
An Operational Semantics for JavaScript?

Sergio Maffeis1, John C. Mitchell2, Ankur Taly2,

1 Department of Computing, Imperial College London
2 Department of Computer Science, Stanford University

Abstract. We define a small-step operational semantics for the ECMAScript
standard language corresponding to JavaScript, as a basis for analyzing security
properties of web applications and mashups. The semantics is based on the
language standard and a number of experiments with different implementations
and browsers. Some basic properties of the semantics are proved, including a
soundness theorem and a characterization of the reachable portion of the heap.

1 Introduction

JavaScript [8,15,10] is widely used in Web programming and it is implemented in every
major browser. As a programming language, JavaScript supports functional program-
ming with anonymous functions, which are widely used to handle browser events such
as mouse clicks. JavaScript also has objects that may be constructed as the result of
function calls, without classes. The properties of an object, which may represent meth-
ods or fields, can be inherited from a prototype, or redefined or even removed after
the object has been created. For these and other reasons, formalizing JavaScript and
proving correctness or security properties of JavaScript mechanisms poses substantial
challenges.

Although there have been scientific studies of limited subsets of the language
[7,24,27], there appears to be no previous formal investigation of the full core lan-
guage, on the scale defined by the informal ECMA specifications [15]. In order to later
analyze the correctness of language-based isolation mechanisms for JavaScript, such as
those that have arisen recently in connection with online advertising and social net-
working [1,2,6,23], we develop a small-step operational semantics for JavaScript that
covers the language addressed in the ECMA-262 Standard, 3rd Edition [15]. This stan-
dard is intended to define the common core language implemented in all browsers and
is roughly a subset of JavaScript 1.5. We provide a basis for further analysis by proving
some properties of the semantics, such as a progress theorem and properties of heap
reachability.

As part of our effort to make conformance to the informal standard evident, we de-
fine our semantics in a way that is faithful to the common explanations of JavaScript
and the intuitions of JavaScript programmers. For example, JavaScript scope is nor-
mally discussed in relation to an object-based representation. We therefore define exe-
cution of a program with respect to a heap that contains a linked structure of objects
instead of a separate stack. Thus entering a JavaScript scope creates an object on the
heap, serving as an activation record for that scope but also subject to additional op-
erations on JavaScript objects. Another unusual aspect of our semantics, reflecting the
? This is a revised and extended version of the conference paper [17] that appeared in the

Proceedings of APLAS 2008.

unusual nature of JavaScript, is that declarations within the body of a function are
handled by a two-pass method. The body of a function is analyzed for declarations,
which are then added to the scope before the function body is executed. This allows a
declaration that appears after the first expression in the function body to be referenced
in that expression.

While the ECMAScript language specification guided the development of our op-
erational semantics, we performed many experiments to check our understanding of
the specification and to determine differences between various implementations of
JavaScript. The implementations that we considered include SpiderMonkey [19] (used
by Firefox), the Rhino [4] implementation for Java, JScript [3] (used by Internet Ex-
plorer), and the implementations provided in Safari and Opera. In the process, we
developed a set of programs that test implementations against the standard and reveal
details of these implementations. Many of these program examples, a few of which
appear further below, may be surprising to those familiar with more traditional pro-
gramming languages. Because of the complexity of JavaScript and the number of lan-
guage variations, our operational semantics (reported in full in [16]) is approximately
70 pages of rules and definitions, in ascii format. We therefore describe only a few of the
features and implications of the semantics here. By design, our operational semantics
is modular in a way that allows individual clauses to be varied to capture differences
between implementations.

Since JavaScript is an unusual language, there is value and challenge in proving
properties that might be more straightforward to verify for some other languages (or
for simpler idealized subsets of JavaScript). We start by proving a form of soundness
theorem, stating that evaluation progresses to an exception or a value of an expected
form. Our second main theorem shows, in effect, that the behavior of a program depends
only on a portion of the heap. A corollary is that certain forms of garbage collection,
respecting the precise characterization of heap reachability used in the theorem, are
sound for JavaScript. This is non-trivial because JavaScript provides a number of ways
for an expression to access, for example, the parent of a parent of an object, or even
its own scope object, increasing the set of potentially reachable objects. The precise
statement of the theorem is that the operational semantics preserve a similarity relation
on states (which include the heap).

There are several reasons why the reachability theorem is important for various
forms of JavaScript analysis. For example, a web server may send untrusted code (such
as an advertisement) as part of a trusted page (the page that contains third-party ad-
vertisement). We would therefore like to prove that untrusted code cannot access cer-
tain browser data structures associated with the trusted enclosing page, under specific
conditions that could be enforced by web security mechanisms. This problem can be
reduced to proving that a given well-formed JavaScript program cannot access certain
portions of the heap, according to the operational semantics of the language. Another
future application of heap bisimilarity (as shown in this paper) to security properties of
JavaScript applications is that in the analysis of automated phishing defenses, we can
reduce the question of whether JavaScript can distinguish between the original page
and a phishing page to whether there exists a bisimulation between a certain good
heap (corresponding to the original page) and a certain bad heap (corresponding to
the phishing page). Thus the framework that we develop in this paper for proving basic
progress and heap reachability theorems provides a useful starting point for JavaScript
security mechanisms and their correctness proofs.

1.1 JavaScript Overview and Challenges

JavaScript was originally designed to be a simple HTML scripting language [8]. The
main primitives are first-class and potentially higher-order functions, and a form of
object that can be defined by an object expression, without the need for class decla-
rations. Commonly, related objects are constructed by calling a function that creates
objects and returns them as a result of the function call. Functions and objects have
properties, which are accessed via the “dot” notation, as in x.p for property p of object
x. Properties can be added to an object or reset by assignment. This makes it con-
ceptually possible to represent activation records by objects, with assignable variables
considered properties of the object corresponding to the current scope. Because it is
possible to change the value of a property arbitrarily, or remove it from the object,
static typing for full JavaScript is difficult. JavaScript also has eval, which can be used
to parse and evaluate a string as an expression, and the ability to iterate over properties
of an object or access them using string expressions instead of literals (as in x[“p”]).
Many online tutorials and books [10] are available.

One example feature of JavaScript that is different from other languages that have
been formally analyzed is the way that declarations are processed in an initial pass
before bytecode for a function or other construct is executed. Some details of this
phenomenon are illustrated by the following code:

var f = function(){if (true) {function g() {return 1}}
else {function g() {return 2}};

function g() {return 3};
return g();
function g() {return 4}}

This code defines a function f whose behavior is given by one of the declarations of
g inside the body of the anonymous function that returns g. However, different im-
plementations disagree on which declaration determines the behavior of f. Specifically,
a call f() should return 4 according to the ECMA specification. Spidermonkey (hence
Firefox) returns 4, while Rhino and Safari return 1, and JScript and the ECMA4 ref-
erence implementation return 2. Intuitively, the function body is parsed to find and
process all declarations before it is executed, so that reachability of second declarations
is ignored. Given that, it is plausible that most implementations would pick either the
first declaration or the last. However, this code is likely to be unintuitive to most
programmers.

Those with some curiosity may enjoy the following example on the difference be-
tween a declaration function f(. . .){ . . . } and the apparently semantically similar var f
= function (. . .){ . . . } which uses another form of binding to associate the same name
with an apparently equivalent function.

function f(x){ if (x == 0){return 1;}else{return f(x−1);}};
var h = f;
h(3) % res: 1

function f(x){ if (x == 0){return 3;}else{return x∗f(x−1);}};
h(3) % res: 6

Unsurprisingly, the call to h(3) after the second line evaluates to 1. However, the call
to h(3) after the third line produces 6. In effect, the call to h(3) first executes the first
body of f, apparently because that’s the declaration of f that was current at the place

where h was declared. However, the recursive call to f in the body of line one invokes
the declaration on the third line! This and other examples lead us to suggest the var f
= function (. . .){ . . . } form for programming, since this form avoids various anomalies.
However, the semantics accurately treats both forms.
Additional Challenges. A number of features of JavaScript provide additional chal-
lenges for development of a formal semantics and proving properties of the language.
We list some of them:

– Redefinition. Values undefined, NaN and Infinity, but especially Object, Function and
so on can be redefined. Therefore the semantics cannot depend on fixed meanings
for these predefined parts of the language.

– Implicit mutable state. Some JavaScript objects, such as Array.prototype, are im-
plicitly reachable even without naming any variables in the global scope. The mu-
tability of these objects allows apparently unrelated code to interact.

– Constrained Properties. Some properties of native JavaScript objects are constrained
to be Internal, ReadOnly, DontEnum, or DontDelete, but there is no mechanism
to express these constraints in the (client) language.

– Property Enumeration. JavaScript’s for/in loop enumerates the properties of an
object, whether inherited or not, unless the property is DontEnum.

– Enumeration order. The ECMA standard [15] does not define the order of enumer-
ation of properties in a for/in loop, leading to divergent implementations.

– “this” confusion. JavaScript’s rules for binding this depend on whether a function
is invoked as a constructor, as a method, as a normal function, etc.. If a function
written to be called in one way is instead called in another way, its this property
might be bound to an unexpected object or even to the global environment.

1.2 Beyond this Paper

Our framework for studying the formal properties of JavaScript closely follows the
specification document and models all the features of the language that we have con-
sidered necessary to represent faithfully its semantics. The semantics can be modularly
extended to user-defined getters and setters, which are part of JavaScript 1.5 but not
of the ECMA-262 standard. We believe it is similarly possible to extend the seman-
tics to interface with DOM objects, which are part of an independent specification (a
formal subset is presented in [11]), and are available only when JavaScript runs in a
Web-browser. However, we leave development of these extensions to future work.

For simplicity, we do not model some features which are laborious but do not
add new insight to the semantics, such as the switch and for construct (we do model
the for−in), parsing (which is used at run time for example by the eval command),
the native Date and Math objects, minor type conversions like ToUInt32, etc. and the
details of standard procedures such as converting a string into the numerical value that
it actually represents. For the same reason, we also do not model regular expression
matching, which is used in string operations.

In Section 6 we summarize some directions for future work.

2 Operational Semantics

Our operational semantics consists of a set of rules written in a conventional meta-
notation. The notation is not directly executable in any specific automated framework,

but is designed to be humanly readable, insofar as is possible for a programming lan-
guage whose syntax requires 16 pages of specification, and a suitable basis for rigorous
but un-automated proofs. Given the space constraints of a conference paper, we de-
scribe only the main semantic functions and some representative axioms and rules; the
full semantics is currently available online [16].

In order to keep the semantic rules concise, we assume that source programs are
legal JavaScript programs, and that each expression is disambiguated (e.g. 5+(3∗4)).
We also follow systematic conventions about the syntactic categories of metavariables,
to give as much information as possible about the intended type of each operation. In
addition to the source expressions and commands used by JavaScript programmers,
our semantics uses auxiliary syntactic forms that conveniently represent intermediate
steps in our small-step semantics.

In principle, for languages whose semantics are well understood, it may be possible
to give a direct operational semantics for a core language subset, and then define the
semantics of additional language constructs by showing how these additional constructs
are expressible in the core language. Instead of assuming that we know how to correctly
define some parts of JavaScript from others, we decided to follow the ECMA specifi-
cation as closely as possible, defining the semantics of each construct directly as given
in the ECMA specification. While giving us the greatest likelihood that the semantics
is correct, this approach also did not allow us to factor the language into independent
sublanguages. While our presentation is divided into sections for Types, Expressions,
Objects, and so on, the execution of a program containing one kind of construct may
rely on the semantics of other constructs. We consider it an important future task to
streamline the operational semantics and prove that the result is equivalent to the form
derived from the standard.
Syntactic Conventions. In the rest of the paper we abbreviate t1,..., tn with t˜ and
t1 ... tn with t∗ (t+ in the nonempty case). In a grammar, [t] means that t is optional,
t|s means either t or s, and in case of ambiguity we escape with apices, as in escaping
[by ”[”. Internal values are prefixed with &, as in &NaN. For conciseness, we use
short sequences of letters to denote metavariables of a specific type. For example, m

ranges over strings, pv over primitive values, etc.. These conventions are summarized
in Figure 1. In the examples, unless specified otherwise, JavaScript code prefixed by
js> is verbatim code from the SpiderMonkey shell (release 1.7.0 2007-10-03).

2.1 Heap

Heaps and Values. Heaps map locations to objects, which are records of pure values
va or functions fun(x,...){P}, indexed by strings m or internal identifiers @x (the symbol
@ distinguishes internal from user identifiers). Values are standard. As a convention, we
append w to a syntactic category to denote that the corresponding term may belong to
that category or be an exception. For example, lw denotes an address or an exception.
Heap Functions. We assume a standard set of functions to manipulate heaps.
alloc(H,o) = H1,l allocates o in H returning a fresh address l for o in H1. H(l) = o re-
trieves o from l in H. o.i = va gets the value of property i of o. o−i = fun([x˜]){P} gets
the function stored in property i of o. o:i = {[a˜]} gets the possibly empty set of at-
tributes of property i of o. H(l.i=ov)=H1 sets the property i of l in H to the object value
ov. del(H,l,i) = H1 deletes i from l in H. i !< o holds if o does not have property i. i < o

holds if o has property i.

H ::= (l:o)˜ % heap
l ::= #x % object addresses
x ::= foo | bar | ... % identifiers (do not include reserved words)
o ::= ”{”[(i:ov)˜]”}” % objects
i ::= m | @x % indexes
ov ::= va[”{”a˜”}”] % object values

| fun”(”[x˜]”){”P”}” % function
a ::= ReadOnly| DontEnum | DontDelete % attributes

pv ::= m | n | b | null | &undefined % primitive values
m ::= ”foo” | ”bar” | ... % strings
n ::= −n | &NaN | &Infinity | 0 | 1 | ... % numbers
b ::= true | false % booleans
va ::= pv | l % pure values
r ::= ln”∗”m % references
ln ::= l | null % nullable addresses
v ::= va | r % values
w ::= ”<”va”>” % exception

Fig. 1. Metavariables and Syntax for Values

2.2 Semantics Functions

We have three small-step semantic relations for expressions, statements and programs
denoted respectively by e−→ , s−→ , P−→ . Each semantic function transforms a heap, a
pointer in the heap to the current scope, and the current term being evaluated into
a new heap-scope-term triple. The evaluation of expressions returns either a value or
an exception, the evaluation of statements and programs terminates with a completion
(explained below).

The semantic functions are recursive, and mutually dependent. The semantics of
programs depends on the semantics of statements which in turn depends on the se-
mantics of expressions which in turn, for example by evaluating a function, depends
circularly on the semantics of programs. These dependencies are made explicit by con-
textual rules, that specify how a transition derived for a term can be used to derive a
transition for a bigger term including the former as a sub-term. In general, the premises
of each semantic rule are predicates that must hold in order for the rule to be applied,
usually built of very simple mathematical conditions such as t < S or t != t′ or f(a) = b
for set membership, inequality and function application.

Transitions axioms (rules that do not have transitions in the premises) specify
the individual transitions for basic terms (the redexes). The axiom H,l,(v) −→H,l,v,
for example, describes that brackets can be removed when they surround a value (as
opposed to an expression, where brackets are still meaningful).

Contextual rules propagate such atomic transitions. For example, if program H,l,P
evaluates to H1,l1,P1 then H,l,@FunExe(l’,P) (an internal expression used to evaluate the
body of a function) reduces in one step to H1,l1,@FunExe(l’,P1). The rule below show

exactly that: @FunExe(l,−) is one of the contexts eCp for evaluating programs.

H,l,P P−→H1,l1,P1

H,l,eCp[P] e−→H1,l1,eCp[P1]

As another example, sub-expressions are evaluated inside outer expressions (rule on
the left) using contexts eC ::= typeof eC | eCgv | ..., and exceptions propagated to the
top level (axiom on the right).

H,l,e e−→H1,l1,e1

H,l,eC[e] e−→H1,l1,eC[e1]
H,l,eC[w] e−→H,l,w

Hence, if an expression throws an exception (H,l,e e−→H1,l,w) then so does say the
typeof operator: H,l,typeof e

e−→H1,l,typeof w
e−→H1,l,w.

It is very convenient to nest contexts inside each other. For example, contexts
for GetValue (the internal expression that returns the value of a reference), gener-
ated by the grammar for eCgv ::= −[e] | va[−] | eCto | eCts | ..., are expression contexts.
Similarly, contexts for converting values to objects eCto ::= −[va] | ... or to strings
eCts ::= l[−] | ... are get-value contexts.

H,l,eCgv[ln∗m] e−→H1,l,eCgv[@GetValue(ln∗m)]

Type(va) != Object ToObject(H,va) = H1,lw

H,l,eCto[va] e−→H1,l,eCto[lw]

Type(v) != String ToString(v) = e

H,l,eCts[v] e−→H,l,eCts[e]

As a way to familiarize with these structures of nested contexts, we look in detail
at the concrete example of member selection. The ECMA-262 specification states that
in order to evaluate MemberExpression[Expression] one needs to:

MemberExpression : MemberExpression [Expression]

1. Evaluate MemberExpression.

2. Call GetValue(Result(1)).

3. Evaluate Expression.

4. Call GetValue(Result(3)).

5. Call ToObject(Result(2)).

6. Call ToString(Result(4)).

7. Return a value of type Reference whose base object is Result(5) and

whose property name is Result(6).

In our formalization, the rule for member selection is just H,l,l1[m] e−→H,l,l1∗m. As
opposed to the textual specification, the formal rule is trivial, and makes it obvious
that the operator takes an object and a string and returns the corresponding reference.
All we had to do in order to model the intermediate steps was to insert the appropri-
ate contexts in the evaluation contexts for expressions, values, objects and strings. In
particular, −[e] is value context, and value contexts are expression contexts, so we get
for free steps 1 and 2, obtaining va[e]. Since va[−] is also a value context, steps 3 and 4
also come for free, obtaining va[va]. Since −[va] is an object context, and l[−] a string
context, steps 6 and 7 are also executed transparently. The return type of each of those

contexts guarantees that the operations are executed in the correct order. If that was
not the case, then the original specification would have been ambiguous. The rule for
propagating exceptions takes care of any exception raised during these steps.

The full formal semantics [16] contains several other contextual rules to account for
other mutual dependencies and for all the implicit type conversions. This substantial use
of contextual rules greatly simplifies the semantics and will be very useful in Section 4
to prove its formal properties.
Scope and Prototype Lookup. The scope and prototype chains are two distinctive
features of JavaScript. The stack is represented implicitly, by maintaining a chain of
objects whose properties represent the binding of local variables in the scope. Since we
are not concerned with performance, our semantics needs to know only a pointer to
the head of the chain (the current scope object). Each scope object stores a pointer
to its enclosing scope object in an internal @Scope property. This helps in dealing with
constructs that modify the scope chain, such as function calls and the with statement.

JavaScript follows a prototype-based approach to inheritance. Each object stores
in an internal property @Prototype a pointer to its prototype object, and inherits its
properties. At the root of the prototype tree there is @Object.prototype, that has a null

prototype. The rules below illustrate prototype chain lookup.

Prototype(H,null,m)=null

m < H(l)
Prototype(H,l,m)=l

m!< H(l) H(l).@Prototype=ln

Prototype(H,l,m)=Prototype(H,ln,m)

Function Scope(H,l,m) returns the address of the scope object in H that first defines
property m, starting from the current scope l. It is used to look up identifiers in the
semantics of expressions. Its definition is similar to the one for prototype, except that
the condition (H,l.@HasProperty(m)) (which navigates the prototype chain to check if l

has property m) is used instead of the direct check m < H(l).
Types. JavaScript values are dynamically typed. The internal types are:

T ::= Undefined | Null | Boolean | String | Number % primitive types

| Object | Reference % other types

Types are used to determine conditions under which certain semantic rules can be eval-
uated. The semantics defines straightforward predicates and functions which perform
useful checks on the type of values. For example, IsPrim(v) holds when v is a value of
a primitive type, and GetType(H,v) returns a string corresponding to a more intuitive
type for v in H. The user expression typeof e, which returns the type of its operand,
uses internally GetType. Below, we show the case for function objects (i.e. objects which
implement the internal @Call property).

Type(v)=Object @Call < H(v)
GetType(H,v) = ”function”

An important use of types is to convert the operands of typed operations and throw ex-
ceptions when the conversion fails. There are implicit conversions into strings, booleans,
number, objects and primitive types, and some of them can lead to the execution of
arbitrary code. For example, the member selection expression e1[e2] implicitly converts
e2 to a string. If e2 denotes an object, its re-definable toString propery is invoked as a
function.

js> var o={a:0}; o[{toString:function(){o.a++; return ”a”}}] % res: 1

The case for ToPrimitive (invoked by ToNumber and ToString) is responsible for the side
effects: the result of converting an object value into a primitive value is an expression
l.@DefaultValue([T]) which may involve executing arbitrary code that a programmer can
store in the valueOf or toString methods of said object.

Type(l)=Object

ToPrimitive(l[,T]) = l.@DefaultValue([T])

2.3 Expressions

We distinguish two classes of expressions: internal expressions, which correspond to
specification artifacts needed to model the intended behavior of user expressions, and
user expressions, which are part of the user syntax of JavaScript. The syntax for user
expressions is reported in Figure 2, where we use &PO,&UN,&BIN to range respectively
over primitive, unary and binary operators.

e ::=
this % the ”this” object
x % identifier
pv % primitive value
”[” [e˜] ”]” % array literal
”{”[(pn:e)˜]”}” % object literal
”(”e”)” % parenthesis expression
e.x % property accessor
e”[”e”]” % member selector
new e[”(”[e˜]”)”] % constructor invocation
e”(”[e˜]”)” % function invocation
function [x] ”(”[x˜]”){”[P]”}” % [named] function expression
e &PO % postfix operator
&UN e % unary operators
e &BIN e % binary operators
”(”e”?”e”:”e”)” % conditional expression
(e,e) % sequential expression

pn ::= n | m | x % property name

Fig. 2. Syntax for Expressions

Internal expressions include addresses, references, exceptions and functions such as
@GetValue,@PutValue used to get or set object properties, and @Call,@Construct used to
call functions or to construct new objects using constructor functions. For example, we
give two rules of the specification of @Put, which is the internal interface (used also by
@PutValue) to set properties of objects. The predicate H,l1.@CanPut(m) holds if m does
not have a ReadOnly attribute.

H,l1.@CanPut(m)
m !< H(l1) H(l1.m=va{})=H1

H,l,l1.@Put(m,va) e−→H1,l,va

H,l1.@CanPut(m)
H(l1):m={[a˜]} H(l1.m=va{[a˜]}) = H1

H,l,l1.@Put(m,va) e−→H1,l,va

These rules show that fresh properties are added with an empty set of attributes,
whereas existing properties are replaced maintaining the same set of attributes.

Object Literal. As an example of expressions semantics we present in detail the case
of object literals. The semantics of the object literal expression {pn:e,...,pn’:e’} uses an
auxiliary internal construct AddProps to add the result of evaluating each e as a property
with name pn to a newly created empty object. Rule (1) (with help from the contextual
rules) creates a new empty object, and passes control to AddProps. Rule (2) converts
identifiers to strings, and rule (3) adds a property to the object being initialized. It
uses a sequential expression to perform the update and then return the pointer to the
updated object l1, which rule (4) releases at the top level.

H,l,{[(pn:e)˜]} e−→H,l,@AddProps(new Object()[,(pn:e)˜]) (1)

H,l,@AddProps(l1,x:e[,(pn:e)˜]) e−→H,l,@AddProps(l1,”x”:e[, (pn:e)˜]) (2)

H,l,@AddProps(l1,m:va[,(pn:e)˜]) e−→H,l,@AddProps((l1.@Put(m,va),l1)[,(pn:e)˜]) (3)

H,l,@AddProps(l1) e−→H,l,l1 (4)

Rule (1) is emblematic of a few other cases in which the specification requires to create
a new object by evaluating a specific constructor expression whose definition can be
changed during execution. For example,

js> var a = {}; a % res: [object Object]

ljs> Object = function(){return new Number()}; var b = {}; b % res: 0

where the second object literal returns a number object. That feature can be useful,
but can also lead to undesired confusion.

The in operator. By virtue of the contextual rules, the construct e1 in e2 evaluates
e2 to a pure value va. If va is an object l1, it evaluates e1 to a string m and returns a
boolean b representing whether or not m denotes a property in the prototype chain of
l1 (H,l1.@HasProperty(m)=b). If va denotes a primitive value pv, a TypeError exception is
thrown.

Type(l1) = Objec

t H,l1.@HasProperty(m)=b

H,l,m in l1
e−→H,l,b

Type(pv) != Object

o = new TypeError

H1,l1=alloc(H,o)

H,l,va in pv
e−→H1,l,<l1>

Binary logical operators. One may expect binary logical operators to have a dull
semantics. That is not the case in JavaScript, as show in the example below.

js> var a = true; if (a∗1) 1; else 0 % res: 1

js> var b = {valueOf:function(){return 0}}
js> var a = b&&b; if(a∗1) 1; else 0 % res: 0

js> if (b) 1; else 0 % res: 1

From the semantics it is immediately apparent that the && operator does not return a
boolean value, but instead its second argument if the first one evaluates to true, or else
its first argument. Combining this with implicit type conversions can be very confusing
for a programmer. Below, (ˆ) denotes xor:

H,l,va && e
e−→H,l,@L(true,va,va,e)

H,l,va || e
e−→H,l,@L(false,va,va,e)

b1(ˆ)b2

H,l,@L(b1,b2,va,e) e−→H,l,va

!(b1(ˆ)b2)

H,l,@L(b1,b2,va,e) e−→H,l,@GV(e)

Both && and || are translated to the same internal @L expression modulo a flag
that is used (in xor with the result of converting the first parameter to a boolean) to
determine which parameter to return.
Relational operators. Also relational operators do not fail to surprise. Due to im-
plicit type conversions, the code below has the side effect of setting x to 2. Implementa-
tions diverge on this point, so we show a snapshot from the Rhino shell (see Section 3)
which respects the ECMA specification.

js> x = 0; var a = {valueOf:function (){x=1}};
var b = {valueOf:function (){x=2}}; a<b; x % res: 2

Yet, the evaluation order is not always left to right!

js> x = 0; var a = {valueOf:function (){x=1}};
var b = {valueOf:function (){x=2}}; a>b; x % res: 1

The reason is that both >,< are translated in terms of the same internal expression
(which is a context for converting objects to primitive values), modulo the order of
their parameters.

H,l,va1<va2
e−→H,l,@<S(false,va1::Number,va2::Number)

H,l,va1>va2
e−→H,l,@<S(false,va2::Number,va1::Number)

Equality checks. There are two kinds of equality testing, with or without implicit
type conversions. Inequalities are defined as evaluating the logical negation of the cor-
responding equality.

H,l,e1 !== e2
e−→H,l,!(e1 === e2)

H,l,e1 != e2
e−→ !(e1 == e2)

Strict equality can be implemented as loose equality modulo type equality:

Type(va1) = Type(va2)

H,l,va1===va2
e−→H,l,va1==va2

Type(va1) != Type(va2)

H,l,va1===va2
e−→H,l,false

Loose equality requires lots of different rules to account for the different conversions
required by the operands. We give only a few assorted cases, as an example.

H,l,null==&undefined
e−→H,l,true

Type(va1) = Number

Type(va2) = String

H,l,va1==va2
e−→H,l,va1==@TN(va2)

Type(va1) = Null

Type(va2) != Undefined

Type(va1) != Type(va2)

H,l,va1==va2
e−→H,l,false

2.4 Statements

Similarly to the case for expressions, the semantics of statements contains a certain
number of internal statements, used to represent unobservable execution steps, and
user statements (reported in Figure 3)that are part of the user syntax of JavaScript.

s ::=
”{”s∗”}” % block
var [(x[”=”e])˜] % assignment
; % skip
e % expression not starting with ””,”function”
if ”(”e”)” s [else s] % conditional
while ”(”e”)” s % while
do s while ”(”e”)”; % do-while
for ”(”e in e”)” s % for-in
for ”(”var x[”=”e] in e”)” s % for-var-in
continue [x]; % continue
break [x]; % break
return [e]; % return
with ”(”e”)” s % with
id:s % label
throw e; % throw
try ”{”s∗”}” [catch ”(”x”){”s1∗”}”] [finally ”{”s2∗”}”] % try

Fig. 3. Syntax for Statements

A completion is the final result of evaluating a statement.

co ::= ”(”ct,vae,xe”)” vae ::= &empty | va xe ::= &empty | x

ct ::= Normal | Break | Continue | Return | Throw

The completion type indicates whether the execution flow should continue normally,
or be disrupted. The value of a completion is relevant when the completion type is
Return (denoting the value to be returned), Throw (denoting the exception thrown), or
Normal (propagating the value to be return during the execution of a function body).
The identifier of a completion is relevant when the completion type is either Break or
Continue, denoting the program point where the execution flow should be diverted to.

Expression and Throw. Evaluation contexts transform the expression operand of
these constructs into a pure value. All the semantic rules specify is how such value is
packaged into a completion. The rules for return,continue,break are similar.

H,l,va
s−→H,l,(Normal,va,&empty) H,l,throw va; s−→H,l,(Throw,va,&empty)

Block Statements. The semantics of blocks handles the completions generated by the
previous statements. A block does not introduce a new scope, as can be seen by the rules
below. Rule (5) initializes the internal @Block statement so that it can always assume to
have at least a statement inside (it uses the completion (Normal,&empty,&empty) which
is equivalent to the empty statement “;”). Note that @Block(co,sC s∗) is a statement
contexts sC, which evaluates nested statements. Rule (6) returns the result of evaluating
a block to the top level, rule (7) leaves the block when a statement evaluates to an
abrupt completion and rule (8) saves the last non-empty value and executes the next
statement.

H,l,{s∗} s−→H,l,@Block((Normal,&empty,&empty)[,s+]) (5)

H,l,@Block((ct,vae,xe)) s−→H,l,(ct,vae,xe) (6)
ct !< {Normal}

H,l,@Block(co,(ct,vae,xe) s∗) s−→H,l,(ct,vae,xe)
(7)

vae = IF vae2=&empty THEN vae1 ELSE vae2

H,l,@Block((ct,vae1,xe),(Normal,vae2,xe1) s∗) s−→H,l,@Block((Normal,vae,xe1)[,s+])
(8)

With. The with statement is notoriously controversial. Its semantics is easy to explain
on a technical level, but it is hard to have the correct intuition when writing code.

SetScope(l,l1,H)=H1,ln1,ln2

H,l,with (l1) s −→H1,l1,@with(l,ln1,ln2,s)
H,l1,@with(l,null,null,co) −→H,l,co

H(l1.@Scope=l2{})=H1

H,l1,@with(l,l2,null,co) −→H1,l,co

H(l1.@Scope=l2{})=H1

H1(l3.@Scope=l1{})=H2

H,l1,@with(l,l2,l3,co) −→H2,l,co

To evaluate the with construct we put its object parameter l1 as the top of the scope
chain, and we save the current scope l so that it can be restored on exit. Moreover, we
make use the auxiliary function SetScope to deal with the case where l1 was already
part of an existing scope chain.

This construct was introduced to give a convenient syntactic notation to operate on
the properties of its object parameter. In practice though the statement with (o){ x = e }
corresponds to if (o.hasOwnProperty(”x”)) x=e; else x=e, meaning that an attempt to up-
date a non-existing property of o creates a global variable with the same name, rather
than adding a property to o. The fault is not entirely on the with side though. For
example the Byzantine semantics of the variable statement is responsible for other
surprising behavior.

js> var n = {m:0}; with (n) {var m = 1}; n.m % res: 1

js> m === undefined % res: true

Above, var m = 1 is parsed before executing the program. It initializes m to &undefined

in the global scope. At run time, the statement var m = 1 is essentially equivalent to
the statement m = 1, that sets the property m of n to 1. The only difference is that
var m=1 evaluates to a completion with value &empty, whereas m = 1 to one with value
1.

Try-catch. JavaScript provides a try-catch-finally mechanism to handle native and
user-generated exceptions. We focus on the rule that does the interesting work, and
that may raise some eyebrows.

o=new object(”Object”,#ObjectProt) H1,l1=alloc(H,o)
H2=H1(l1.”x”=va{DontDelete}) H3=H2(l1.@Scope=l{})
H,l,try (Throw,va,xe) catch (x) {s1} s−→H3,l1,@catch {s1}

If the evaluation of the “tried” statement results in an exception, the catch code is
executed in a new scope containing a binding of x to the exception value va. Com-
bined with the semantics of methods by self-application, comes the surprising ability
of JavaScript programs of tamper with their own scope:

js> x=0; function spy(){return this};
js> try {throw spy} catch(spy){spy().x = 1; x === 1} % res: true

js> x % res: 0

This snapshot is from the Rhino shell (see Section 3), which respect the ECMA speci-
fication. Implementations diverge on this point.

2.5 Programs

Programs are sequences of statements and function declarations.

P ::= fd [P] | s [P] fd ::= function x ”(”[x˜]”){”[P]”}”

As usual, the execution of statements is taken care of by a contextual rule. If a statement
evaluates to a break or continue outside of a control construct, an SyntaxError exception is
thrown (rule (9)). The run-time semantics of a function declaration instead is equivalent
to a no-op (rule (10)). Function (and variable) declarations should in fact be parsed
once and for all, before starting to execute the program text. In the case of the main
body of a JavaScript program, the parsing is triggered by rule (11) which adds to the
initial heap NativeEnv first the variable and then the function declarations (functions
VD,FD).

ct < {Break,Continue}
o = new SyntaxError() H1,l1 = alloc(H,o)

H,l,(ct,vae,xe) [P] P−→H1,l,(Throw,l1,&empty)
(9)

H,l,function x ([x˜]){[P]} [P1] P−→H,l,(Normal,&empty,&empty) [P1] (10)

VD(NativeEnv,#Global,{DontDelete},P) = H1

FD(H1,#Global,{DontDelete},P) = H2

P
P−→H2,#Global,P

(11)

2.6 Native Objects

The initial heap NativeEnv of core JavaScript contains native objects for representing
predefined functions, constructors and prototypes, and the global object @Global that
constitutes the initial scope, and is always the root of the scope chain. As an example,

we describe the global object. The global object defines properties to store special values
such as &NaN, &undefined etc., functions such as eval, toString etc. and constructors that
can be used to build generic objects, functions, numbers, booleans and arrays. Since it is
the root of the scope chain, its @Scope property points to null. Its @this property points to
itself: @Global = {@Scope:null, @this:#Global, ”eval”:#GEval{DontEnum},...}. None of the
non-internal properties are read-only or enumerable, and most of them can be deleted.
By contrast, when a user variable or function is defined in the top level scope (i.e. the
global object) it has only the DontDelete attribute. The lack of a ReadOnly attribute on
”NaN”,”Number” for example forces programmers to use the expression 0/0 to denote
the real &NaN value, even though @Number.NaN stores &NaN and is a read only property.
Eval. The eval function takes a string and tries to parse it as a legal program text. If
it fails, it throws a SyntaxError exception (rule (12)). If it succeeds, it parses the code
for variable and function declarations (respectively VD,FD) and spawns the internal
statement @cEval (rule (13)). In turn, @cEval is an execution context for programs, that
returns the value computed by the last statement in P, or &undefined if it is empty.

ParseProg(m) = &undefined

H2,l2 = alloc(H,o) o = new SyntaxError()

H,l,#GEval.@Exe(l1,m) e−→H2,l,<l2>
(12)

l != #Global ParseProg(m) = P

VD(H,l,{},P) = H1 FD(H1,l,{},P) = H2

H,l,#GEval.@Exe(l1,m) e−→H2,l,@cEval(P)
(13)

va = (IF vae=&empty THEN &undefined ELSE vae)

H,l,@cEval((ct,vae,xe)) e−→H,l,va
(14)

As we are not interested in modeling the parsing phase, we just assume a parsing
function ParseProg(m) which given string m returns a valid program P or else &undefined.
Note how in rule (13) the program P is executed in the caller’s scope l, effectively giving
dynamic scope to P.
Object. The @Object constructor is used for creating new user objects and internally
by constructs such as object literals. Its prototype @ObjectProt becomes the prototype
of any object constructed in this way, so its properties are inherited by most JavaScript
objects. Invoked as a function or as a constructor, @Object returns its argument if it is
an object, a new empty object if its argument is undefined or not supplied, or converts
its argument to an object if it is a string, a number or a boolean. If the argument is a
host object (such as a DOM object) the behavior is implementation dependent.

o = new object(”Object”,#ObjectProt)
H1,lo = Alloc(H,o) Type(pv) < {Null,Undefined}

H,l,#Object.@Construct(pv) e−→H1,l,lo

Type(pv) < {String, Boolean, Number}
H1,le = ToObject(H,pv)

H,l,#Object.@Construct(pv) e−→H,l,le

Type(l1) = Object !IsHost(H,l1)

H,l,#Object.@Construct(l1) e−→H,l,l1

The object @ObjectProt is the root of the scope prototype chain. For that reason, its
internal prototype is null. Apart from ”constructor”, which stores a pointer to @Object,

the other public properties are native meta-functions such as toString or valueOf (which,
like user function, always receive a value for @this as the first parameter).

Native functions are always built using the macro

@fun,@funProt = make native fun(#fun,#funProt,n)

which creates a skeleton object for @fun and its prototype at the addresses #fun,#funProt,
and declares n to be the expected number of actual parameters. For example,

@OPtoString,@OPtoStringProt = make native fun(#OPtoString,#OPtoStringProt,0)

H(l1).@Class = m

H,l,#OPtoString.@Exe(l1) e−→H,l,”[object”m”]”

@OPvalueOf,@OPvalueOfProt = make native fun(#OPvalueOf,#OPvalueOfProt,0)

!IsHost(H,l1)

H,l,#OPvalueOf.@Exe(l1) e−→H,l,l1

@OPtoString returns a rather uninformative string showing the class (i.e. essentially
the constructor) of its argument, and @OPvalueOf returns directly its argument.

js> var t = {l:0}; t.valueOf() === t % res: true

js> t % res: [object Object]

Function. The Function constructor is rarely used, as functions are usually created by
function declarations or function expression, but its prototype is the internal prototype
of all functions, no matter how they are created.

The Function constructor tries to parse its list of parameters into a (possibly empty)
comma-separated list of formal parameters, and a program text. If the parsing succeeds,
it returns a pointer to a newly allocated function.

H,l,#Function.@Construct([va˜,]va) e−→H,l,@FunParse(””,[va˜,]va)

ParseParams(”x˜”)
ParseFunction(”P”)
H,Function(fun(x˜)P,#Global) = H1,l1

H,l,@FunParse(”x˜”,”P”) e−→H1,l,l1

Oddly, instead of its proper lexical scope, the function gets object @Global as its scope,
by the expression H,Function(fun(x˜){P},#Global) = H1,l1). Hence,

js> (function (){var b=1; var c= function (){x=b}; c()})(); x % res: 1

js> (function (){var b=1; var c= new Function(”x=b”); c()})() % res: ReferenceError: b is

not defined

The Function object prototype @FunctionProt is a function itself, which just returns
@undefined and defines fields such as

@FunctionProt = {
@Class: ”Function”,
@Prototype: #ObjectProt,
”constructor”: #Function{DontEnum},
”prototype”: #FunctionProtProt{DontDelete},

”call”: #FPcall{DontEnum}
...}

H,l,#FunctionProt.@Exe(l1) e−→H,l,@undefined

Its method ”call” its very characteristic of JavaScript, exposing the very essence of
the language to the programmer. JavaScript in fact is, at the core, a functional lan-
guage where objects are records, and where functions are first-class values. The typical
behavior of object-oriented languages is achieved by parameterizing functions by an
implicit first argument which represents the object/record of which they are a method.
The method invocation o.f(v) is essentially equivalent to (o.f).call(o,v), where first we
extract function f from o, and then we use the call method to apply f to o itself, and
to its explicit parameter v. The rules below illustrate the behavior of the call method.

GetType(H,l1) = ”function”

va < {null,#undefined}
H,l,#FPcall.@Exe(l1,va[,va˜]) e−→H,l,l1.@Call(#Global[,va˜])

GetType(H,l1) = ”function”

va !< {null,#undefined}
H,l,#FPcall.@Exe(l1,va[,va˜]) e−→H,l,l1.@Call(va[,va˜])

By de-sugaring method invocation, #FPCall makes it possible to turn arbitrary func-
tions into methods without modifying the target object. For example, we can use
the standard ”toString” method of object on arrays, which have their own different
”toString”.

js> var a = [1,2,3]; a.toString() % res: 1,2,3

js> toString.call(a) % res: [object Array]

3 Relation to Implementations

So far we have referred to JavaScript as the “abstract” language defined by the ECMA
specification. In practice, JavaScript is implemented within the major web browsers, or
as standalone shells. In order to clarify several ambiguities present in the specification,
we have run experiments inspired by our semantics rules on different implementations.
We have found that, besides resolving ambiguities in different and often incompatible
ways, implementations sometimes do not conform to the specification in implementing
corner (and not so corner) cases which have a well-defined semantics.

When the specification states that some behavior is implementation dependent, we
either choose one, or parameterize the semantics by some partially unspecified helper
function.

Moreover, Mozilla maintains and develops the original JavaScript language (em-
bodied in its C and Java implementations, Spidermonkey and Rhino) which extends
the functionalities of ECMA-262 in several ways. In this section we describe, mainly
by examples, some interesting differences and incompatibilities between JavaScript im-
plementations. We conclude with a brief discussion on how some of the JavaScript 1.5
extensions may be integrated with our framework.

3.1 Divergence in implementations

Below, the prompt “?>” is used in examples to denote an hypothetical strictly ECMA-
262 compliant implementation.
Function expressions and declarations. This is one of the most striking examples
of implementations diverging from the specification. As prescribed by the specifica-
tion, an expression cannot be parsed as a statement if it starts with function, hence
s1; function a(){}; s2 can be parsed as program but cannot be parsed as part of a block
statement. Function definitions, according to the specification, are parsed in source
text order before running the program code, and are added to the scope. Hence, the
code below is fully specification compliant in choosing the second definition in the first
examples, and throwing an exception in the second.

?> (function (){function b(){return 1}; return b();
function b(){return 0}})() % res: 0

?> (function (){{function b(){return 1}}; return b())() % res: SyntaxError: ...

Major implementations instead accept function definitions as statements, with mixed
results. From our experiments, we think that Rhino parses standard-compliant func-
tion definitions according to the specification, removes them from the parsed code, but
considers at run time (with the same semantics) the remaining function definitions that
appear as statements.

js> (function (){function b(){return 0};
if (true){function b(){return 1}}; return b()})() % res: 1

js> (function (){function b(){return 0};
if (false){function b(){return 1}}; return b()})() % res: 0

We find this behavior completely reasonable, and easy to implement in a formal se-
mantics.

Our experiments on SpiderMonkey gave different results. Apparently, the semantics
of functions in this implementation depends on the position, within unreachable code
of statements (such as var g below) which should have no semantic significance!

js> (function(){if (true) function g(){return 0};
return g(); var g; function g(){return 1}})() % res: 0

js> (function(){if (true) function g(){return 0};
return g(); function g(){return 1}; var g})() % res: 1

Moreover, SpiderMonkey mishandles the attributes of function declarations interpreted
as statements in eval code, where functions and variables should be deleted at will.

js> eval(”function a(){};delete a”) % res: true

js> eval(”function a(){};if(1){function a(){return 1}};delete a”) % res: false

JScript parses all the functions declarations at the beginning, including the ones
appearing as statements.

> if(true){function a(){return 1}}else{function a(){return 0}};a() % res: 0

Named function expressions. Function declarations bind a variable in the global
scope, so the correct way to implement recursive functions is by using named function
expressions, whose names have local scope within the function.

js> function a(){a()}; c=a; a = 1; c() % res: TypeError: a is not a function

js> var a = function b(){b()}; c=a; a=1; c() % res: InternalError: too much recursion

js> b % res: ReferenceError: b is not defined

JScript unfortunately binds also b in the global environment, so assigning to b we can
disrupt the recursive definition.

Internal creation of new objects. We have shown in Section 2.3 that literal objects
are created by evaluating the expression new Object(), instead of creating internally a
new empty object as described in the specification for new Object. The specification is
ambiguous regarding this and several similar cases. We followed the main implemen-
tations in choosing where to evaluate the expression new Object() and when to use a
fresh empty object as described in the specification of new Object. For example, the
latter option is popular for creating the scope object in the catch branch of a try-catch
construct.

Unfolding of while loops. The specification prescribes that the top level statements
in a program text do not propagate their computed value. Hence, a hypothetical im-
plementation would not respect for example the simple minded equivalence on while
unfolding shown below, because the eval code in the second example (which must be
considered as program text) terminates with a while loop returning the internal &empty

value, that as we have seen in Section 2.6 is converted to &undefined.

?> eval(”x=1;while (x−− >0){y=1}”) === 1 % res: true

?> eval(”x=1;if(x−− >0)y=1;while (x−− >0){y=1}”) === undefined % res: true

Functions returning references. The specification makes it clear that certain host
functions may return values of a reference type. Apparently there exist some function in
the Internet Explorer implementation that does so (we were not able to find which one).
Our semantics is compatible with this behavior, but we have found that this corner
case complicates the formalization in several points, in particular by not granting the
assumption that values returned by expressions are in fact pure values, and hence
having to constantly refere to the pervasive GetValue function.

Expressions as statements. The specification states that an expression can be
regarded as a statement as long as it does not start with either “{” or function. An
unfortunate consequence is that the naive programmer may think that he is writing
an object literal where he is in face defining a new global function, by using a labelled
statement inside a block.

js> {l:function f(){}}; f % res: function f()

Native functions used as constructors. The specification dictates that native
functions cannot be used as constructors unless explicitly mentioned in their descrip-
tion. We reflected this in our semantics by not providing native functions (such as eval)
with a @Construct method, but many implementations have chosen not to do so.

js> var a = new eval()
js> a % res: [object Object]

js> var a = new Function.prototype()
js> a % res: [object Object]

Function arguments aliasing. The actual parameters of a function call are collected
in an arguments array-like object available inside the function scope. The fields of this
array are aliases for the formal parameters:

js> (function (x){arguments[0]=1; return x})(4) % res: 1

This is an odd feature, the only case where such kind of aliasing is observable in
JavaScript. This feature is going to be removed form future versions of the standard,
and we have decided not to model it in our semantics because it requires extra ma-
chinery, and does not seem to affect the semantics of programs in an interesting way,
apart perhaps from confusing the programmer. Standard implementations seem to be
using getters and setters to model this property.

js> (function(x){delete arguments[0];arguments[0]=1;return x})(4) % res: 4

We do not believe that this behavior is entirely justified, as the specification can be
interpreted as requiring that the aliasing should be in place whenever arguments has a
property corresponding to the position of an existing formal parameter.
Joined objects. The specification provides for the possibility that functions “defined
by the same piece of source text” be implemented as joined objects, i.e. sharing their
properties. If that were the case, we could have

?> function f(){function g(){}; return g}
?> var h = f(); var j = f(); h.a = 0; i.a % res: 0

Fortunately, no known implementation uses this “feature”, and we could scrap it
from our semantics. The possibility to have joined objects is going to be removed from
future versions of the language.
Scoping of the catch construct. We have shown in Section 2.4 that the scoping
mechanism of the try-catch construct can lead to programs getting hold of their own
scope. SpiderMonkey and other implementations decided to protect the programmer
from such abomination, and pass instead the global object as the implicit this parameter
of the spy function below.

js> x=0; function spy(){return this};
js> try {throw spy} catch(spy){spy().x = 1; x === 1} % res: true

js> x % res: 1

3.2 JavaScript1.5 Extensions

Each major web browser and shell has its own custom extensions to JavaScript. We dis-
cuss briefly the case of getters and setters (introduced in Mozilla’s JavaScript 1.5) and
related properties, because they are the most interesting from a semantics viewpoint,
and have the greatest impact in terms of making JavaScript harder to analyze.

A (property) getter is essentially a function that gets called when the corresponding
property is accessed, and a setter is a function that gets called when the property is
assigned. User-defined getters and setters allow a programmer to override the normal
property access and assignment functions. For example:

js> var o = {count:0,get p(){this.count=this.count+1; return 0},};
js> o.count % res: 0

js> o.p % res: 0

js> o.count % res: 1

We propose to model getters and setters for a property p by creating a dummy object
with internal properties @Getter and @Setter pointing to the corresponding function
objects. Functions @Get and @Put need to change so that when the property is accessed,
the function first checks if the property has getters and setters (which can be done
by checking if the property points to an object containing the @Getter and @Setter

properties) and then calls the appropriate functions. We leave the full integration of
this approach into our operational semantics to future work.

4 Formal Properties

In this section we give some preliminary definitions and set up a basic framework
for formal analysis of well-formed JavaScript programs. We prove a progress theorem
which shows that the semantics is sound and the execution of a well-formed term always
progresses to an exception or an expected value. Next we prove a Heap reachability the-
orem which essentially justifies mark and sweep type garbage collection for JavaScript.
Although the properties we prove are fairly standard for idealized languages used in
formal studies, proving them for real (and unruly!) JavaScript is a much harder task.

Throughout this section, a program state S denotes a triple (H, l, t) where H is a
heap, l is a current scope address and t is a term. Recall that a heap is a map from
heap addresses to objects, and an object is a collection of properties that can contain
heap addresses or primitive values.

4.1 Notation and Definitions

Expr, Stmnt and Prog denote respectively the sets of all possible expressions, state-
ments and programs that can be written using the corresponding internal and user
grammars. L denotes the set of all possible heap addresses. Wf(S) is a predicate de-
noting that a state S is well-formed. prop(o) is the set of property names present in
object o. dom(H) gives the set of allocated addresses for the heap H.

For a heap address l and a term t, we say l ∈ t iff the heap address l occurs in t.
For a state S = (H, l, t), we define ∆(S) as the set of heap addresses {l} ∪ {l|l ∈ t}.
This is also called the set of roots for the state S.

We define the well-formedness predicate of a state S = (H, l, t) as the conjunction
of the predicates Wf Heap(H), Wf scope(l) and Wf term(t). A term t is well-formed iff
it can be derived using the grammar rules consisting of both the language constructs
and the internal constructs, and all heap addresses contained in t are allocated ie
l ∈ t ⇒ l ∈ dom(H). A scope address l ∈ dom(H) is well-formed iff the scope chain
starting from l does not contain cycles, and (@Scope ∈ prop(H(l))) ∧ (H(l).@Scope 6=
null⇒Wf(H(l).@Scope)). A heap H is well-formed iff it conforms to all the conditions
on heap objects mentioned in the specification (see Section Afor a detailed list).

Definition 1 (Heap Reachability Graph). Given a heap H, we define a labeled
directed graph GH with heap addresses l ∈ dom(H) as the nodes, and an edge from
address li to lj with label p iff (p ∈ prop(H(li)) ∧H(li).p = lj).

Given a heap reachability graph GH , we can define the view from a heap address l
as the subgraph GH,l consisting only of nodes that are reachable from l in graph GH .
We use viewH(l) to denote the set of heap addresses reachable from l: viewH(l) =
Nodes(GH,l). viewH can be naturally extended to apply to a set of heap addresses.
Observe that the graph GH only captures those object properties that point to other
heap objects and does not say anything about properties containing primitive values.

Definition 2 (l-Congruence of Heaps ∼=l). We say that two heaps H1 and H2 are
l-congruent (or congruent with respect to heap address l) iff they have the same views
from heap address l and the corresponding objects at the heap addresses present in the
views are also equal. Formally,

H1
∼=l H2 ⇔ (GH1,l = GH2,l ∧ ∀ l′ ∈ viewH1(l) H1(l′) = H2(l′)).

Note that if H1
∼=l H2 then viewH1(l) = viewH2(l). It is easy to see that if two heaps

H1 and H2 are congruent with respect to l then they are congruent with respect to all
heap addresses l′ ∈ viewH1(l).

Definition 3 (State congruence ∼=). We say that two states S1 = (H1, l, t) and
S2 = (H2, l, t) are congruent iff the heaps are congruent with respect to all addresses in
the roots set. Formally, S1

∼= S2 ⇔ ∀ l′ ∈ ∆(S1) (H1
∼=l′ H2)).

Note that ∆(S1) = ∆(S2) because the definition of ∆ depends only on l and t. In the
next section we will show that for a state S = (H, l, t), viewH(∆(S)) forms the set of
live heap addresses for the S because these are the only possible heap addresses that
can be accessed during any transition from S.

Definition 4 (Heap Address Renaming). For a given heap H, a heap address
renaming function f is any one to one map from dom(H) to L.

We denote the set of all possible heap renaming functions for a heap H by FH . We
overload f so that f(H) is the new heap obtained by renaming all heap addresses
l ∈ dom(H) by f(l) and for a term t, f(t) is the new term obtained by renaming all
l ∈ t by f(l). Finally, for a state S = (H, l, t) we define f(S) = (f(H), f(l), f(t)) as the
new state obtained under the renaming.

Definition 5 (State similarity ∼). Two states S1 = (H1, l1, t1) and S2 = (H2, l2, t2)
are similar iff there exists a renaming function f for H1 such that the new state f(S1)
obtained under the renaming is congruent to S2. Formally,

S1 ∼ S2 ⇔ ∃ f ∈ FH1 f(S1) ∼= S2.

Property 1. Both ∼= and ∼ are equivalence relations. Moreover, ∼=(∼.

4.2 Theorems and Formal Properties

We now present the main technical results. Our first result is a progress and preservation
theorem, showing that evaluation of a well-formed term progresses to a value or an
exception.

Lemma 1. Let C denote the set of all valid contexts for expressions, statements and
programs. For all terms t appropriate for the context C we have Wfterm(C(t)) ⇒
Wfterm(t).

Theorem 1 (Progress and Preservation). For all states S = (H, l, t) and S′ =
(H ′, l′, t′):

– (Wf(S) ∧ S → S′)⇒Wf(S′) (Preservation)
– Wf(S) ∧ t /∈ v(t)⇒ ∃ S′ (S → S′)) (Progress)

where v(t) = ve if t ∈ Expr and v(t) = co if t ∈ Stmnt or Prog.

Our second result shows that similarity is preserved under reduction, which directly
gives a construction for a simple mark-and-sweep-like garbage collector for JavaScript.
The proofs for the theorems are given in Section A.

Lemma 2. For all well-formed program states S = (H, l, t), if H, l, t → H ′, l′, t′ then
H(l′′) = H ′(l′′), for all l′′ /∈ viewH(∆(H, l, t)) ∪ viewH′(∆(H ′, l′, t′)).

The above lemma formalizes the fact that the only heap addresses accessed during a
reduction step are the ones present in the initial and final live address sets. We can
formally prove this lemma by an induction over the rules.

Theorem 2 (Similarity preserved under reduction). For all well-formed program
states S1, S2 and S′

1, S1 ∼ S2 ∧ S1 → S′
1 ⇒ ∃S′

2. S2 → S′
2 ∧ S′

1 ∼ S′
2.

We can intuitively understand this theorem by observing that if the reduction of a term
does not involve allocation of any new heap addresses then the only addresses that can
potentially be accessed during the reduction would be the ones present in the live heap
address set. When the program states are similar, then under a certain renaming the
two states would have the same live heap address sets . As a result the states obtained
after reduction would also be congruent(under the same renaming function). On the
other hand, if the reduction involves allocation of new heap addresses then we can
simply extend the heap address renaming function by creating a map from the newly
allocated addresses in the first heap (H ′

1) to the newly allocated addresses in the second
heap (H ′

2). Thus state similarity would be preserved in both cases.
A consequence of Theorem 2 is that we can build a simple mark and sweep type

garbage collector for JavaScript. For any program state S = (H, l, t), we mark all the
heap addresses that are reachable from ∆(S). We modify the heap H to H ′ by freeing
up all unmarked addresses and obtain the new program state S′ = (H ′, l, t). It is easy
to show that S′ ∼ S. Hence by Theorem 2, a reduction trace starting from t, in a
system with garbage collection, would be similar to the one obtained without garbage
collection. In other words, garbage collection does not affect the semantics of programs.

5 Related Work

The JavaScript approach to objects is based on Self [26] and departs from the founda-
tional object calculi proposed in the 1990s, e.g., [5,9,18]. Previous foundational studies
include operational semantics for a subset of JavaScript [12] and formal properties
of subsets of JavaScript [7,22,25,24]. Our aim is different from these previous efforts
because we address the full ECMA Standard language (with provisions for variants
introduced in different browsers). We believe a comprehensive treatment is important
for analyzing existing code and code transformation methods [1,2]. In addition, when
analyzing JavaScript security, it is important to consider attacks that could be created

using arbitrary JavaScript, as opposed to some subset used to develop the trusted ap-
plication. Some work on containing the effects of malicious JavaScript include [21,27].
Future versions of JavaScript and ECMAScript are documented in [14,13].

In the remainder of this section, we compare our work to the formalizations pro-
posed by Thiemann [25] and Giannini [7] and comment on the extent to which formal
properties they establish for subsets of JavaScript can be generalized to the full lan-
guage.

Giannini et al. [7] formalize a small subset of JavaScript and give a static type
system that prevents run-time typing errors. The subset is non-trivial, as it includes
dynamic addition of properties to objects, and constructor functions to create objects.
However the subset also lacks important features such as object prototyping, func-
tions as objects, statements such as with, try−catch, for−in, and native functions and
objects. This leads to substantial simplifications in their semantics, relative to ours.
For example, function definitions are stored in a separate data structure rather than
in the appropriate scope object, so there is no scope-chain-based resolution of global
variables appearing inside a function body. Their simplification also makes it possible
to define a sound type system that does not appear to extend to full JavaScript, as
further discussed below.

Thiemann [25] proposes a type system for a larger subset of JavaScript than [7], as it
also includes function expressions, function objects, and object literals. The type system
associates type signatures with objects and functions and identifies suspicious type
conversions. However, Thiemann’s subset still does not alllow object prototyping, the
with and the try−catch statements, or subtle features of the language such as property
attributes or arbitrary variable declarations in the body of a function. As we showed
in section 2, these non-trivial (and non-intuitive) aspects of JavaScript make static
analysis of arbitrary JavaScript code very difficult.

The substantial semantic difference between the subsets covered in [7,25] and full
JavaScript is illustrated by the fact that: (i) Programs that are well-typed in the pro-
posed subsets may lead to type errors when executed using the complete semantics,
and (ii) Programs that do not lead to a type error when executed using the complete
semantics may be considered ill-typed unnecessarily by the proposed type systems. The
first point is demonstrated by var x = ”a”; x.length = function(){ }; x.length(), which is
allowed and well-typed by [25]. However it leads to a type error when executed using
the complete semantics because although the type system considers implicit type con-
version of the string x to a wrapped string object, it does not consider the prototyping
mechanism and attributes for properties. Since property length of String.prototype has
the ReadOnly attribute, the assignment in the second statement fails silently and thus
the method call in the third statement leads to a type error. An example demonstrating
the second point above is function f(){return o.g();}; result = f(), which is allowed in the
subsets mentioned in [7,25]. If method g is not present in the object o then both type
systems consider the expression result = f() ill-typed. However g could be present as a
method in the one of the ancestoral prototypes of o, in which case the expression will
not lead to a type error. Because object prototyping is the main inheritance mechanism
in JavaScript and it is pervasive in almost all real world JavaScript, we believe that a
type system that does not consider the effects of prototypes will not be useful without
further extension.

6 Conclusions

In this paper, we describe a structured operational semantics for the ECMA-262 stan-
dard [15] language. The semantics has two main parts: one-step evaluation relations
for the three main syntactic categories of the language, and definitions for all of the
native objects that are provided by an implementation. In the process of developing
the semantics, we examined a number of perplexing (to us) JavaScript program situa-
tions and experimented with a number of implementations. To ensure accuracy of our
semantics, we structured many clauses after the ECMA standard [15]. In a revision of
our semantics, it would be possible to depart from the structure of the informal ECMA
standard and make the semantics more concise, using many possible optimization to
reduce its apparent complexity. As a validation of the semantics we proved a soundness
theorem, a characterization of the reachable portion of the heap, and some equivalences
between JavaScript programs.

In ongoing work, we are using this JavaScript semantics to analyze methods for
determining isolation between embedded third-party JavaScript, such as embedded ad-
vertisements provided to web publishers through advertising networks, and the host-
ing content. In particular, we are studying YAHOO!’s ADsafe proposal [1] for safe
online advertisements, the BeamAuth [6] authentication bookmarklet that relies on
isolation between JavaScript on a page and JavaScript contained in a browser book-
mark,Google’s Caja effort [2] to provide code isloation by JavaScript rewriting, and
FBJS [23], the subset of JavaScript used for writing FaceBook applications.
Acknowledgments. We thank Adam Barth and Collin Jackson for giving us the
opportunity to analyze their BeamAuth code. Sergio Maffeis is supported by EPSRC
grant EP/E044956 /1. This work was done while the first author was visiting Stanford
University, whose hospitality is gratefully acknowledged. Mitchell and Taly acknowledge
the support of the National Science Foundation.

References

1. ADsafe: Making JavaScript safe for advertising. http://www.adsafe.org/, May 2008.
2. Google-Caja: A source-to-source translator for securing JavaScript-based web. http:

//code.google.com/p/google-caja/.
3. JScrip (Windows Script Technologies).

http://msdn2.microsoft.com/en-us/library/hbxc2t98.aspx.
4. Rhino: JavaScript for Java. http://www.mozilla.org/rhino/.
5. M. Abadi and L. Cardelli. A Theory of Objects. Springer, 1996.
6. B. Adida. Beamauth: two-factor web authentication with a bookmark. In ACM Computer

and Communications Security, pages 48–57, 2007.
7. C. Anderson, P. Giannini, and S. Drossopoulou. Towards type inference for JavaScript.

In Proc. of COOP’05, page 429452, 2005.
8. B. Eich. JavaScript at ten years. www.mozilla.org/js/language/ICFP-Keynote.ppt.
9. K. Fisher, F. Honsell, and J.C. Mitchell. A lambda calculus of objects and method

specialization. Nordic J. Computing (formerly BIT), 1:3–37, 1994.
10. D. Flanagan. JavaScript: The Definitive Guide. O’Reilly, 2006. http://proquest.

safaribooksonline.com/0596101996.
11. P. Gardner, G. Smith, M. Wheelhouse, and U. Zarfaty. Local hoare reasoning about

DOM. In Proc. of PODS ’08, pages 261–270. ACM, 2008.
12. D. Herman. Classic JavaScript. http://www.ccs.neu.edu/home/dherman/javascript/.

http://www.adsafe.org/
http://code.google.com/p/google-caja/
http://code.google.com/p/google-caja/
http://msdn2.microsoft.com/en-us/library/hbxc2t98.aspx
http://www.mozilla.org/rhino/
www.mozilla.org/js/language/ICFP-Keynote.ppt
http://proquest.safaribooksonline.com/0596101996
http://proquest.safaribooksonline.com/0596101996
http://www.ccs.neu.edu/home/dherman/javascript/

13. D. Herman and C. Flanagan. Status report: specifying JavaScript with ML. In Proc. of
ML’07, pages 47–52, 2007.

14. ECMA International. ECMAScript 4. http://www.ecmascript.org.
15. ECMA International. ECMAScript language specification. stardard ECMA-262, 3rd

Edition.
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf,
1999.

16. S. Maffeis, J. Mitchell, and A. Taly. Complete ECMA 262-3 operational semantics. http:
//jssec.net/semantics/.

17. S. Maffeis, J. Mitchell, and A. Taly. An operational semantics for javascript. In Proc. of
APLAS’08, volume 5356 of LNCS, pages 307–325. Springer Verlag, December 2008.

18. J.C. Mitchell. Toward a typed foundation for method specialization and inheritance. In
Proc. of POPL’90, pages 109–124, 1990.

19. Mozilla. SpiderMonkey (JavaScript-C) engine.
http://www.mozilla.org/js/spidermonkey/.

20. Prototype Core Team. Prototype Javascript framework: Easy Ajax and DOM manipula-
tion for dynamic web applications. http://www.prototypejs.org.

21. C. Reis, J. Dunagan, H. Wang, O. Dubrovsky, and S. Esmeir. BrowserShield:
Vulnerability-driven filtering of Dynamic HTML. ACM Transactions on the Web, 1(3),
2007.

22. J. Siek and W. Taha. Gradual typing for objects. In ECOOP, 2007.
23. The FaceBook Team. FBJS. http://wiki.developers.facebook.com/index.php/FBJS.
24. P. Thiemann. Towards a type system for analyzing javascript programs. In Proc. of

ESOP’05, volume 3444 of LNCS, page 408422, 2005.
25. P. Thiemann. A type safe DOM API. In Proc. of DBPL, pages 169–183, 2005.
26. D. Ungar and R.B. Smith. Self: The power of simplicity. In Proc. OOPSLA), volume 22,

pages 227–242, 1987.
27. D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript instrumentation for browser

security. In Proc. of POPL’07, pages 237–249, 2007.

http://www.ecmascript.org
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://jssec.net/semantics/
http://jssec.net/semantics/
http://www.mozilla.org/js/spidermonkey/
http://www.prototypejs.org
http://wiki.developers.facebook.com/index.php/FBJS

A Proofs from Section 4

Wellformedness of Heaps. We say that a heap H is well-formed iff the following
conditions are true.

– Every object in the heap must have @Class and @Prototype in its set of properties.
– Every function object in the heap must have @Call, @Scope, length, @Body and

@Prototype in its set of properties.
– Every arguments object in the heap must have callee and length in its set of prop-

erties.
– Every array object in the heap must have the length property. The length property

must always contain a number.
– Every native function object must have the @actuals property.
– Every String, Number and Boolean object must have the @Value property.
– All native error objects must have the message property.
– #Global must be an allocated address and must atleast have the @this property.
– The prototype chain for any object must never contain a cycle.
– The scope property for any function object must contain a well-formed scope ad-

dress and also the body property must contain a well-formed term.

Proof of Theorem 1.
Proof Sketch: We prove the first part of the above theorem by an induction over

the rules. The base cases are the rules which do not have a state transition in their
premise. For each of them, we show directly that well-formedness of the initial state
implies well-formedness of the final state. The remaining (contextual) rules form our
inductive cases, for which we argue inductively as follows. Consider the rule:

H,l,t −→H’,l’,t’
H,l,C(t) −→H’,l’,C(t’)

Let Sc = (H, l, C(t)) and S = (H, l, t). We can similarly define Sc′ and S′. We know
that Wf(Sc) = WfHeap(H) ∧Wfscope(l) ∧Wfterm(t). Using Lemma 1, we know that
Wfterm(C(t)) ⇒ Wfterm(t). Therefore Wf(Sc) → Wf(S). From the hypothesis we can
conclude Wf(Sc) → Wf(S) ⇒ Wf(S′) ⇒ Wf(H ′) ∧Wf(l′) ∧Wf(t′). Thus all that is
left to show is that Wfterm(t′) ⇒ Wfterm(C(t′)). To prove this we do a case analysis
over all contextual terms C(t) arising from the inductive cases, and show that if t is
well-formed then C(t) is also well-formed. Therefore Wf(Sc)→Wf(Sc′).

The second part of the theorem can be proven by structural induction over the
terms and some case analysis. All the base cases which are not values/exceptions, have
a basic reduction rule (basic rules are those which don’t have a state transition in
their premise) that applies to them. So the theorem is true for the base cases. For
the inductive case, we show that for each expression, statement and program either
is a context rule that applies (the premise of the context rule would be true by the
induction hypothesis), or the term is a value or an exception, in which case the theorem
is directly true. �

Proof of Theorem 2. In order to prove this theorem we prove the following stronger
theorem : For program states S1 = (H1, l1, t1) and S2 = (H2, l2, t2),
∃f ∈ FH1 ∃f ′ ∈ FH′

1
(S1 → S′

1 ∧ f(S1) ∼= S2)⇒ (S2 → S′
2 ∧ f ′(S′

1) ∼= S′
2 ∧ ∀l ∈

dom(H1))f(l) = f ′(l) ∧ ∀ (l ∈ (∆(S′
2) ∪∆(S2)) f ′(H ′

1) ∼=l H
′
2)

The above statement basically says that if the initial states are similar then after
reduction the final states would be similar and the final heaps would also be congruent
with respect to the initial set of roots (∆(S)) as well. We prove the above theorem
by an induction over the depth of the derivation tree. All rules which do no have
a state transition in their premise form the base case (as they lead to a single step
derivation). For base cases we do a case analysis and show that the theorem is true.
The contextual rules form the inductive cases for which we argue as follows. Reduction
using a contextual rule would look like:

H1,l1,t1 −→H1’,l1’,t1’
H1,l1,C1(t1) −→H1’,l1’,C1(t1’)

H2,l2,t2 −→H2’,l2’,t2’
H2,l2,C2(t2) −→H2’,l2’,C2(t2’)

Let Sc1 = (H1, l1, C1(t1)), S1 = (H1, l1, t1), Sc2 = (H2, l2, C2(t2)), S2 = (H2, l2, t2)
and similarly define states Sc′1, S1′, Sc′2 and S2′. Let LC1 = {l | l ∈ C1} and LC2 =
{l | l ∈ C2}.

Sc1 ∼ Sc2 ⇒ ∃f ∈ FH1f(Sc1) ∼= Sc2. This would imply

a. ∆(f(Sc1)) = ∆(Sc2)⇒ f(LC1) = LC2

b. ∀l ∈ ∆(Sc2)) f(H1) ∼=l H2

c. f(C1(t1)) = f(C1)(f(t1)) = C2(t2)

From (c) we get, f(t1) = t2 ∧ f(C1) = C2. Combining this with (a) we get ∆(f(S1)) =
∆(S2). Since ∆(S2) ⊆ ∆(Sc2), using (b) we get ∀l ∈ ∆(S2)) f(H1) ∼=l H2 and hence
S1 ∼ S2. Using the induction hypothesis we have ∃f ′ ∈ FH′

1
such that

d. ∆(f ′(S′
1)) = ∆(S′

2)
e. f ′(t′1) = t′2
f. ∀l ∈ dom(H1) f ′(l) = f(l)
g. ∀l ∈ (viewH2(∆(S2)) ∪ viewH′

2
(∆(S′

2)))f ′(H ′
1) ∼=l H

′
2

Since LC1 ⊆ dom(H1), using (f) we get f(LC1) = f ′(LC1). Also it is easy to
observe that :

h. ∆(f ′(Sc′1)) = f ′(LC1) ∪ ∆(f ′(S′
1)) = f(LC1) ∪∆(f ′(S′

1))
i. ∆(Sc′2) = LC2 ∪ ∆(S′

2)
j. ∆(Sc2) = LC2 ∪ ∆(S2)

From (a), (d), (h) and (i) we get∆(Sc′2) = ∆(f ′(Sc′1). Combining this with (e) we get
f ′(C1(t′1)) = C2(t′2).

Now we need to prove that ∀l ∈ viewH′
2
(∆(Sc′2) ∪ ∆(Sc2)) f ′(H ′

1) ∼=l H
′
2. This is

equivalent to proving
L∀l ∈ viewH′

2
(LC2 ∪ ∆(S′

2) ∪ ∆(S2)) f ′(H ′
1) ∼=l H

′
2

Consider a heap address l ∈ viewH′
2
(LC2 ∪∆(S2)∪∆(S′

2). Proving the above state-
ment is equivalent to showing that for all such l, f ′(H ′

1)(l) = H ′
2(l).

– If l ∈ viewH′
2
(∆(S2) ∪∆(S′

2) then using (g) we get f ′(H ′
1) ∼=l H

′
2.

– Else l /∈ viewH′
2
(∆(S2) ∪ ∆(S′

2) then by Lemma 2 we know that H2(l) = H ′
2(l).

For the theorem we only need to consider the case when l ∈ dom(H2). Since
viewH′

2
(∆(S2) ∪ ∆(S′

2) = viewf ′(H′
1)

(∆(f(S1)) ∪ ∆(f ′(S′
1)) =

viewf ′(H′
1)

(∆(f ′(S1)) ∪ ∆(f ′(S′
1)) (By applying (f)).

Therefore l /∈ viewf ′(H′
1)

(∆(f ′(S1)) ∪ ∆(f ′(S′
1)). Thus applying Lemma 2 (to the

transition f ′(S1)→ f ′(S′
1)) we get f ′(H1)(l) = f ′(H ′

1)(l). From (b) and (f) we can
show that f ′(H1)(l) = f(H1)(l) = H2(l). Thus we get f ′(H ′

1)(l) = H ′
2(l).

Thus we have shown the theorem for the inductive case. �

	 Sergio Maffeis, John C. Mitchell, Ankur Taly,

