s � 1Þ; hence, rotation ð<<<
s

Þ of residues modulo s

commutes with the modular addition ðþÞ of residues,

that is, ðAþBÞ<<<
s

C ¼ ðA<<<
s

CÞ þ ðB<<<
s

CÞ if A,

B are two residues modulo s and C is any integer. In fact,

addition modulo ð2s � 1Þ is one’s complement addition

and the carry out is rotated (end-around carry).

Rearranging and simplifying terms yields

es;Aiþ1
¼ es;Ai

<<<
s

ðBi mod sÞ

� �

þ es;Bi
<<<

s
ðBi mod sÞ

� �

;

es;Biþ1
¼ es;Bi

<<<
s

ðAiþ1 mod sÞ

� �

þ es;Aiþ1
<<<

s
ðAiþ1 mod sÞ

� �

:

Note that the rotation of a residue modulo s can be

viewed as multiplication by a suitably chosen power of 2.
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For instance, e<<<
s

A ¼ ð�eÞ mod ð2s � 1Þ for a coeffi-

cient � ¼ 2sA with 0 � sA � blog2ðs� 1Þc (that is, the

coefficient � is a power of 2 and ranges from 1 to 2s�1).

For s ¼ 2, � ¼ 1; 2, whereas, for s ¼ 4, � ¼ 1; 2; 4; 8.

Hence,

es;Aiþ1
¼�ies;Ai

þ �ies;Bi
;

es;Biþ1
¼�ies;Bi

þ �ies;Aiþ1
¼

¼�ies;Bi
þ �ið�ies;Ai

Þ þ �ies;Bi

¼�ies;Bi
þ �i�ies;Ai

þ �i�ies;Bi

¼�i�ies;Ai
þ �ið1þ �iÞes;Bi

for some coefficients �i; �i ¼ 2sAi ; 2sBi with 0 � sAi
,

sBi
� blog2ðs� 1Þc. This can be rewritten as

es;Aiþ1

es;Biþ1

� �

¼ Mi
es;Ai

es;Bi

� �

;

whereMi are 2� 2matrices with entries over the integers
modulo ð2s � 1Þ (the ring of the residues modulo s):

Mi ¼
�i �i

�i�i �ið1þ �iÞ

� �

:

Clearly,

detðMiÞ ¼ �i�ið1þ �iÞ � �i�i�i

¼ �i�i þ �i�
2
i � �i�

2
i ¼ �i�i:

Thus, detðMiÞ ¼ 2sAi 2sBi ¼ 2sAiþsBi and it yields detðMiÞ 6

¼ 0 for any 1 � i � n since exponentials cannot be zero,
whatever the exponent may be.

Now, Eiþ1 ¼ MiEi, and if, for n � 1 rounds, we denote
N

ðnÞ
D ¼

Qn
i¼1 Mi, we obtain En ¼ ð

Qn
i¼1 MiÞE ¼ N

ðnÞ
D E.

Moreover, it holds that

det N
ðnÞ
D

� �

¼ det
Y

n

i¼1

Mi

 !

¼
Y

n

i¼1

detðMiÞ:

Hence, detðN
ðnÞ
D Þ would be equal to 0 if and only if

detðMiÞ ¼ 0 for some i, 1 � i � n, which was shown
above to be impossible. It now follows that detðN

ðnÞ
D Þ 6¼ 0

for every n � 1 and for any initial register pair A;B, that
is, for every data block D to be encrypted, and, hence,
N

ðnÞ
D is nonsingular. Therefore, En ¼ N

ðnÞ
D E 6¼ 0 for a

nonnull error signature E and for any n � 1.
In conclusion, a nonnull error signature is propagated

throughout any number of rounds and can always be
detected at the end of the last round. Since single-bit
errors cannot cause a null error signature, their detection
coverage is 100 percent. tu

Note that, although the relationship between Eiþ1 and Ei is
linear within one round (with a coefficient matrix depend-
ing on the round number), the relationship between En and
E is not linear over n > 1 rounds since the matrices Mi and,
consequently, N

ðnÞ
D depend on the round number and on the

initial value of the register pair A;B and, hence, ultimately
depend on the data block D to encrypt. In other words, the
matrix N

ðnÞ
D is obtained by multiplying a finite number of

matrices, the scheduling of which depends on the data

block D (remember that matrix multiplication is, in general,

not commutative).
This proof is a good example of how, despite error

propagation being nonlinear, an analysis can still be

performed.
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