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Abstract 

A class of zero-sum, two-person stochastic games are shown to have a value which 

can be calculated by transfinite iteration of an operator. The games considered have a 

countable state space, finite action spaces for each player, and a payoff sufficiently general 

to include classical stochastic games as well as Blackwell's infinite 06 games of imperfect 

information . 
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1. Introduction 

Let X be a countable, non-empty set of states, and let A and B be finite, non-empty 

sets of actions for players I and II, respectively. Let u be a bounded, real-valued utility 

function defined on X and let q be a function which assigns to each triple (x,a,b) in X x A x 

Ba probability distribution q(•lx,a,b) on X. 

The game starts· at some initial state x. Player I chooses an action a 1 e A and, 

simultaneously, player II chooses b1 e B. (The players may choose their actions at 

random.) The next state x1 has distribution q(•lx,a1,b1) and is announced to the players 

along with their chosen actions. The procedure is iterated so as to generate a random 

sequence x1,x2, ... and the payoff from player II to player I is 

(1.1) u* = lim0 sup u(x0 ). 

This payoff function is quite general and includes, for example, the classical payoff 

lim
0 

sup ( t r(x;)) /n 

where r is a bounded, real-valued function on X. To see this, redefine the state space to be 

the set of finite sequences (x 1, ... ,x0 ) of elements of X and set 

u(x
1 

, ••• ,xn) = ( t r(x;)) /n. 
1=1 

It is clear how to redefine the law of motion q. One can also redefine the state space to 

allow the payoff to depend on actions as well as states. 

Similar, but slightly more intricate, transformations can be used to show that our 

formulation includes the Ga games of Blackwell [2,3]. Indeed the operators defined below 

are analogous to his. 

The techniques which we use to show our game has a value are from the Dubins 

and Savage theory of gambling [7]. If the action set B for player II is a singleton, then the 

game is a nonleavable gambling problem for player I. An operator solution to such 

problems was given by Dubins et al. [6]. Our approach is an extension of their methods 

which involve the approximation of nonleavable problems by leavable problems in which a 

gambler is allowed to stop play at any time. 

Similarly, we introduce a "leavable game" in which player I (but not player II) can 

stop play at any time n and receive u(x0 ) from player II. It is shown in section 3 that the 

leavable game starting from state x has a value U(x) which can be calculated by backward 
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induction as follows: To each bounded, real-valued function cp defined on X, let Scp(x) be 

the value of an auxiliazy one-day game 02( cp )(x) starting from x with payoff cp; i.e. 

(1.2) Sq>(x) = sup inf Jf f q>(x
1
) q(dx

1 
I x,a,b) µ(da) v(db) 

µ V 

whereµ and v range over the sets of probability measures on A and B, respectively. 

Define 

(1.3) U0 =u 

and, for n = 0,1, ... , 

(1.4) Un+l = u v SU0 • 

Here a v b is the maximum of a with b. Let 

(1.5) 

U = sup Un. 
n 

Next define an operator T by the rule, 

Tu= SU. 

For each initial state x, Tu(x) is the value of a game in which player I can stop at any time 

n ~ 1 and receive u(x0 ). 

Now let 

(1.6) ~ =Tu 

and, for every countable ordinal ~' let 

QJ: = T(u A (inf Q )), 
"' 11~ 11 

where a A b is the minimum of a and b. Set 

(1.8) Q=infQ;. 
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Because X is countable and the Q; 's are decreasing, there is a countable ordinal ~· such 

that Q =~·and T(u A Q) =~*+I= Q. It is shown in section 4 that Q(x) = V(x), the 

value of the game with payoff u * starting from x. 

Stochastic games were formulated by Shapley [14], with state and action spaces 

finite and payoff function equal to the total discounted reward. Shapley proved that his 

game had a value and that both players had optimal stationary strategies. Thereafter, a 

number of authors considered the problem when the payoff function is the average reward 

per day. Notable contributors to the average reward problem include Gillette [8], Hoffman 

and Karp [9], Blackwell and Ferguson [ 4] and Kohlberg [10], who solved different special 

cases of the problem. The definitive solution of the problem was provided by Mertens & 

Neyman [12], who used a difficult result of Bewley & Kohlberg [1] on the asymptotic 

behavior of the value of the discounted reward game as the discount factor tends to one. 

Blackwell [2] proposed a variant of Shapley's game in which the law of motion 

was eliminated but which allowed for payoff functions more general than either the total 

discounted reward or the average reward per day. He proved that a win-lose game, where 

the winning set for player I is a Ga subset of the set of histories, has ~ value. In [3], he 

gave an operator solution of the same problem. This paper, together with [ 6], forms the 

basis of the present article. 

The next section has some definitions and preliminary results on strategies and stop 

rules. Leavable games are treated in section 3 and our main result is in section 4. The final 

section has two simple examples. 

2. Preliminaries 

Let Z = A x B x X and define the rn Qf histories to be H = Z x Z x ... . An 

element h = (z1,z2, ... ) of H will also be written ash= ((a1,b1,x1),(a2,b2,x2), ... ) w~ere 

Zn= (a0 ,b0 ,x0 ) for every n. We use p0(h) or, more briefly, Pn to denote the partial histozy 

(z1 , ... ,Zn)· 

Let P(A) and P(B) be the sets of probability measures on A and B, respectively. 

Given x e X, µ e P(A), and v e P(B), write m = m(x,µ,v) for the probability on Z given 

by_ 

m((a,b,x1)) = µ(a} v{b} q({xi}lx,a,b) 

for (a,b,x1) e Z. 

A strategy cr for player I is a sequence cr0 ,cr1, ... where cr
0 

e P(A) and, for n ~ 1, 

0'0 is a mapping from zn into P(A). A strategy t for player II is defined similarly with P(B) 
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in place of P(A). Strategies a and 't together with an initial state x determine a probability 

measure P cr,'t = P x,cr,'t on the Borel subsets of H. (The initial state x will usually be clear 

from the context and we will usually suppress it) Namely, the P cr,'t distribution of the first 

coordinate z1 = (a1,b1,x1) is Pcr0 ,-r0 = m(x,a0 ,'t0 ) and the P cr,'t conditional distribution of 

Zn+l = (a0+1,bn+l ,Xn+1) given z1,···,Zn is P cr,'t ( •lz1,···,zn)) = 
m(x0 ,a0 (z1,···,Zn),'tn(Z1,···,Zn)). If g is a bounded, Borel measurable function from H to 

the reals, we will write its expectation under P cr,-r as J gdP cr,'t or Ecr,tg. 

If a is a strategy and p = (z1, ... ,Zn) is a partial history, the conditional strategy cr[p] 

is defined by 

' ' ' ' a[plm(Zl , ... ,zm) = <1n+mCZt,···,Zn,Zl , ... ,zm) 

' ' m for all m ~ 1 and <2i , •.. ,zm) e Z . Given strategies a and 't for players I and II, the 

probability Pcr[p],-r[p] = Pxn,cr[p],-r[p] is easily seen to be a Pcr,-r conditional distribution for 

(zn+l,Zn+2, ... ) given (z1, ... ,z0 ). Thus, if g: H--+ R is bounded and Borel measurable, 

(2.1) Ecr,tg = J {Ecr[Pn(h)],'t[Pn{h)] (gpn(h))} dP cr,-rCh) 

where, for p = p0 (h) = (z1, ... ,Zn), gp is the p-section of g defined on H by (gp)(h') = 
' ' ' ' (gp)(z
1 
,z

2
, ... ) ·= g(z1, ... ,z0 ,z

1 
,z

2
, ... ). In the special case when g(h) = u*(h) = 

lim0 sup u(x0 ), the function u*p is just u* and (2.1) simplifies to 

A stopping time t is a mapping from H to { 0, 1, ... } u { 00 } such that, for n = 

0,1, ... , if t(h) = n and h' agrees with h in the first n coordinates, then t(h
1

) = n. (Notice 

that, if t(h) = 0 for some h, then t is identically zero.) A 1tQJ2 ~tis a stopping time which 

is everywhere finite. 

If tis a stopping time, h = (z1,z2, ... ) = ((a1,b1,x1),(a2,b2,x2), ... ), and t(h) < 00, 

we define the variables Zt,xt,Pt to have values Zt(h),xt(h),Pt(h) = (z1,···,zt(h)) at h. If tis a 

6 



stop rule, Pa[pt],t[pt] = Pxt,a[pt],t[pt] is a Pa,t conditional distribution for (zt+t,Zt+2,···) 

given (z1, ... ,zt) and (2.1) generalizes to 

(2.2) E0 ,tg = J (Ea[ptl,t[pt] (gpt)} dP a,t· 

If tis a stop rule and p = (z1, ... ,Zn) is a partial history, define t[p] on H by 
t t I I 

t[p](2)_ ,z
2

, ... ) = t(z1 , ... ,z0 ,z
1 

,z
2

, ... ) - n. 

Notice that, if t(z1, ... ,2n, ... ) ~ n, then t[p] is itself a stop rule in which case t[p] is called a 

conditional filQl2. rule given p. When p = (z), we write z for p and t(z] for t[p]. 

There is a natural way to associate with every stop rule tan ordinal number j(t) 

called the index oft by setting j(0) = 0 and requiring, for t > 0, that 

j(t) = sup {j(t[z]) + 1: z e Z}. 

This definition of the index is equivalent to that ofDellacherie and Meyer [5], as was 

pointed out by Maitra, Pestien, and Ramakrishnan [11,Proposition 4.1]. Furthermore, j(t) 

is familiar to students of Dubins and Savage as being the structure of the finitary function Zt 

( cf. [7, sections 2. 7 and 2.9]) except for the uninte~sting case when Z is a singleton. One 

of our arguments will use transfinite induction onj(t) and it is important to notice that, for 

t > 0 and all z, j(t[z]) is strictly less than j(t). 

Consider the special case of (2.1) where n = 1 and g = u(xJ for a stop rule t > 0. 

Notice that (xtz1)(z2, ... ) = xt(z1,z2, ... ) = Xt[zi1(z2,···> if we make the convention that 

Xt[z11(z2, ... ) = x1 when t[z1] = 0. Thus (2.1) gives 

(2.3) Ea,t u(xJ = J (Ea[z1],t[z1] u(Xt[z1])) dPa0 ,toCz1). 

We conclude these preli~aries by stating a result which is needed in order to 

approximate the game with payoff u* by leavable games. 

Lemma 2.1. [15,Theorem 3.2] If u is a bounded, real-valued function on X and P is a 

probability measure on the Borel subsets of H, then 

J
u• dP = inf sup Ju(xt) dP 

s t~s 
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where s and t vary over the set of stop rules. 

3.1.eavable games 

Let u be a bounded, real-valued function defined on X. Then u and an initial 

position x determine a leavable game ~(u)(x) in which player I chooses a strategy O' and a 

stop rule t, player Il chooses a strategy t, and Il pays I the quantity Ea,'tu(xt). Here we 

allow t = 0 and require Xo = x. 

Theorem 3.1. The leavable game ~(u)(x) has a value U(x) = sup Un(x), where the 
n 

functions Un are as defined by (1.3) and (1.4). 

For the proof, we will also consider, for n = 0,1, ... , an n-day leavable game 

~n(u)(x) with the same rules except that player I must choose a stop rule t S n. 

Lemma 3.2. The n-clay leavable game .Z:0 (u)(x) has value Uo(x), and both players have 

optimal strategies. 

Proof: If n = 0, the only stop rule allowed to player I is t = 0. So the value of cZ:0{u)(x) is 

clearly U
0
(x) = u(x). 

Assume the result for n and let Un+ 1 (x), lin+ 1 (x) be the upper and lower values for 

.Z:n+ 1 ( u)(x). 

To see that lln+ 1 (x) ~ Un+ 1 (x), consider two cases. First suppose u(x) = Un+ 1 (x). 

Then player I takes t = 0 and any a to get Ea,'tu{xt) = u(x) = Un+i(x) for all t. Next 

suppose SUn(x) = Un+l (x). In this case player I chooses o0 to be optimal in the auxiliary 

game Gl(Un)(x) defined in the introduction and, for each z1 = (a1,b1,x1), chooses a 

conditional strategy a[z1] and stop rule t[z1] to be optimal in ~n(u)(x1). Then, by (2.3), 

for any t, 

(3.1) Ea,'tu(xJ = J {Ea[zl],'t[z1]U(Xt[z1])} d.Pa0 ,'t0 (z1) 

~ JUn(X1) d.Pao,to(Z1) 

~ SUn(x) 

= Un+1(x). 

To see that Un+1(x) S Un+1(x), let t 0 be optimal for player Il in the auxiliary game 

<1l(U0 )(x) and, for each z1 = (a1,b1,x1), let t[z1] be optimal for Il in ~ 0 {u)(x). Given any 
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a and ts; n+l for player I, repeat the calculation in (3.1) above. The inequalities reverse to 

give the desired result. 

The next lemma gives two useful properties of the operator S. 

Lemma 3.3. Let cp1 s; <pis; ... be uniformly bounded, real-valued functions on X. Then 

(a) Scp
1 

s; Scp
2 

and (b) lim Scpn = S(lim <pn). 
n n 

Proof: (a) is obvious. For (b), set <p = lim cp0 • Fix x and choose µ e P(A) so that, for all 
n 

b EB, 

JI <p(x1) q(dx1lx,a,b) µ(da) ~ Scp(x). 

Let e > 0. Then, for n sufficiently large and all b, 

JI <pn(x1) q(dx1lx,a,b) µ(da) ~ S<p(x) - e. 

Hence, for n sufficiently large, (S<p0 )(x) ~ {Sep )(x) - e. 

Lemma 3.4. u = U0 s; U1 s; ... 

Proof: Use Lemma 3.3(a) or Lemma 3.2. 

Let U(x) and U(x) be the upper and lower values of .Z:(u)(x). 

Lemma 3.5. U(x) ~ U(x). 

Proof: Let e > 0. Choose n so that U0 (x) > U(x) - e. Let a,t be optimal in .Z:0 (u)(x). 

Then, for every 't, Ea,'tu(x1) ~ U0 (x) > U(x) - e. 

The next result is an extension to leavable games of a fundamental result of Du bins 

and Savage [7,Corollary 2.14.1]. 

Lemma 3.6. U is the least, bounded, real-valued function <p on X such that (a) cp ~ u and 

(b) Sep s; cp. 
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Proof: Suppose cp satisfies (a) and (b). So cp ~ U0 = u. Assume cp ~ Un. Then cp ~Sep~ 

sun and cp ~ u V SUn = Un+l· Hence, cp ~ Un for all n and cp ~ u. 

= u. 
Obviously, U ~ u, and, by Lemma 3.3(b), SU= S(lim Un)= lim SUn Slim Un+l 

n 

For each x e X, let v(x) be a probability on B which is optimal for player Il in the 

auxiliary game Gl(U)(x). Then define tx to be the strategy for Il such that 

Lemma 3.7 U(x) S U(x) and t' is an optimal strategy for player II in ~(u)(x). 

fr.QQ!: Let cr be a strategy for player Il and let t be a stop rule. We will show that 

Ea,txu(xt) S U(x) 

by induction on j(t). The inequality is obvious when j(t) = 0, i.e. when t = 0 .. Let t be a 

stop rule with indexj(t) =a> 0 and assume the inequality holds for all cr,x and stop rules 

of index less than a. Then, by (2.3) 

E 1u(x
1
) = f {E z u(x

1
[ 

1
)} dP (z

1
) 

a,'t a[z1],'t 
I z1 aotv(x) 

SJ U(x1) dPa0 ,v(x)(Zt) 

s SU(x) 

S U(x). 

In view of Lemmas 3.5 and 3.7, the proof of Theorem 3.1 is complete. 

The next result is a form of the optimality equation of dynamic programming. 

Lemma 3.8. U = u v SU 

Proof: That U ~ u v SU is immediate from Lemma 3.6. For the opposite inequality, fix x 

and suppose u(x) < U(x). Then, for n sufficiently large, u(x) < Un(x) and so 

U(x) = lim U 
1
(x) = lim SU (x) = SU(x) by Lemma 3.3 (b). 

n+ n 
n n 
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Consider now a slight modification ~*(u)(x) of the leavable game in which player I 

chooses a strategy a and a stop rule t ~ 1, player II chooses a strategy t and, as before, II 

pays I the quantity Ea, 'tu(xt). The only difference is ·that player I is not allowed to talce 

t = 0. 

Theorem 3.2. The game ~*(u)(x) has a value equal to SU(x) and 'tx, as defined before 

Lemma 3. 7, is optimal for player II. 

Proof: Consider a new problem with state space X' =Xu {x'} where x' e X, the same 

action sets A and B, the same utility u and law of motion q on X and extended to x' by 

u(x') = inf {u(y): ye X} - 1, 

q(• I x',a,b) = q(• I x,a,b), 

for all a,b. Notice that the leavable game ~(u)(x') is equivalent to ~*(u)(x) because player 

I has no incentive to talce t = 0 when the initial state is x'. Thus U(x') is the value of 

~*(u)(x), and, by Lemma 3.8, 

U(x') = u(x') v SU(x') = SU(x') = SU(x). 

The proof of Lemma 3.7 shows that, for all <J and t ~ i, 

So 'tx is optimal. 

As in the introduction, we denote the value of the game ~*(u)(x) by Tu(x). 

4. Nonleavable games. 

For each x e X, let n(u)(x) be the game described in the introduction in which, 

starting from x, player I chooses a strategy a, player Il chooses a strategy t, and Il pays I 

the quantity Ea,'tu*. 

1 1 



Theorem 4.1. The game n(u)(x) has a value V(x) which is equal to Q(x), where Q is 

defined by (1.8). 

Let V(x) and V(x) be the upper and lower values, respectively, of n(u)(x). 

Pro.position 4.2. If cp is a bounded, real-valued function on X such that T(u A cp) ~ cp, then 

V ~ cp. In particular, V ~ Q. 

Proof: As mentioned in the introduction, T(u A Q) = Q. So it suffices to prove the first 

assertion. The proof is similar to that of Theorem 5.1 in [6], but, for the sake of 

completeness, we will give the details. 

Fix x0 e X and£ > 0. We will construct a strategy er for player I such that, for 

every strategy 't for I, 

(4.1) 

The construction involves the composition of a sequence of increasingly better strategies 

for I in the game i:_*(u A cp). So, for each x e X and 6 > 0, let er(x,6), t(x,6) be 6 -

optimal for I in i:_*(u A cp)(x). Then, for every 't, 

(4.2) Ea(x,6),'t (u A cp)(xt(x,6)) 

~ T(u A cp)(x) - 6 

~ cp(x) - 6. 

Now choose positive numbers 60,61 , ... such that L On < £ and, ror each X and n, 

set ern(x) = er(x,60 ), t0 (x) = t(x,60 ). We take the strategy er to be the seQPential 

composition Qf ~ (er0 ,t0 ) startin& from Xo· Intuitively, er follows a<>(Xo) up to time t0 (x0), 

then switches to er1(Xto(x0 )) and so on. To be precise, first define stop rules s0 < s1 < ... 

by setting, for each h = (z1,z2, ... ) e H, 

s0 (h) = to(x0 )(h), 

Sn+1(h) = Sn(h) + tn+1(Xsn)(Zsn+I,Zsn+2,···)-

Now define 
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We shall now verify (4.1). Fix a strategy 't for II and let P = Pcr,-r· The 

expectations and conditional expectations below are all with respect to P. 

Set Y n = (u A cp )(x80), n ~ 0. By assumption, 

and, for n ~ 1, 

So, for n ~ 1, 

E(Y0 ) ~ E(cp(xsn-i)) - 60 

~ E(Y n-1) - 6n. 

By iterating this inequality, we get 

E(Yn) ~E(Yo)- (61+8i+ ... +6n) 

~ cp(xo) - (6o+a1+ ... +6n) 

~ cp(x0 ) - £, n ~ 0. 

Hence 

lim0 sup E(Y 0 ) ~ <p(Xo) - £. 

But 
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E(u*) = E(lim0sup u(xn)) 

~ E(lim0 sup u(xsn)) 

~ E(lim0 sup Y n) 

~ limn sup E(Y 0 ) 

~ cp(xo) - £. 

This completes the proof of ( 4.1) and of the proposition. 

Lemma 4.3. V s Q. 

Proof: It suffices to show V S Q; for each countable ordinal ~ and we will do so by 

induction on ~-

To see that VS~, fix x and let 't be optimal for II in cZ:*(u)(x). Then for any a for 

I, it follows from Lemma 2.1 that 

* E u S sup E u(x
1
) S Tu(x) = Q (x). 

G,"t t~l G,"t o 

Now let ~ be a positive ordinal and assume that V S Q'f, = inf Q . .To show 
11<; 11 

VS Q;, fix x and e > 0. We will find a strategy 't for II such that, for all a for I, 

(4.3) Ea,-ru* S Q;(x) + e, 

which clearly suffices. 

To define 't, first choose 'tl to be an optimal strategy for II in cZ:*(u" Ql;)(x) and, 

for every ye X, choose 't(y) for II in 7l(u)(y) so that, for all a, 

(4.4) Ea,t{y) u* < V(y) + £/2 S Q;(y) + £/2. 

( 4.5) A(h) = inf { k: u(xk) > Ql;(xk)}. 
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Then A is a stopping time with oo as a possible value. Now take 't to be that strategy which 

follows 't1 prior to time A and then switches to t(x,J; that is, 

1 
'to= 'to, 

ifn < A(h) 

if n ~ A(h). 

Fix a strategy er for I and we will verify (4.3). By Lemma 2.1, it suffices to find a 

stop rule s such that, for all stop rules t ~ s, 

( 4.6) Ea,tu(xi) S Q~(x) + £. 

To obtains, first choose a positive integer m such that 

(4.7) Pa,t[A < 00] S Pa,t[A Sm] + £/(4(sup lul + 1)). 

Also, for each partial history p = (z1, ... ,z0 ) with z0 = (a0 ,b0 ,x0 ), use Lemma 2.1 and (4.4) 

- -
to get a stop rule t (p) such that, for all stop rules t ~ t (p), 

Now, for h = (z1,z2, ... ), define 

=m 

Lett~ s. To check ( 4.6), condition on PMt and calculate: 

E u(x) = JE _ (u(x ) dP + Ju(x) dP 
CJ,'t t a[pA],'t(x,._) t[pA] CJ,'t t CJ,'t 

A.St bt 
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S T(u " <$)(x) + e 

=Q~(x) +e. 

The first line above uses the equality t[p,J = i(x,J for A< oo; the second is by (4.7); the 

third by (4.8) and the fact that t[p,J ~ s[p,J = t(p1) if As m; the fourth by (4.7) and the 

fact that sup I Q5 I S sup lul; the fifth by ( 4.5); the last two lines are by choice oft 1 and 

definition of Q~, respectively. 

Theorem 4.1 is immediate from Proposition 4.2 and Lemma 4.3. 

This proof that n(u) has a value is analogous to that given by Blackwell in [3] that 

his Ga games have a value. We could also imitate Blackwell's earlier proof in [2] by 

- -
arguing as in the proof of Lemma 4.3 that T(u "V) ~ V and then applying Proposition 4.2 

to conclude that V ~ V. Such a proof would be slightly shorter, but less constructive as 

Blackwell pointed out. As we will show in another paper, the proof given here can be 

generalized to a Borel measurable setting. We conclude this section with a characterization 

of V similar to Theorem 7 .1 in [ 6]. 

Theorem 4.4. The value function V for the game n(u) is the largest, bounded, real-valued 

function cp on X such that 
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(4.9) T(u" <p) = cp. 

Proof: The function Vis a solution to (4.9) because V = Q. Also, every solution cp of 

(4.9) is majorized by Vas follows from Proposition 4.2. 

5. Two examples. 

To illustrate the use of the operators, we present two simple examples. The first is 

a very special case of a class of win, lose, or draw games which were suggested to us by 

David Blackwell. 

Example 1. Let X = {w,l,d}; u(w) = 1, u(l) = -1, u(d) = 0; A= B = {0,1}; q(wlw,a,b) = 

1 and q(lll,a,b) = 1 for all a e A, be B; q(wld,1,1) = q(lld,1,0) = q(lld,0,1) = 1, 

q(wld,0,0) = q(dld,0,0) = 1/2. 

To simplify notation, we write functions on X in vector form. So, for example, the 

utility function u becomes u = (1,-1,0). 

The value of the auxiliary game <Jl(u) is easily found to be Su= (1,-1,-lll) and, 

hence, U 1 = u v Su = u. Consequently, Un = u for all n, U = u, and Qo = Tu = Su = 

c1,-1,-1n). 

Similar calculations show that for n = 0,1, ... , Qn+1 = TQn = (1,-1,xn+l) where 

Xo = -lll and Xn+l = (xn-1)/(xn+7). Furthermore the Xn decrease to a limit x* = "18 - 3. It 

is easily checked that Q = inf Qn = (1,-1,x*) satisfies T(u A Q) = TQ = Q. So (1,-1,x*) is 

the value. 

The game of example 1 is the same if we take the payoff to be 
n 

limn sup ( I, u(xi) )/n. So its value could also be calculated from that of the discounted 

i=l 

games as in [1]. The value for our next example, which corresponds to Example 1 of 

Orkin [13], cannot be calculated from discounted games. 

Example 2. Let X = {w, l,g,d}; u(w) = u(g) = 1, u(l) = u(d) = 0; A= B = {0,1 }; 

q(wlw,a,b) = q(lll,a,b) = 1 for all a e A, be B, q(wlg,1,1) = q(wld,1,1)= 1, q(glg,0,0) = 

q(gld,0,0) = 1, q(dlg,0,1) = q(dld,0,1) = 1, g(llg,1,0) = q(lld,1,0) = 1. 

As in example 1, we use vector notation. Sou= (u(w),u(l),u(g),u(d)) = 

(1,0,1,0,). The value of <Jl(u) is found to be Su= (1,0,1/2,1/2) and U1 = u v Su= 
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(l,0,1,1/2). One shows inductively, for n = 0,1, ... , that SU0 = (l,0,x0 ,xn) where x0 = 

1/2 and Xn+l = (2-x0)·1. Thus Un+l = u v SUn = (1,0,1,xn) and U = lim Un= 

(1,0,l,lim Xn) = (l,0,l,l). 

It follows that Q0 =Tu= SU= (l,0,l,1) also and Q1 = T(u A Q0 ) =Tu= Q0 • So 

Q0 is a fixed point and V = Q0 = (l,0,l,l). 
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