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AN OPERATOR-THEORETIC FORMULATION
OF ASYNCHRONOUS EXPONENTIAL GROWTH

G. F. WEBB

Abstract. A strongly continuous semigroup of bounded linear operators T(t),
t > 0, in the Banach space X has asynchronous exponential growth with intrinsic
growth constant X0 provided that there is a nonzero finite rank operator P0 in X
such that lim,..^ e~x°'T(t) = P0. Necessary and sufficient conditions are estab-
lished for T(t), t > 0, to have asynchronous exponential growth. Applications are
made to a maturity-time model of cell population growth and a transition probabil-
ity model of cell population growth.

1. Introduction. One of the most important phenomenon in population dynamics
is the property of asynchronous or balanced exponential growth. This property is
observed in many reproducing populations before the effects of crowding and
resource limitation take hold. It means, roughly, that the population density function
n(x, t) with respect to a structure variable x is asymptotic to ex°'n0(x) as time /
becomes large. The constant A0 is intrinsic to the species in its environment. The
characteristic distribution n0(x) depends only on the initial state. An important
consequence of this phenomenon is that the proportion of the population with
structure variable x between two given values approaches a constant as time
progresses. One important application of this phenomenon is to the so-called inverse
problem [1, 4]), that is, the use of the ultimate characteristic distribution to obtain
information about various parameters in the model.

The mathematical understanding of asynchronous exponential growth began with
the study of age-structured populations by F. Sharpe and A. Lotka [22]. The first
rigorous proof of asynchronous exponential growth in age-structured population
dynamics was given by W. Feller [6]. A general formulation of asynchronous
exponential growth has been developed in the theory of branching processes [14, 15].
Recently, it has been recognized that the idea of asynchronous exponential growth
can be described in the framework of strongly continuous semigroups of bounded
linear operators in Banach spaces [3, 4, 7, 8, 9, 13, 17, 24, 25]. The purpose of this
paper is to formulate the concept of asynchronous exponential growth in this
framework and to establish necessary and sufficient conditions for it to occur. We
will illustrate the abstract formulation of asynchronous exponential growth in two
models of proliferating cell populations. The first model is the maturity-time model
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752 G F. WEBB

of cell population growth due to S. Rubinow [19] The second model >s the ' '-. i lion
probability model of cell population growth due to K. Hannsgen, J. Tyson, and L.
Watson [11].

2. The operator-theoretic formulation. We require the following standard defini-
tions (see [24, §4.3]):

Definition 2.1. Let L be a closed linear operator in the Banach space X. If À is
in the spectrum a(L), then the generalized eigenspace yVx(L) is the smallest closed
subspace of X containing (Jf=xN((XI - L)k). The essential spectrum Ea(L) is
{X g o(L): either R(XI - L) is not closed, X is a limit point of o(L), or .VX(L) is
infinite dimensional}. The peripheral spectrum a0(L) is {Xx G o(L): ReA, =
sup{ReA: X G a(L)}}. If L is bounded, then the spectral radius ra(L) is sup{|A|:
X g o(L)}, the essential spectral radius rEa(L) is sup{|A|: X G Ea(L)}, and the
measure of noncompactness is a[L] = infE>0{ L(B) can b¿ covered by a finite
number of balls of radius < e}, where B is the unit ball of X.

The following proposition is proved in [2] (see also [24, Proposition 4.11]):

Proposition 2.1. Let L be a closed linear operator in the Banach space X. If
X0 g o(L) - Eo(L), then A0 is a pole of (XI - L)"1 and X0 is in the point
spectrum Po(L).

The following proposition is proved in [24, Propositions 4 12, 413 and 4.15]:

Proposition 2.2. Let T(t), t > 0, be a strongly continuous semigroup of bounded
linear operators with infinitesimal generator A in the Banach space X.

(2.1) w0M)- um log(\T(t)\)/texists,
(-►00

(2.2) "i(^) -  'im log(a[T(t)])/t exists,
r-> oo

(2.3) If y > u0(A), then there exists My > 1 such that \T(t) | < Myeyl,        -. ,, 0,

(2.4) sup   ReA<u>0(,4)    and       sup    ReA < ux(A),

(2.5) ra(T(t)) = e""M"    and   rEa(T(t)) = <?">M>',

(2.6) u0(A) = maxlux(A), sup ReA
kí=o(A ) — Eo{A)

If A0 > y > <¿i(A), X0 g o(A), and supXeo(/4)_£(J(/4)iX#XoReA <
y, then there exists a direct sum decomposition X = X0 © Xx and
associated projections P„ P¡X = X¡, i = 0,1, such that P0 =
(l/2iri)fr(XI - A)"x dX (where Y is a positively oriented closed
curve in C enclosing A0 but no other point of a(A)), Px = / - P0,
X0 = ¿VK(A), T(t)P0 = e'A°P0, t > 0 (where A0 is the restriction of
A to J7X(A)), and for some constant Mx > 1, |T(0^il < Mxeyl\Px\,
t> 0.

(2.7)
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// A G Pa(A), then eXt g Pa(T(t)), t > 0; // p G Po(T(t))
for some t > 0, p + 0, i/zen i/We exists X G PctM) swc/i that

(2.8) ex' = ri, £/«</ N(ex'I — T(t)) is the closed linear extension of
the linearly independent subspaces N(XkI — A), where Xk G
Pa(A) andex"' = p.

Definition 2.2. Let T(t), t > 0, be a strongly continuous semigroup of bounded
linear operators in the Banach space X. T(t), t > 0, has asynchronous exponential
growth with intrinsic growth constant A0 G R provided there exists a nonzero finite
rank operator P0 in X such that lim,_00e~x°'T(i) = P0 (where the limit is in the
operator norm topology).

Proposition 2.3. Let T(t), t > 0, be a strongly continuous semigroup of bounded
linear operators with infinitesimal generator A in the Banach space X. T(t), t > 0, has
asynchronous exponential growth with intrinsic growth constant A0 G R if and only if
o>x(A) < A0, a0(A) = {A0}, and A0 is a simple pole of (XI — A)~x.

Proof. (Necessity) Suppose that T(t), t > 0, has asynchronous exponential
growth with intrinsic growth constant A0. It is easily seen that P0 is a projection and
T(t)P0 = P0T(t) = ex»'PQ, t > 0. Then, AP0x = lim,^0(T(t)P0x - P0x)/t =
X0P0x, x g X, so that A0 g Pa(A). Since P0 is a projection, there exists a direct
sum decomposition of X as P0X © (/ - P0)X (see [16, p. 155]). Let X = (I - P0)X,
t(t) = e~x°'T(t)(I - P0), and observe that X is invariant under f(t). Consider
T(t), t > 0, in the Banach space X and let A be its infinitesimal generator. Observe
that

lim |í(r)|= hm [|í>-a°T(0 - P0\ + |(<rx°'r(í) - P0)P0\\ =0.
r-»oo r-> oo

From (2.5) ea<>íA)' = ra(f(t)) «s |f(r)|, which means u0(Â) < 0. By (2.3) there exists
y < 0 and My 7> 1 such that \t(t)\ < Myey', t > 0. Since P0 has finite rank, T(t)P0
is compact, and so a[T(t)] < a[T(t)P0] + a[T(t)(I - P0)] < Mye(X« + y)'. Thus,
ux(A) < A0 + y < A0.

Suppose that Xx g o(A) and ReAj > A0. By (2.4) Xx Í Eo(A), and by Proposi-
tion 2.1 A, g Po(A). There exists z * 0 such that T(t)z = ex>'z. Then,

ReT{t)z = eRe^>r[(cosImA1f)Rez -(sinImA^Lmz]

and

lmT(t)z = eReX''[(cosImA1r)Imz +(sinlm A,/)Rez].

Since e-XoiReT(t)z and ex»'lmT(t)z converge, ReA, = A0 and ImA, = 0. Thus,
o0(A)={X0}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Assume A0 is not a simple pole of (XI - A) l. Since A0 í Ea(A), there exists
the Laurent expansion (see [26, p. 228])

CO

(XI-Ayl=   £   (A-A0)X,   where k > I,
(2.9) "--*

An = (l/2iri) [ (X - A0)""_1(A/ - A)ldX,

T is a positively oriented circle of sufficiently small radius about A0,

A_k*0,    A_k=(A-\0l)k~1A_l,   and    (A - X0I)A_k = 0.
Choose x such that A_kx ± 0 and let y = (A - X0I)k~2A_xx. From (2.9) AA_kx
= X0A_kx and Ay = A_kx + X0y. Since

(d/dt)(ex"'(tA_kx + y)) = X0ex°'(tA_kx + y) + ex°'A_kx

= A(ex°'(tA_kx + y))

and the solution of the initial value problem (d/dt)T(t)y = AT(t)y, t > 0, T(0)y
= y is unique (see [16, p. 481]), T(t)y = ex<>'(tA_kx + y). But e~x°'T(t)y does not
converge. Thus, A0 is a simple pole.

(Sufficiency) Suppose that ux(A) < X0, a0(A) = {A0}, and A0 is a simple pole of
(XI - A)~l. By (2.4) and Proposition 2.1 A0 G Pa (A) and J7~xi,A) is finite dimen-
sional. Let ux(A) < y < A0 and assume there exists an infinite sequence (A^.} c
o(A) such that KeXk > y. Then, Xk G Pa (A) and by (2.8) ex»' g Pa(T(t)). Fix
t > 0. If {eXk'} is infinite, then a(T(t)) has an accumulation point. Thus, rFa(T(t))
> eyt > e"'iA)l, which contradicts (2.5). If {ex"'} is finite, then ex"'= ¡i for
infinitely many k. By (2.8) ^(T(t)) is infinite dimensional, since it must contain all
the linearly independent manifolds N(XkI - A) whenever eXk' = p. Thus, rEc,(T(t))
> Rep > ey' > e"^Au, which again contradicts (2.5). There must exist y > oix(A)
such that supAeo(/4)_£aM)i-A^x Re A < y < A0. There exists a direct sum decomposi-
tion of X as in (2.7). Since A0 is a simple pole, Jfx (A) = N(X0I — A) (see [24,
Proposition 4.15]) and T(t)P0 = ex°'P0, t > 0. Thus, P0 * 0, P0 has finite rank, and

lim \e-x"'T(t) - PQ\= lim \e-x°'T(t)Px \ < lim MiC(y-x»)'|/>1| = 0.        D
/ —* oc t-> oo t—*cc

Remark 2.1. Notice from the proof of Proposition 2.3 that if T(t), t > 0, has
asynchronous exponential growth with intrinsic growth constant A0, then (i) PQ is
the projection of A'onto jVXi¡(A) given in (2.7) and T(t)P0 = ex°'P0, t > 0; (ii) A0 is
the dominant eigenvalue of A in the sense that there exists 8 > 0 such that
ReA < A0 - <5 for all A G a(A), X * A0; (in) if ux(A) < y and A0 - Ô < y < A0,
then there exists My > 1 such that |T(r) - ex°'P0\ < Myey', t > 0; and (iv) P0 has
rank one if and only if A0 is simple eigenvalue of A, that is, dim^VX)(A) = 1 (see

[16, p. 41]).
The following proposition provides a means to estimate u>x(A):

Proposition 2.4. Let T(t), t > 0, be a strongly continuous semigroup of bounded
linear operators in the Banach space X. For sufficiently large t let there exist the
representation T(t) = U(t) + V(t), where \U(t)\ < Ceyt (C and y independent of t)
and V(t) is compact. Then, <JX(A) < y.
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asynchronous exponential growth 755

Proof. From the properties of a[ ] (see [24, Proposition 4.9]) we have that
a[T(t)} < a[U(t)\ + a[V(t)] = a[U(t)] < Ceyt for / sufficiently large. The conclu-
sion follows immediately from (2.2).    □

In the case that X is a Banach lattice the asymptotic behavior of strongly
continuous semigroups of positive bounded linear operators has been investigated by
such authors as G. Greiner [7], G. Greiner and R. Nagel [8], G. Greiner, J. Voigt,
and M. Wolff [9], and W. Kerscher and R. Nagel [17]. We collect some ideas for this
case into the following proposition:

Proposition 2.5. Let T(t), t > 0, be a strongly continuous semigroup of positive
bounded linear operators with infinitesimal generator A in the Banach lattice X. Let
A0 = sup(ReA: A g a(A)} and let cox(A) < A0. Then, (i) a0(A) = {A0}; (ii) there
exists x0 g X+, x0 # 0, such that Ax0 = XQx0; (iii) // there exists a strictly positive
functional f G X' and Xx g R such that for all x G X+ <7 N(X0I — A),
(e~x''T(t)x,f) is bounded in t, then A0 < Xx; (iv) if there exists a strictly positive
functional /g X' and Xx g R such that for all x g X+n N(XQI -A), x* 0,
limt _ OB(e~x,'T(t)x, f) exists and is positive, then Xx = A0; and (v) if there exists a
strictly positive functional f g X' such that for all x G jVx (A), (e~x°'T(t)x, f) is
bounded in t, then X0 is a simple pole of (XI — A)'1 (f is strictly positive means
(x, /> > 0 for all x G X+, x * 0).

Proof. To prove (i) let Xx g a(A) such that ReXx = A0 and Im Ax ¥= 0. By (2.4)
and Proposition 2.1 A, is a pole of (XI - A)"1. By Theorem 1.3 in [7] A() + im Im Xx
g a0(A) for every integer m. But the same argument as in the proof of Proposition
2.3 (Sufficiency) shows that rEa(T(t)) > e"l(A)l, which contradicts (2.5). The proof
of (ii) and (iii) uses the ideas of Greiner in [7, Corollary 1.2], Let the Laurent
expansion (2.9) hold with k > 1. Then, A_k = limA^x*(A - X0)k(XI - A)'1. In
[9] it is shown that (XI - Ay1 is positive for A > A0, and thus A _k is positive. Let
x g X+ such that A_kx ^ 0, A_kx * 0. From (2.9) (A - X0I)A_kx = 0, which
means T(t)A_kx = ex"'A_kx. Take x0 = A _ kx to prove (ii). Since
(e~x''T(t)A_kx,f) = e<A»"x>>'(A_kx,f) is bounded and (A _kx,f) > 0, we must
have A0 < A1( which proves (iii). The proof of (iv) is similar to the proof of (iii)
except that the hypothesis implies lim,^0Oe(X°~Al)'(/l_/<x, /) > 0. Since (A _kx, f)
> 0, A0 = Aj. The proof of (v) is similar to the proof of Proposition 2.3 (Necessity).
Assume that A0 is not a simple pole, so that k > 1 in (2.9). Choose x g X+ such
that A _kx > 0, A _kx # 0 as in the proof of (ii) above. Let y = (A - X0l)k"2A_xx
and T(t)y = ex"'(tA_kx + y) as in the proof of Proposition 2.3 (Necessity). Since
(A - X0I)2y = 0, (e-x»'T(t)y,f) = t(A_kx,f) + (y,f) is bounded. Since
(A_kx,f) > 0, we obtain a contradiction.   D

Remark 2.2. Propositions 2.3 and 2.5 provide sufficiency for asynchronous
exponential growth of a positive semigroup in a Banach lattice: ux(A) < A0 =
sup{Re A: A g a(A)} and there exists a strictly positive functional / g X' such that
for x G Jfx (A), (e~x°'T(t)x,f) is bounded in t. Another useful condition for this
purpose is irreducibility. T(t), t > 0, is irreducible if for x g X+, /g X'+, x # 0,
/#0,  there exists  i>0  such  that  (T(t)x,f) > 0.  Propositions 2.3, 2.5,  and
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Theorem 1.3 in [7] combine to provide another sufficient condition for asynchronous
exponential growth: ux(A) <X0 = sup{ReA: A g a(A)} and T(t), t > 0 is irre-
ducible. Furthermore, in this case P0 must have rank one. We note that (i) and (ii) in
Proposition 2.5 are true if X is a partially ordered Banach space with ordering
coming from a cone C whose linear span is all of X and T(t)(C) c C for all / > 0;
X need not be a Banach lattice.

3. A maturity-time model of cell population growth. In [19] S. Rubinow presents the
following model of cell population growth:

(3.1) h,(t,/)+(o(t)«(t,0)t= -m(t)«(t,0,
(3.2) v(T0)n(r0,t) = 2v(rl)n(Tx.t),

(3.3) b(t,0) = *(t).

Here w(t, /) is the density of cells at time / with respect to the maturity variable
t g [t0, t,], v(t) is the velocity of maturation, p(t) is the loss rate of cells due to
death or causes other than division and <j>(r) is the initial maturity distribution of
cells. Cells divide when their maturity is tx. The maturity of an individual cell is
connected to various physiological or biochemical changes in the cell cycle.

We assume that v is continuously differentiable and positive on [t0,t,] and p is
continuous and nonnegative on [t0,t,]. Define the Banach space X = {$ G
C([t0,tx]): v(t0)<¡>(t0) = 2v(tx)c¡>(tx)} with norm ||4>|| = supT()S.TS.T]|<#>(T)|. (Notice
that X is not a Banach lattice with respect to the natural ordering in C([r0, t,]).) Let
m(r) = flv(a)'1 da, t0 ^ t < t, (w(t) is the time required for an individual cell
to mature from t0 to t). Let

A(s,r) = exp - f (u(t) -t-i/(t))d(t)   ^t
[    •>

= exp \-J   h(t)v(t)   ldr  v(r)/v(s)

(3.4)    n(r,t)

The solution of (3.1)-(3.3) satisfies

5(r-m(T))A(T,T0),

<i>(m~l(m(r) - t))h(i,

where B(t) = n(r0, t), t > 0, satisfies

(3.5)
ß2v(rx) j B(t - m(Tx))A(rx,T0),

t > m(r),

t~1(m(r) -

Tn < r ^ í < T, .

/)),        t^m(r),

t > m(rx),

í;(t0)  \<í»(»i-1(m(Ti)-í))A(T1,w-1(w(T1)-í)),        t^m(rx).

The functional equation (3.5) may be solved uniquely by the method of steps for
each 4> in X. The formula (3.4) then provides a generalized solution of (3.1)—(3.3). It
may be verified that these solutions form a strongly continuous semigroup of
bounded linear operators T(t), t > 0, in X by the formula (T(t)4>)(r) = n(r.t).
The infinitesimal generator of 7(0, t > 0, is A<f> = -(v<t>)' - p<i>, D(A) = [4> g X:
(v<j>)'eX}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



asynchronous exponential growth 757

We claim that a(A) = Pa(A) = {Xk: k = 0, ±2, ±4,... }, where Xk =
(In 2 - /TT> p(t)u(t) xdr + iktT)/m(Tx). To establish this claim let \p g X and
define

(3.6)    *(t)= A(r,70)e~x^)i^(Ti))+ £ A(t,o)eXm<°)4,(o)v(o)-1 do}.

If <p G X, then u(t0)<|>(t0) = 2v(tx)<)>(tx), and from (3.6) we see that A must satisfy
the characteristic equation

(3.7) 2 exp /T'(p(T)+A)t;(T)-1dT 1.

The solutions of the characteristic equation are X = Xk. If X ¥= Xk, then A g p(A)
and (XI - A)<t> = i/», where <j> is as in (3.6) and

{2v(T1)/v(r0))A(rx,r0)e-Xm^A(Tl,a)e  x"'^(a)v(a)~1 da
<p(r0) =-

1 - 2 exp -fl (a(T)+X)v(ryldr

If A = Xk for some even integer k, then <p(r) = A(t, t0) exp[-Xkm(T)]<¡>(T0) is an
eigenfunction for the eigenvalue Xk whenever <p(r0) + 0.

Obviously, the peripheral spectrum a0(A) is the set of A^ above. By Proposition
2.3 T(t). r ,> 0, cannot have asynchronous exponential growth. In [19] it is reasoned
that the solutions of the model (3.1)—(3.3) cannot have asynchronous exponential
growth, since the initial state is remembered through all successive generations. In
[19] it is remarked that these solutions provide good agreement with experimental
data, but that the failure to exhibit asynchronous exponential growth means this
agreement persists only for a few generations.

4. A transition probability model of cell population growth. In [11] K. Hannsgen, J.
Tyson, and L. Watson present a model of eel! population growth with various
growth laws and interdivision time probability distributions for individual cells. In
[12] each cell grows linearly, so that its mass m(t) at time t after birth satisfies
m(t + t) = m(r) + t, t, t,>0. Each cell divides into exactly two cells of equal mass
after a random length of time \ + T comprised of a constant deterministic phase
and an exponentially distributed phase with probability Pr(T> t) = e~pt, t > 0
(p = a positive constant). Let n(x, t) have the property that f**n(x,t)dx is the
rate per unit time at which cells divide with mass at division between xx and x2,
1 < xx < x2. The function n(x, t) satisfies the delay partial differential equation
(4.1)

n,(x,t) + nx(x,t) = -pn(x,t) + 4pn(2(x - l),t - 1),       t > 0, x > 1,

(4.2) n(x.t) = 4>(x,t),    -1<(.<0, x>0    and

n(x, t) = 0    for f > 0, 0 < jc < 1.
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In [11 and 12] the following results are established:

Proposition 4.1. Let <f> g C\[0, co) x [-1,0]) with </>(0, t) = 0, -1 < t < 0,
(¡>(x, 0) = 0, 0 < x < 1. Then, (4.1), (4.2) has a unique solution which is also nonnega-
tive if 4> is nonnegative. Let X = A0 be the unique real solution of the equation
X + p = 2pe~x and let

(4.3) h(x) = "L (-2)"cne-^+P)2^x~2\        x>2,
n = 0

k0,       0 < x < 2,

where c0 = l,c„= 1/(2 - 1)(4 - 1) • • • (2" - 1), n = 1,2,..., and N is a normaliz-
ing constant. Then, h(x) > 0 forx > 2, /|° h(x)dx = 1, andh(x) ~ Ne~^0+P^x~2)
as x -> oo. // <#> a/so satisfies 0 < (p(x, r) < m0(x) with m0 G C([0, co)) n L^O, co)
and ra0 nonincreasing, then e~x°'n(-,t) converges weakly in L\l,co) to c(<p)h(-),
where

I? $(x,0)dx +(XQ+ p)j<ix tf e-xMx,0)dxde
(4-4) c(<i>) =-l + A0 + p-•

We will use Proposition 2.3 to prove that the solutions of the model have
asynchronous exponential growth with intrinsic growth constant A0 in the strong
topology of an appropriately chosen Banach space. Let 0 < t < p/2, let Y = {/ g
C([0,oo)): /(0) = Oandlim^e^l/Wl = 0} with norm ||/||r = supx>0e"|/(x)|,
and let X = {4, g C([-1,0]; Y): <f>(0)(x) = 0 for x g [0,1]} with norm ||<f>||* =
sup_1<flí.0||<í>(o)||y. Define a strongly continuous semigroup of bounded linear
operators in Y by

(4.5) (S(t)f)(x)={ïP'^-^        x><
10,       0 < x < t.

The infinitesimal generator of S(t), t ^ 0, is Bf = -f'-pf, D(B)= {/e Y:
f g Y}. Define F: X -» Y by

(4.6) (F*)(x)-I4"*-1)*2**-1»'        X>1'
lO,       0 < x < 1.

Let <p G AT and consider the problem

(4.7) n(/) = S(í)i¡i(0)+fs(í-s)Fnsíís,        t > 0, n0 = <t>,

where n: [ — 1, 00) -» T and n, £ X is defined for r ^ 0 by «,(0) = n(/ + 0),
-1 < 0 < 0. (Notice from (4.5) and (4.6) that a solution of (4.7) satisfies n,(0)(x) = 0
for 0 < x < 1.) By Proposition 2.1 in [23] there exists a unique solution of the
problem (4.7). Define the family of operators T(t), t > 0, in X by T(t)<¡> = nr By
Propositions 3.1 and 3.2 in [23] T(t), t > 0, is a strongly continuous semigroup of
bounded linear operators in X with infinitesimal generator A<j> = <p', D(A) = {</> G
A: <p' G A', </>(0) e /)(£), and <i>'(0) = 5<i>(0) + F</>}. By Proposition 2.3 in [23]
(T(r)<i>)(0)(x) = n(r)(0)(x) = n(x,t) is the unique solution of (4.1), (4.2) for <J> g
D(A).
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Proposition 4.2. Let X = A0 be the unique real solution of X + p = 2pe~x ■ T(t),
t > 0, has asynchronous exponential growth with intrinsic growth constant A0. Further,
lim^^e-^'T^)^ = c(<t>)<t>o for al1 «Í» G x> where %ie) ~ eA°^> -1 < 0 < 0,
c(4>) is as in (4.4), and h is as in (4.3).

Proof. We will apply Proposition 2.3. Since A0 > 0 it suffices to prove that (I)
Ui(A) < 0, (II) a0(A) = (A0) and A0 is a simple pole of (A/ - A)-1, and (III) P0
in Definition 2.2 is given by P0<¡> = c(<j>)<¡>0.

(I) We will use Proposition 2.4 to show that u>x(A) < 2t - p. Specifically, we will
show that for t > 2, T(t) = U(t) + Vit), where \U(t)\ < Ce<2T"'')' and V(t) is
compact. In the calculations below it will be understood that if / g Y and x < 0,
then fix) is taken as 0. From (4.7) we have that for / > 0, x > 0

(4.8) n(t)(x) = e~<"<$>(0)(x - t) + [' e'^'-^Fn^x - t + s) ds

= e-"'(#)(0)(x - t) + 4p ¡' e-"('-s)nis - l)(2(x - t + s - I)) ds

= e-"4>(0)(x - t) + 4p f'1 c^<'""-1)«(m)(2(x - t + u)) du.J-i

From (4.8) we have that for r > 1, x > 0

(4.9) n(t)(x) = e^'<¡>(0)(x - t) + 4p f°  e^('-"-1)<i»(«)(2(x - t + u)) du
J-i

+ 4pf~l e-pl''u-l)íe-"u<¡,i0)i2ix - t + u) - u)

+ 4p["~1 e-r("-w-»niw)
J-i

x(2(2(x - t + u) - u + w))dw\ du.

From (4.9) we have that for <¡> g X, t > 2, -1 < 0 < 0, x > 0

(Tit)4>)(0)ix) = nit + 0)(x)

= e~"i, + %i0)ix - t - 6) + Ap f°  e-»(,+e-u-l)<p(u)(2(x - t - 6 + u)) du
J -i

+ 4p f2*-'-6-1 e-P^e-l^(0)(v) dv

,  f2x-t-8-l    rl(t + 0-x) + v-l ,,.„ ,,    ,     , ,    , . ,
+ 16p2/ / e-P°+s'w-2)n(w)i2{v + w))dwdv

= (Ux(t)<t>)(9)ix) +(U2{t)4>)(0)(x) +(U3(t)4>){6)(x) +(V(t)4>)(0){x).

Notice that Uxit)iX) c X and

||í/i(0*ll*=     suP     supeTJCe^(,+<,)|<í»(0)(x-/-c?)|
-ls¡0«:O  x»0

<     sup    e<T-^'+9)||<#,(0)||y<e(T-^('-1)||<í»||Y.
-i<e<o
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Also,   U2(t)(X) c X  (since  for   t > 2,  0 < x «s i,   -1 < m «£ 0,  we  have  that
2(x - t + u) < 0 and <i>(w)(2(x - t + «)) = U). Further,

ll^2(0(*)IL<     SUP     supcTT4p/"°   c-/»<»+#-«-De-2'<*-/-»+»)||^(I<)||K¿u#
-lss9<0 ¿»O ■'-1

< 4pepe(2r~p)('~l)\\<t>\\x/(p - 2t).

Next, U3(t)(X) c A (since for t > 2, 0 < x *£ 1, 2(x - t) < v < 2x - i - 1, we
have that o < 0 and <f>(0)(t>) = 0). Further,

||tf3(0(*)ILr<    sup     supe"4p/2j       '"'e-"<'+<>-^e^U(0)\\Ydv

< Ape'e^-^'-^Wx/T.

Let  Í/ = Ux + U2 + U3  and we have established that  \U(t)\ < Ce{lT~p)',  t » 2,
where C is independent of t.

Observe that V(t)(X) c A, since F(í) = T(í) - i/(/). We must show that Vit) is
compact for each t > 2. Fix t ^ 2 and let Q be a bounded subset of X It suffices to
show that (i) V(t)$ is uniformly bounded for <i> G Q, (ii) (F(()<f>)(0) is equicontinu-
ous in 0 for 0 g Q, (hi) (F(i)^>)(0)(x) is equicontinuous in x in bounded intervals
of x for <p G Q, -1 < 0 < 0, and (iv) for e > 0 there exists xf > 0 such that
eTX\iVit)<)>)i6)ix)\ < £ for x > xF. Observe that for <f> G Q, -1 < 0 < 0, x > 0,
2(x - t - 8) < v < 2x - t - 6 - 1, and -1 < w < 2(r + 0 - x) + v - 1, we have
- 1 < w =g ; - 2, so that

(4.10) ¡|«(w)||v = ||(r(w)<,)(o)||r«   sup   |r(i)|||*|U.
O^ssîi -2

Consequently, for <t> G g, -1 =g 0 < 0. x > 0

(4.11)
,"|(K(/)<í,)(0)(x)|

J2(x-i-0)       J-\

< Ce '3™

where C is independent of <J>, 0, and x. Properties (i), (ii), (iii), and (iv) follow
immediately from (4.10), (4.11), and the formula for (V(t)$)(0)(x).

(II) Let X0 = sup{ReA: A g a(A)}. We will use Proposition 2.5(i) and (iv) to
show that a0(A) = {A0} and A0 = A0. Observe that A" is a Banach lattice, where
<f>, t> <i>2 means <p,(0)(x) > </>2(0)(x), -1 < 0 < 0, x > 0. Further, T(/)<i> > 0 for
all í t> 0 and <£ 3? 0 (which may be seen from (4.7) by using the method of steps).
Suppose <t> g X, <t> * 0, and ^<i> = A</>. Then, <t>(6) = exe<¡>(0), -1 < 0 < 0, where
<í>(0) G Z)(fi) and <i>'(0) = B</>(0) + F<i>. Consequently,

A<i>(0)(x) = -^(0)'(x) -p<?>(0)(x) + 4pe~x<i>(0)(2(x - 1)),        x > 1,

which means

(4.12)      <i>(0)(x) = 4pe-xfX e-ix-p)lx-y)4>(0)(2(y- l))dy,        x > 1.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



asynchronous exponential growth 761

In [12] it is shown that a solution of (4.12) is <i>(0)(x) = h(x) in (4.3) and A = A0. By
Proposition 4.1 h g Y. Then, A0 g Pa(A) and A<j>0 = X0<¡>0, where <f>o(0) = ex"eh.
Since ux(A) < 0 and A0 > 0, we have ux(A) < A0. By Proposition 2.5(d) a0(A) =
{A0}.

Consider the scalar delay differential equation

(4.13) N'(t)= -pN(t) + 2pN(t-l),    t>0,       Ar0 = ^jf=C([-l,u]).
As in [10, Chapter 7] we associate a strongly continuous semigroup of bounded
linear operators f(t), t > 0, in X by the formula T(t)$ = N„ <j> g X, t > 0. For
<J> g X define £(0) = /0°° <í>(0)(x)í/x, -1 < 0 < 0. From (4.1) we obtain that for
<f> g D(/l), (T(t)4>)(6) = /o°°(r(r)<í>)(0Xx)dx. Since 0(^4) is dense in X, this last
formula holds for all 4> g A", t > 0. The infinitesimal generator of T(r), r > 0, is
A~<$> = <J>', D(A) ={^eï:r>'eland <>'(0) = -p<í>(0) + 2p<í>(-1)}. Since f(t) is
compact for t > 1, oox(A) = - co. Also, Pa(,4) = (A: X + p = 2pe~x). For A £
Pa(i), <£ g X

;      V A + p-2pe"x ^ V   '

By Proposition 2.3 and the Residue Theorem we have that for all ij> g X

(4.14) lim |e-x»'f(í)^ - />b = 0,
/->oo

ex»*(^(0) + 2p/°1e-x°<1 + ")i(a) da)
(4.15) (/>)(0) 1 + A0 +p

Define /<= X' by <$,/> = /», /0°° <i>(0)(x)dxd0, <í> g a", and observe that / is
strictly positive. From (4.14) and (4.15) we see that

(4.16) lim (e-x»T(0<í,,/) = f°   {P<#)(0) d0
t -> 00 » — 1

which is positive if $ ^ 0, <f> =£ 0. By Proposition 2.5(iv) A0 = X0 and by Proposition
2.5(v) A0 is a simple pole of (A/ — A)-1.

(Ill) We will use an idea from [12, Theorem 1] to show that NiX0I - A) is one
dimensional, so that A0 is a simple eigenvalue of A (see [16, p. 41]). Suppose that
A<f> = X0<¡>. From (4.12) we obtain

/•OO ,       /*OC    I     f-X
f    |<i>(0)(x) | dx = 4pe~x° /       /   e-iX"+p){x-v)4>(0)(2(y - I)) dy dx

^4pex»fX   i* e-iX»+p)ix-y,\<t>iO)i2iy- l))\dydx
Ji    Ji

/■OO       /«OO
= 4pe~Kj     j    e-{X° + p*x-v)\$i0)(2iy-l))\dxdy

= rT^ri«í»(0)(2(>'-1))l^Ao + P Jl
/»CO

=  /     |<i»(0)(x)Ux.•'i
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The inequality above must be an equality, so that for x ^ 1

I [* e-&°+p**-y)<f,(o)(2(y - 1)) dy\ =  f e"(X»+'')<Jc^)|<i>(0)(2(y - l))|dy.
I M IM

Thus, <i>(0) = const |<i>(0)(x)|. But the same must be true for h - <f>(0). If
fxœ4>(0)(x) dx = 1, then f{°(h(x) - <i>(0)(x))dx = 0, which means h = <í>(0) and
<p0 = <j>. By Proposition 2.3 hml^xe~x<>'T(t)4> = P<& for all ifel Let (#> g X.
Since Jfx (A) = N(X0I - A), P0 has rank one and there exists a constant c such
that P0<j> = c<¡>0. From (4.4) and (4.16) we obtain

c(<W> = f  (P0^)(0)de = ci4>)(4>0,f).
J-i

Since 4>0> 0 and / is strictly positive, we must have c = c(<|>).   D
Remark 4.1. Notice that Tit), t > 0, is not irreducible, since T(t)4>0 = ex°%,

(T(t)<t>o)(0)(x) = ex°'h(x), and h(x) = 0 for 0 < x < 2.
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