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Abstract
One of the basic observations of the classical world is that physical entities are real 
and can be distinguished from each other. However, within quantum theory, the 
idea of physical realism is not well established. A framework to analyse how obser-
vations in experiments can be described using some physical states of reality was 
recently developed, known as ontological models framework. Different principles 
when imposed on the ontological level give rise to different theories, the validity 
of which can be tested based on the statistics generated by these theories. Using the 
ontological models framework, we formulate a novel notion of classicality termed 
ontic-distinguishability, which is based upon the physical principles that in classical 
theories extremal states are physical states of reality and every sharp measurement 
observes the state of the system perfectly. We construct a communication task in 
which the success probability is bounded from above for ontological models satisfy-
ing the notion of ontic-distinguishability. Contrary to previous notions of classicality 
which either required systems of dimension strictly greater than two or atleast three 
preparations, a violation of ontic-distinguishability can be observed using just a pair 
of qubits and a pair of incompatible measurements. We further show that violation 
of previously known notions of classicality such as preparation non-contextuality 
and Bell’s local causality is a violation of ontic-distinguishability.
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1 Introduction

The operational picture of physical theories aims at understanding the physi-
cal world in terms of statistics generated by experiments performed on physical 
systems. The novelty of such a picture relies on the idea that observable facts 
are enough to predict outcomes of some physical experiments without much 
emphasis on the underlying physical states of reality, commonly referred to as 
ontological states. However, there are limitations of the operational picture, 
not just towards predictive power but also that such a picture lacks any deeper 
understanding of nature. From a realist perspective, any operational prediction 
needs to be supported by some ontological states of reality even if they might 
be unobservable or hidden. One of the most compelling beliefs that are held by 
most physicists is that physical entities in the classical world are real or a fact 
that is independent of observation. However, in any general theory, it might also 
be possible that observable facts are just a reflection of some underlying physical 
reality even when the physical reality can not be directly observed. Building on 
this viewpoint, Bell in 1964 [1] could prove that quantum theory is inherently dif-
ferent from classical physics.

One of the interesting avenues in the foundations of quantum theory is to 
understand how quantum theory diverges from classical theories. To facilitate 
such understanding, different notions of classicality have been suggested, like 
Bell’s local causality [1], Kochen–Specker non-contextuality [2, 3], and prepara-
tion non-contextuality [4] to name a few. All such notions of classicality differ 
based on the assumptions imposed on the ontological level. If quantum theory 
violates any notion of classicality, then such a notion of classicality can also be 
understood as a no-go theorem for quantum theory, i.e., quantum theory can not 
be compatible with all the assumptions which define the notion of classicality. 
For example, Bell’s theorem shows that any ontological description of quantum 
theory must violate the principle of local causality. Apart from their foundational 
importance, all such notions of classicality have led to various tasks in cryptog-
raphy, communication and computation, which show a quantum advantage over 
classical strategies. For example, the security of the well-known cryptographic 
scheme E91 protocol is based on Bell’s theorem [5]. In fact, every device-inde-
pendent scheme is based upon violations of some notion of classicality [6–10].

In this work, we construct a novel notion of classicality, which is termed 
ontic-distinguishability, based on the idea that any physical entity in the classi-
cal everyday world is real and all of the entities can be perfectly distinguished 
from each other. The notion is based upon two assumptions, namely no-overlap 
and strong duality. Both of which, when taken together, reflect the fact that in 
classical physics, extremal states are states of reality and any sharp measurement 
perfectly observers the state of the system. Then, we construct an operational task 
that gives an upper bound for theories satisfying ontic-distinguishability. This 
bound can be violated in quantum theory using only two pure qubit states and 
two incompatible measurements, suggesting that even two-dimensional systems 
in quantum theory can not be described classically. also We further show that 
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the notion of ontic-distinguishability implies all the other known ideas of classi-
cality like preparation non-contextuality, Kochen–Specker non-contextuality and 
Bell’s local causality. In discussions, we briefly provide some arguments on why 
ontic-distinguishability could be a more fundamental notion of classicality than 
contextuality.

2  Preliminaries

Before moving on to results, we would like to introduce the notations and relevant 
concepts required for this work.

2.1  Operational Picture

Any experiment performed on some physical system can be understood as prepare, 
transform and measure experiment. In each run of the experiment, a preparation 
(the prepared system) undergoes a transformation (some dynamical process), after 
which the system is measured. Finally, the experiment is repeated a large number of 
times to gather enough statistics. In any such experiment, it is always assumed that 
each run of the experiment is statistically independent of other runs and the prepara-
tion, transformation, and measurement remain consistent throughout the runs of the 
experiment.

Any preparation in the operational picture is denoted by P, transformation by T 
and measurements are denoted by M with outcomes denoted by k. The statistics are 
denoted by p(k|M, P, T), which specifies the probability of obtaining the outcome k 
of some measurement M when the preparation P undergoes a transformation T. For 
different physical theories, the probabilities are obtained in different ways. For exam-
ple, in quantum theory, the preparations are given by density matrices � belonging to 
some d−dimensional Hilbert space Hd , the transformations are unitary matrices U, 
and the measurements are given by positive operator-valued measure (POVM) {Mk} . 
The probabilities are obtained using the Born rule, p(k|M,P, T) = Tr(U�U†Mk) . 
For the rest of this manuscript, we would not consider systems that evolve. Con-
sequently, the scenario can be simplified to only prepare and measure experiments 
where the probabilities are denoted by p(k|M, P).

2.2  Ontological Models Framework

The idea of ontic states or hidden variables was put forward by Bell in his seminal 
work in 1964 [1]. The idea was put more rigorously by Spekkens and Harrigan [11] 
and subsequently by Leifer [12]. The ontological models framework provides a basis 
for realist extensions of any physical theory. The ontic states can be understood as 
some "real physical states" that generally might not be observed directly. The ontic 
state is denoted by � , which belongs to the ontological state space denoted by Λ . In 
general, any preparation procedure P prepares a distribution of such ontic states 
denoted by �(�|P) which can be understood as the probability of preparing the ontic 



 Foundations of Physics (2023) 53:47

1 3

47 Page 4 of 16

state � using a preparation procedure P. It is required that Λ is a measurable space 
along with the condition that ∫

Λ
�(�|P)d� = 1 for all preparations P which signifies 

that every preparation must always prepare some state � ∈ Λ along with the con-
straint �(�|P) ≥ 0 . The set ΩP ∈ Λ represents the set of �′s for some preparation P 
such that the probability density �(�|P) ≠ 0 . Thus, we also have ∫

ΩP
�(�|P)d� = 1.

Any measurement in the ontological models framework measures the ontic state. 
The measurements are represented as response functions denoted by, �(k|M, �) 
which specifies the probability of obtaining the outcome k of some measurement M 
given the ontic state � . It is also required that the response function is measurable 
along with the condition �(k|M, �) ≥ 0 and 

∑
k �(k�M, �) = 1 for all � ∈ Λ.

Using the above prescription, any probabilities obtained in the prepare and meas-
ure experiments can be represented as,

Note that we assume that the preparation and measurement are related via the ontic 
state � . This is known as �−mediation.

2.3  Ontic‑Epistemic Distinction

One of the most intriguing questions in the foundations of quantum theory is 
whether a quantum state is a physical state of reality or epistemological knowledge 
of some underlying reality. To answer this question, the first requirement is to have a 
realist perspective and an ontological models framework that can describe quantum 
theory. If every pure quantum state corresponds to some unique set of ontological 
states, then the quantum state is ontic or corresponds to a real physical state of real-
ity. On the other hand, if two pure quantum states share some ontological states, 
the quantum state is epistemic or just a representation of underlying physical states 
of reality. There has been a large number of ontological models, in some of which 
the quantum states are ontic like Bohmian mechanics [13, 14], Beltrametti–Bugajski 
model [15] and Bell model [16] to name a few. Some other ontological models of 
quantum theory in which the quantum state is not a physical reality but just an epis-
temic knowledge are Kochen–Specker model [2], Spekkens toy theory [17], LJBR 
model [18] and ABCL models [19] to name a few.

2.4  Extremal Preparations and Measurements

Any preparation that can not be described as a convex mixture of two different prep-
arations are known as extremal or pure preparations. Mathematically, if

then, z = 1 or P� = P�� = P . Similarly, any extremal or sharp measurement 
M = {ei} , where ei represent the effects of the measurement, can not be realised as 

(1)p(k|M,P) = ∫
Λ

�(k|M, �)�(�|P)d�

(2)P = zP� + (1 − z)P��
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some convex combination of two different measurements M� = {e�
i
} and M�� = {e��

i
} . 

Mathematically, if

that is,

then, z = 1 or M� = M�� = M . Every preparation can be expressed as a classical 
mixture of extremal preparations and within classical and quantum theory any non-
extremal preparation can also be realised as a extremal preparation in some higher 
dimensional system. Similarly, any measurement can be expressed as a convex mix-
ture of extremal measurement and within classical and quantum theory any unsharp 
measurement can be realised as a sharp measurement acting on some higher dimen-
sional system [20]. Now, we proceed towards the main result of this manuscript.

3  Results

We present here a novel measure of classicality termed ontic-distinguishability, 
which is based upon two physical assumptions well-supported by experiments to 
date. In this section, first, we introduce the assumptions defining ontic-distinguisha-
bility. Next, we construct a simple operational task and show that the success prob-
ability of the task using classical strategies is bounded from above. We find states 
and measurements within quantum theory, which gives a higher success probability 
than achievable using classical strategies. We begin by stating the assumptions.

3.1  Assumptions

The first assumption defining ontic-distinguishability is given as,

Assumption 1 (No overlap) For two extremal preparations P1 and P2 , the corre-
sponding ontic distributions �(�|P1) and �(�|P2) do not overlap. Mathematically,

This assumption stems from the fact that extremal preparations generate onto-
logical states that correspond to physically real states in any classical theory. As 
discussed above, two physically real states can not share the same ontological states. 
For simplicity, let us consider classical Hamiltonian dynamics. In classical Hamil-
tonian dynamics, any state that lies within the phase space is described by the posi-
tion and momentum of the system (x, p) that are physically measurable quantities 
and real. Going back to the ontological models framework, considering the ontic 
states to be the position and momentum and a preparation which prepares a state 

(3)M = zM� + (1 − z)M��

(4)ei = ze�
i
+ (1 − z)e��

i
∀i

(5)
1

2 ∫
Λ

|||�(�|P1) − �(�|P2)
|||d� = 1



 Foundations of Physics (2023) 53:47

1 3

47 Page 6 of 16

with some fixed energy E (which is a distribution over the phase space states). It 
is known that energy is a physically measurable quantity. Consequently, if we can 
know the position and momentum of the system, we can predict the system’s energy. 
However, if the same phase space state belonged to two different energy states, then 
it would not have been a physically measurable quantity. Note that classical mixture 
represents a lack of knowledge or ignorance that can be regarded as epistemic. For a 
remark, restricting to quantum theory the assumption of no-overlap is equivalent to 
psi-onticity or the quantum state is a physical state of reality. However, here we do 
not refer to quantum theory but to the fact that no-overlap is a feature of any classi-
cal theory. The second assumption involves measurements,

Assumption 2 (Strong duality) For every extremal measurement M the response 
function belonging to the kth outcome, �(k|M, �) = 1 for every � ∈

⋃

i

Ω
Pi

 and 0 for 

all other � ∉
⋃

i

Ω
Pi

 such that p(k|M,Pi) = 1 where Pi are extremal preparations.

The above assumptions stem from the fact that any sharp measurement in the 
classical world is just observing the system’s state perfectly. In the classical world, 
measurements are not supposed to change the concerned system. Thus unlike quan-
tum theory, postulates of any classical theory do not give an account of how one 
observes the system as it is a natural assumption that any physical state can in princi-
ple be observed without altering the state. For example, considering classical Hamil-
tonian dynamics, sharp measurements on the phase space just read the system’s state 
(x, p). In general, the measurements might not exactly suggest the state of the system 
but specify some region of phase space where the system resides. Such scenarios 
can be understood as measurements whose different outcomes are classically coarse-
grained to a single outcome. Any unsharp measurement within classical theories is 
just a probabilistic mixture of sharp measurements. Consequently, without loss of 
generality within classical theories, it can always be assumed that measurements are 
sharp on some larger dimensional system.

The term “strong-duality” comes from the fact that physical measurements strictly 
depend on physical preparations. A weaker assumption which is quite familiar in the 
quantum foundations community is known as outcome-determinism, which says that 
for any sharp measurement M, the response function for any outcome �(k|M, �) = 1 
or 0 for any � . Strong-duality is much stricter in the sense that the response function 
is 1 only over a specific region of ontic states defined by the extremal preparations. 
Now, we construct the operational task whose success probability is upper bounded 
for any classical strategy.

3.2  Operational Task

The task consists of two players, Alice and Bob, who are not allowed to communi-
cate with each other during the run of the experiment. Alice has access to a prepara-
tion box that consists of two inputs y = {0, 1} which generate two different prepara-
tions Py . Bob has access to a measurement box with two inputs x = {0, 1} specifying 
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two different measurements Mx with any number of outputs strictly greater than 1, 
labelled as a = {0, 1, 2,…} . Now, Alice and Bob choose their inputs independent 
of each other. As a consequence, a system is prepared by the preparation box with 
Alice, which is then sent to Bob, who measures the system as specified by the meas-
urement box. The task is repeated a large number of times to collect statistics.

The quantifier of the probability of winning in the above-described task, also 
known as success probability PS , is given by

where ca,x,y =
1

4
 if a = x ⋅ y and 0 otherwise.

Recalling from Bell’s theorem, to observe a quantum advantage, it is required 
that the correlations shared between Alice and Bob are no-signalling [21]. Similarly, 
to observe an advantage using quantum theory and constrain classical theories in the 
above described operational task (6), we are required to impose the condition that 
the measurements are of rank-one, which can be operationally defined as (Fig. 1)

Definition (Rank-one measurements) For any measurement M, if two preparations P 
and P′ give the same outcome with certainty, then P and P′ can not be distinguished.

This means for any measurement M and preparation P and P′ , if

then p(k|M,P) = p(k|M,P�) for all outcomes k of all measurements M. Note that, for 
sharp measurements if p(k|M,P) = 1 , then P is an extremal preparation.

Constraining the strategies using the condition of measurements being rank-one 
def-3.2, we establish the following theorem on the success probability as defined in 
(6). Note that along with the above assumptions defining ontic-distinguishability, the 
implicit assumption of free will is required in any operational task. The assumption 
of free will ensures that Alice and Bob can freely choose respective inputs (y, x) 
independent of each other’s choices.

(6)PS =
∑

a,x,y

ca,x,yp(a|x, y)

(7)p(k|M,P) = p(k|M,P�) = 1 for some k

Fig. 1  The operational task to observe quantum advantage. The preparation box consists of two inputs 
labelled by y = 0, 1 which generate two different preparations. The measurement box consists of two 
inputs labelled by x = 0, 1 which corresponds to two rank-one measurements of arbitrary number of out-
comes labelled by a = 0, 1, 2,…
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Theorem For any theory which satisfies the assumptions of no overlap (Assump-
tion-1) and strong duality (Assumption-2), the success probability (6) is bounded 
from above as PS ≤ 3

4
.

Proof Expanding the success probability (6), we have

Since, the measurements consists of more than one outcome, we have ∑
k p(k�1, 1) = 1 , which imposes that p(0|1, 1) + p(1|1, 1) ≤ 1 . Using this, we have

Since there is no restriction on dimension, as discussed above any measurement can 
be realized as a sharp measurement on some larger system. Using this fact and the 
ontological models framework, we expand the above expression as

Since the measurements are sharp, the assumption of strong duality (Assumption-2) 
imposes that for all rank-one sharp measurements, the response function 
�(0|M0, �) = 1 for � ∈ Ω

P0
 and 0 for � ∉ Ω

P0
 and �(0|M1, �) = 1 for � ∈ Ω

P1
 and 0 

for � ∉ Ω
P1

 for some extremal preparations P0 and P1 . This imposes that

Now, the assumption of no-overlap (assumption-1) imposes that either Ω
P0

 and Ω
P1

 
are disjoint for P0 and P1 being distinct or Ω

P0
 and Ω

P1
 are equivalent for P0 and P1 

being same. Let’s first consider the case when P0 and P1 are distinct.

where pi,j = ∫
Ω

Pi

�(�|Pj)d� and we used the fact that the ontological states generated 
from pure state preparations do not overlap, which imposes

(8)PS =
1

4
(p(0|0, 0) + p(0|1, 0) + p(0|0, 1) + p(1|1, 1))

PS ≤ 1

4
(p(0|0, 0) + p(0|1, 0) + p(0|0, 1) − p(0|1, 1)) + 1

4

(9)

p(0|0, 0) + p(0|1, 0) + p(0|0, 1) − p(0|1, 1)

= ∫
Λ

�(0|M0, �)
(
�(�|P0) + �(�|P1)

)
d�

+ ∫
Λ

�(0|M1, �)
(
�(�|P0) − �(�|P1)

)
d�

(10)

p(0|0, 0) + p(0|1, 0) + p(0|0, 1) − p(0|1, 1)

= ∫
Ω

P0

(�(�|P0) + �(�|P1))d�

+ ∫
Ω

P1

(�(�|P0) − �(�|P1))d�

(11)
p(0|0, 0) + p(0|1, 0) + p(0|0, 1) − p(0|1, 1)

= p0,0 + p0,1 + p1,0 − p1,1 ≤ 2
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For the case when P0 and P1 being same, we have

Thus, from (8), (11) and (13) we can conclude that

This completes the proof.   □

Since any classical theory satisfies the assumptions of no-overlap (Assumption-1) 
and strong duality (Assumption-2), the above theorem shows that using classical 
strategies, the maximum attainable value of the success probability is bounded from 
above by the value Ps =

3

4
 . To better understand the above bound, let’s consider a 

possible classical strategy. Let’s say Alice sends her inputs y = {0, 1} to Bob. This 
can be realised by just sending a classical bit in which case, the constraint 3.2 
imposes that p(0|0, 0) + p(0|0, 1) ≤ 1 which in turn imposes from (6) that Ps ≤ 3

4
 . 

Now, we show that there exist strategies in quantum theory which can attain a suc-
cess probability Ps =

1

2
+

1

2
√
2
 which is strictly greater than 3

4
.

3.3  Quantum Advantage

To witness quantum advantage, the preparations are chosen by Alice as, P0 gener-
ates the state ��0⟩ = �+⟩ = 1√

2
(�0⟩ + �1⟩) and P1 generates the state ��1⟩ = �0⟩ . The 

measurements are chosen by Bob represented as observables are given by, 
M0 =

1√
2

�
�z + �x

�
 and M1 =

1√
2

�
�z − �x

�
 where �z and �x corresponds to Pauli-z 

and Pauli-x matrices respectively. Calculating the necessary probabilities to evaluate 
the success probability (6) using the above chosen quantum states and measure-
ments, we have

Thus, the success probability is given by

The existence of such strategies in quantum theory shows that quantum theory out-
performs classical strategies in the above presented operational task. Also, such a 
violation shows that the assumptions of no-overlap (Assumption-1) and strong dual-
ity (Assumption-2) are not compatible with quantum theory. Thus, it is impossible 

(12)
p0,0 + p1,0 ≤1 and,

p0,1 + p1,1 ≤1

(13)p(0|0, 0) + p(0|1, 0) + p(0|0, 1) − p(0|1, 1) = 2p0,0 ≤ 2

(14)PS ≤ 3

4
.

(15)
p(0|0, 0) = p(0|1, 0) = p(0|0, 1) = p(1|1, 1)

= cos2
(
�

8

)

(16)Ps = cos2
�
�

8

�
=

1

2
+

1

2
√
2
.
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to construct any such ontological model of quantum theory which have the fea-
tures of no-overlap (Assumption-1) and strong duality (Assumption-2) together. 
However, some ontological models of quantum theory can exist that violate either 
of the two assumptions. Some notable ontological models of quantum theory that 
violate the assumption of strong duality (Assumption-2) but satisfy the assumption 
of no-overlap (Assumption-1) are Beltrametti–Bugajski model [15] and Bell model 
[16]. Another class of ontological models like the Kochen–Specker model [2] and 
Spekkens toy theory [17] violate the assumption of no-overlap (Assumption-1) but 
satisfy the assumption of strong duality (Assumption-2). In the next section, we 
show how the notion of ontic-distinguishability implies some of the well-known 
notions of classicality.

4  Relations to Other Notions of Classicality

In this section, we show that ontic-distinguishability implies the previously known 
notions of classicality. We need an additional assumption concerning non-extremal 
preparations.

Definition 3 (Convexity) For any preparation P that can be realised as a classical mix-
ture of some preparations P′

i
s such that P =

∑
i ziPi , then the corresponding ontologi-

cal distribution is given by �(��P) = ∑
i zi�(��Pi) where zi ≥ 0 and 

∑
i zi = 1.

The above definition holds true for any preparations Pi . However, for this work, we 
only consider P′

i
s which are pure states, as any preparation which generates a mixed 

state can be understood as some classical mixture of pure states. As pure states rep-
resent physical states of reality in classical theories, any mixture of such pure states 
would be equivalently reinstated at the ontological level.

First, we prove that ontic-distinguishability and convexity implies preparation non-
contextuality [4]. For this, let us first recall the definition of preparation non-contextu-
ality. Preparation non-contextuality imposes that if two preparations are indistinguish-
able, then their respective ontological distributions are same. Mathematically, if

then, �(�|P1) = �(�|P2) for all � ∈ Λ.
Now, we would show that the assumptions of no overlap (Assumption-1) and 

strong duality (Assumption-2) along with the assumption of convexity def-3 when 
imposed on the ontological state space imposes preparation non-contextuality. For 
this, let us note that as discussed before any measurement can be realized as a sharp 
measurement in some higher dimensional space. Expressing (17) in the ontological 
models framework,

(17)p(k|M,P1) = p(k|M,P2) ∀k,M

(18)∫
Λ

�(k|M, �)�(�|P1)d� = ∫
Λ

�(k|M, �)�(�|P2)d�
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for all outcomes k of all sharp measurements M . To show �(�|P1) = �(�|P2) , 
it is enough to consider rank-one measurements def-3.2. As discussed before, 
the assumption of strong duality (Assumption-2) imposes that �(k|M, �) = 1 for 
∀� ∈ Ω

P
 and 0 for all other � ∉ Ω

P
 for some pure state preparation P,

Now, assuming convexity def-3 we have

Assuming no overlap (assumption-1), it can be concluded that the above equality 
(20) holds iff Pi,1 = Pi,2 = P and zi,1 = zi,2 for some i. Using a similar argument 
for all outcomes k of all rank-one sharp measurements M we can conclude that 
�(�|P1) = �(�|P2) for all � ∈ Λ.

Now, we show that ontic-distinguishability and convexity also gives rise to a 
recently proposed notion of classicality termed bounded ontological distinctness 
[22]. For this, let us first recall the definition of bounded ontological distinctness 
(BODP) . Bounded ontological distinctness imposes that for distinguishability of 
preparations at the ontological level is same as distinguishability at the opera-
tional level. Mathematically, for n-preparations Px when x ∈ 0, 1,… , n − 1 if

then,

Now, we would show that the assumptions of no overlap (Assumption-1) and strong 
duality (Assumption-2) along with the assumption of convexity def-3 when imposed 
on the ontological state space imposes bounded ontological distinctness. Expressing 
(21) in the ontological models framework,

Assuming convexity def-3, any ontological distribution can be written as 
�(��Px) =

∑
i zi,x�(��Pi) , we have

Assuming strong duality (Assumption-2) and no overlap (Assumption-1) any meas-
urement M that maximises the distinguishing probability must have the response 

(19)∫
Ω

P

�(�|P1)d� = ∫
Ω

P

�(�|P2)d�

(20)
∑

i

zi,1 ∫
Ω

P

�(�|Pi,1)d� =
∑

i

zi,2 ∫
Ω

P

�(�|Pi,2)d�

(21)max
M

1

n

∑

x

p(k = x|M,Px) = p

(22)
1

n ∫
Λ

max
x

{
�(�|Px)

}
d� = p

(23)max
M

1

n

∑

x
∫
Λ

�(k = x|M, �)�(�|Px) = p

(24)max
M

1

n

∑

x

∑

i

zi,x ∫
Λ

�(k = x|M, �)�(�|Pi) = p
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functions �(k = x|M, �) such that they pick up the probabilities zi,x which is maxim-
ised for each x. Thus, we have

Now, evaluating (22) assuming convexity def-3 we have,

where we arrived at the above expression by assuming that pure states do not over-
lap (Assumption-1).

Using some well established results as stated in [22] among different notions of 
classicality we have the following hierarchy,

Thus assuming that convexity def-3 holds true, any violation of Bell’s local cau-
sality, Kochen-Specker non-contextuality, preparation non-contextuality or bounded 
ontological distinctness imposes violation of ontic-distinguishability. The assump-
tion of convexity is natural for any classical theory; even for quantum theory, there 
is no successful ontological model that violates convexity.

5  Discussions

In the presented work, from a realist perspective, we first constructed a novel 
notion of classicality termed ontic-distinguishability based on just two assumptions 
imposed on the ontological state space. We justified both the assumptions based 
on physical arguments, which are satisfied for any known physical theories of the 
classical world. Then, we constructed an operational task bounded for any theo-
ries that satisfy the assumptions of ontic-distinguishability. Kochen–Specker non-
contextuality and Bell’s local causality requires systems of atleast dimension three 
and four respectively to show a quantum advantage. Bounded ontological distinct-
ness and preparation non-contextuality can be violated using only qubits; however, 
they require atleast three and four qubit preparations respectively to show a quan-
tum advantage. Contrary to this, ontic-distinguishability can be violated using just 

(25)
1

n

∑

i

max
x

zi,x = p

(26)

1

n ∫
Λ

max
x

{
∑

i

zi,x�(�|Pi)

}
d�

=
1

n

∑

i

max
x

zi,x = p

(27)

ontic-distinguishability ⟹ BODP

⟹ Prep non-contextuality

QT

⟹
K-S non-contextuality

NS

⟹
Bell local-causality
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a pair of qubits, making the above presented operational task much more applicable 
in practical scenarios. Then, we showed that the notion of ontic-distinguishability 
implies all the other known notions of classicality like Bell’s local causality.

As argued by Spekkens [26], any good notion of classicality must have three 
properties; first, it can be experimentally tested, second, it constitutes a resource 
and third that it applies to a wide range of scenarios. The operational task provided 
in this work is a way to test the notion of ontic-distinguishability experimentally. 
Further, it applies to scenarios where minimal resources are required in terms of 
the number of preparations and measurements than previous notions of classicality 
which makes it applicable to a larger number of scenarios. Although any quantum 
advantage constitutes a resource, further works are needed to know the extent where 
violation of ontic-distinguishability serves as a resource.

In recent years, a lot of work has been put forward to establish generalised non-
contextuality [27] as the current best notion of classicality. Generalised non-con-
textuality is based upon the idea of Leibniz principle of identity of indiscernibles; 
that is, if two entities are equivalent at the operational level, then they are equiva-
lent at the ontological level too. Any classical theory should indeed be non-con-
textual; however, it is still not clear whether every non-contextual theory should be 
considered classical as is argued in [28] that “a classical theory is one for which 
all systems are classical” or equivalently that all of the underlying systems can be 
explained using classical laws of nature. It could well be that some non-contextual 
theory exists that any known classical laws of nature can not explain. On the other 
hand, the notion of ontic-distinguishability is based on one of the basic ideas of the 
classical everyday world that physical entities are real and every sharp measurement 
observes the state of the system perfectly. It is not natural that our classical world-
view is considered to be epistemic when generations of classical physicists from 
Galileo to Einstein have argued that facts of the world are real and independent of 
our knowledge of the world as Einstein says, “Do you really believe the moon is not 
there when you are not looking at it?”. Quantum theory challenges this worldview, 
and we need to give up either the fact that physical states are real (Assumption-1) 
or quantum measurements are strongly dual (Assumption-2). Some non-contextual 
models, such as Spekkens toy theory, violate the assumption of no-overlap and thus, 
according to the notion of ontic-distinguishability, would not be considered classi-
cal. Bell’s model, on the other hand, considers that physical states are real but give 
up the fact that quantum measurements are strongly dual. Some GPT’s such as gen-
eralised local theory (GLT) and generalised no-signalling theory (GNST), are not 
classical with respect to ontic-distinguishability. Some fragments of quantum theory 
such as Gaussian quantum mechanics or linear quantum optics that have been shown 
to have epistemic ontological models [29] which again should not be considered 
classical. However, with respect to ontic-distinguishability, some quantum phenom-
ena such as interference and tunnelling which have analogues in classical electro-
magnetic theory are classical.

Interestingly, when the assumptions of no-overlap and strong duality are imposed 
on the ontology, in the resulting generalised probabilistic theory (GPT), the state 
space is simplex, and the effect space is the dual of this simplex. This has been 
recently termed as simpliciality [27]. This further strengthens the presented notion 
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as suggested in [28] that a GPT should be considered classical if and only if the 
state space is simplex and the measurement effects are its dual. However, one of the 
recent works [27] argue that a GPT should be deemed classical if the state space is 
simplex-embeddable and the effect space as its dual. However, they also prove that 
simplex-embeddability is equivalent to simpliciality if the GPT’s satisfy no-restric-
tion hypothesis [30], that is, all states and effects that are permitted in the GPT are 
physically realisable. In the present work, we are concerned with only preparations 
and measurements that are physically realisable, and thus we expect that the GPT 
should be simplicial. It might always be possible that the corresponding GPT could 
be extended by adding more states and effects such that it would be simplex-embed-
dable and not simplicial, for instance, adding extra states to the GPT that can not be 
realised in any possible preparation as the assumption of no-overlap is concerned 
with the physical preparations only.

Several follow up questions arises from this work. From a quantum foundations 
perspective, ontic-distinguishability might give better lower bounds to the overlap 
of the ontological states of quantum theory than previously known bounds [23, 24]. 
Also, the above theorem serves as a no-go theorem for quantum theory. Further, 
the notion of ontic-distinguishability would give a better understanding of the set 
of quantum correlations. As was shown above, the violation of known notions of 
classicality would also imply a violation of ontic-distinguishability. As a conse-
quence, the set of quantum correlations is enlarged, and this might give interesting 
results towards boundedness of quantum correlations [25]. In this work, it is shown 
that ontic-distinguishability implies preparation non-contextuality; it would also be 
interesting to see the relation between ontic-distinguishability and generalised non-
contextuality, which is infact non-contextuality for preparations, transformations as 
well as measurements. From quantum information perspective, the above presented 
operational task might give rise to cryptographic and communication tasks which 
need less resource to execute as entanglement is not needed to show a quantum 
advantage. Also, some device-independent schemes might be possible to construct 
employing the idea of the presented operational task.
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