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Abstract: The mobile node location method can find unknown nodes in real time and capture the
movement trajectory of unknown nodes in time, which has attracted more and more attention from
researchers. Due to their advantages of simplicity and efficiency, intelligent optimization algorithms
are receiving increasing attention. Compared with other algorithms, the black hole algorithm has
fewer parameters and a simple structure, which is more suitable for node location in wireless
sensor networks. To address the problems of weak merit-seeking ability and slow convergence
of the black hole algorithm, this paper proposed an opposition-based learning black hole (OBH)
algorithm and utilized it to improve the accuracy of the mobile wireless sensor network (MWSN)
localization. To verify the performance of the proposed algorithm, this paper tests it on the CEC2013
test function set. The results indicate that among the several algorithms tested, the OBH algorithm
performed the best. In this paper, several optimization algorithms are applied to the Monte Carlo
localization algorithm, and the experimental results show that the OBH algorithm can achieve the
best optimization effect in advance.

Keywords: opposition-based learning; black hole algorithm; mobile node localization; wireless
sensor network

1. Introduction

The wireless sensor network (WSN) is a distributed sensor network in which the
number of nodes can reach hundreds or thousands [1]. Different network topologies are
formed between nodes, and nodes can communicate with each other. The node is composed
of anchor nodes and common nodes [2]. The common node senses the external environment
through its hardware equipment, collects data, and transmits it to the anchor node. The
anchor node filters and fuses the data and sends the sorted data to the network owner
through the network. The network owner responds to the changes in the environment
based on the collected data. However, if the anchor node does not know the location of the
node sending the information, the received information is meaningless. Therefore, location
is not only a critical issue of wireless sensor networks but also the basis for the subsequent
operation of the network.

There are many algorithms to realize an unknown node location in WSN, such as
the DV-Hop algorithm, the APIT algorithm, and the centroid algorithm. The DV-Hop
algorithm was proposed by Niculescu et al. [3]. The main idea is to use the minimum
hop count and average hop distance between the unknown node and the anchor node to
replace the distance between the two. When the distance between the unknown node and
the other three anchor nodes is obtained, you can use the maximum likelihood method or
the trilateration method to solve the position of the unknown node. The APIT algorithm
was proposed by Tian He et al. [4]. The main idea is to continuously narrow the range of
the area where the unknown node is located according to whether the unknown node is in
the triangle area formed by three adjacent anchor nodes and to take the centroid position
of the finally locked area as the coordinates of unknown node. The centroid algorithm was
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proposed by Nirupama et al. [5]. This algorithm calculates the position of unknown nodes
through the connectivity of the network. For an unknown node, the algorithm uses the
anchor nodes around the unknown node as the polygon vertices of the unknown node and
calculates the centroid position of the polygon, and the obtained result is the coordinate of
the unknown node.

With the gradual maturity of mobile terminal and mobile internet technology, the
localization of mobile wireless sensor networks (MWSN) has become a new trend of
current wireless sensor networks and a hot research field of WSN [6]. The most significant
difference between MWSN and WSN is that the nodes constantly move. The mobility of
nodes can be used to increase the network coverage, improve the network scalability and
reliability, and also put forward new requirements for the location algorithm. Because the
network’s topology is constantly changing, MWSN requires that nodes can be dynamically
located. Otherwise, the location information of nodes will become invalid with time, and
MWSN will not be able to operate normally [7]. Many mobile node localization algorithms
have been proposed, such as particle filter algorithm and Monte Carlo localization (MCL)
algorithm [8].

The swarm intelligence algorithm [9] simulates the behavior of living things in
nature [10]. It is a group of algorithms with self-organization abilities and self-learning
abilities and has the characteristics of adaptability and parallelism. This algorithm has
fewer requirements for optimization problems, is simple to use, and is suitable for solv-
ing large-scale problems. In 1989, Gerardo Beni and Jing Wang [11] of the University of
California proposed the concept of "swarm intelligence". The basic principle is to simulate
the behavior of animal groups in nature and to take advantage of the cooperation and
communication between animal groups to achieve the optimization goal. Unlike algorithms
with complex internal designs, swarm intelligence algorithms are simple and have stronger
robustness and adaptability. Therefore, once the concept of swarm intelligence was pro-
posed, it attracted widespread attention. Standard swarm intelligence algorithms include
brain storm optimization (BSO) [12], particle swarm optimization (PSO) [13], the firefly
algorithm (FA) [14], the whale optimization algorithm (WOA) [15], grey wolf optimization
(GWO) [16], and the black hole (BH) algorithm [17], etc.

Metaheuristic search algorithms [18] are divided into the following four main cate-
gories: evolutionary algorithms, swarm intelligence algorithms, human-based algorithms,
and physics-based algorithms. Evolutionary algorithms are a class of optimization algo-
rithms based on the principles of biological evolution in nature, which are used to find
optimal or near-optimal solutions in the search space. Evolutionary algorithms mainly
include evolutionary programming (EP) [19], the genetic algorithm (GA) [20,21], genetic
programming (GP) [22], etc. Swarm intelligence algorithms are a class of optimization
algorithms based on the behavior of groups in nature, which achieve global search or
optimization problem solving by simulating the collaboration and cooperation among
individuals in a group. Swarm intelligence algorithms include particle swarm optimization
(PSO) [13,23], grey wolf optimization (GWO) [16,24,25], the whale optimization algorithm
(WOA) [15], etc. Human-based algorithms are a class of optimization algorithms based
on human behavior and cognition, which apply human intelligence and experience to
the process of problem-solving. Human-based algorithms include the Jaya algorithm
(JA) [26], human-inspired algorithm (HIA) [27], teaching-learning based optimization
(TLBO) [28], etc. Human-based algorithms can fully use human intelligence and experience
in practical applications and are particularly advantageous in complex, uncertain, and
multi-objective problems. Physics-based algorithms are a class of optimization algorithms
that mimic physical phenomena and principles of nature for problem-solving and opti-
mization. These algorithms usually achieve problem-solving or optimization by simulating
physical processes, mechanical laws, energy transfer, etc. These algorithms can achieve
global optimization by simulating the physical phenomena and laws of nature and have
strong robustness and global search capability in some cases. Physics-based algorithms
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mainly include the gravitational search algorithm (GSA) [29], the multi-verse optimizer
(MVO) [30], and the black hole (BH) algorithm [17], etc.

Mobile node localization problems usually involve searching for the location of ob-
ject nodes in complex spaces, such as locating the location of moving objects in three-
dimensional space. The search space can be very large and complex, and traditional exact
search methods are often not suitable. The metaheuristic search algorithm can efficiently
search in the complex search space by simulating the optimization process in nature. Mobile
node localization problems are usually performed in dynamic environments, where the
location of the target node may change with time and other factors. Metaheuristic search
algorithms are usually adaptive and can adjust search strategies in real time in dynamic
environments to adapt to changes in target locations. Metaheuristic search algorithms
are generally robust and adaptable and can cope with various uncertainties and noises.
In the mobile node localization problem due to the uncertainty of the environment and
nodes, such as noise, sensor error, communication interruption, etc., metaheuristic search
algorithms can usually find better solutions in these uncertainties.

Heuristic algorithms usually search in the search space through the population to
replace the solution process of the problem to be optimized. Individuals in the population
represent candidate solutions to the problem to be optimized, and the performance of
candidate solutions corresponds to fitness. Almost all heuristic algorithms simulate the
behavior patterns of creatures in nature or this natural phenomenon. The main idea of the
black hole algorithm is to find the optimal solution of the problem to be optimized in the
search space by simulating the black hole to attract the moving side of stars.

In this paper, we combine the BH algorithm and MCL algorithm to localize mobile
nodes in 3D WSN. The principle of the BH algorithm is simple, and there are few param-
eters. Using it to optimize the positioning of wireless sensor networks will not cause a
large burden on its memory. It is precisely because the BH algorithm only simulates the
phenomenon that the black hole attracts stars to move and does not balance the exploration
and development stages of the algorithm, resulting in weak optimization ability and slow
convergence speed of the algorithm. In order to overcome the defect of BH algorithm,
we propose an opposition-based learning black hole (OBH) algorithm. According to the
evolution degree of the population, OBH divides the population’s evolution into four
stages. It applies different opposite strategies to the population at different evolution stages.
At the same time, this paper uses an adaptive strategy [31] to determine the evolution
interval of the algorithm so that the population adopts a more accurate opposition-based
learning strategy (OBL).

This section describes the organizational structure of the article. Section 2 introduces
the basic principles of the BH and MCL. Section 4 introduces how to combine the reverse
learning strategy with the BH algorithm. In Section 5, this paper tests the OBH’s per-
formance and compares it with several swarm intelligence algorithms. Section 6 is the
experimental simulation part. Finally, the full text is summarized in Section 7.

2. Related Work
Monte Carlo Localization Algorithm

The MCL [32] algorithm was initially used in mobile robot localization, which is
divided into two stages: prediction and filtering. The key idea is to use a group of weighted
samples to represent the posterior distribution of the possible positions of robots. In the
prediction stage, the algorithm mainly relies on the position information of the robot in
the previous stage to predict the possible position of the robot after moving. However, the
uncertainty of the prediction position gradually increases when the robot continuously
moves, which makes the prediction of the robot’s position difficult. In the filtering stage, the
robot may observe landmarks with known positions during its movement, so the position
information of these landmarks can filter the wrong position information obtained in the
prediction stage.
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The localization of sensor nodes in MWSN differs significantly from that of mobile
robots. First, the active terrain of the robot is known, while the sensor nodes work in the
unknown terrain. Secondly, the robot can control its motion posture very well. The speed
and direction of motion are known. However, the sensor nodes rarely or almost never
control their movement, so it is difficult to obtain the speed and direction of movement.
The third difference is that the landmark information observed by the robot in the process
of moving is accurate, which can effectively assist the current robot in locating the position.
The sensor node only knows that the landmark information observed is within its radio
range, and the specific location information cannot be known. Finally, the computing
power of the robot is much higher than that of the sensor node. Because of the delay control
of the sensor network, the sensor node cannot perform large-scale complex computing.

Although the difference between the computing power and ranging accuracy of sensor
nodes and robot localization makes the positioning of sensor nodes more complex, the
network scale of wireless sensor network mobile node positioning is more significant.
Many nodes can share each other’s location information, which is beneficial to the mobile
positioning of sensor nodes.

In the localization of MWSN, the node leaves the previous location to reach the current
location. For the convenience of prediction, this paper assumes that the time is discrete,
and the node needs to be located in each time unit. Because the direction and speed of
node’s movement are unknown, the previous location information becomes more and more
inaccurate after the node moves. On the other hand, the observation value from the anchor
node in the sensor network can help us filter some false predicted locations. The samples
are independent of each other, and the weight of the samples is 0 or 1. Algorithm 1 shows
the pseudocode of MCL.

Algorithm 1 Monte Carlo localization algorithm

1: Initialization: Initialize the wireless sensor network. N is the node’s number, L0 = {set
of random locations in the deployment area}

2: Step: According to the node position Lt−1 obtained from the previous time unit and
the current observation value ot, calculate the node position Lt in the current time unit

3: while (size(Lt) < N) do

R =
{

li
t | li

t is selected from p
(

lt | li
t−1

)
, li

t−1 ∈ Lt−1, 1 6 i 6 N}. (1)

Rfitered =
{

li
t | li

t where li
t ∈ R and p

(
ot | li

t

)
> 0

}
. (2)

Lt = choose(Lt ∪ Rfittered , N). (3)

4: end while

lt is the possible location set of unknown nodes predicted at time t; ot represents
the observation of anchor nodes at time t; and p(lt | lt−1) represents the probability of
predicting the location of the node at time t− 1 according to the location of the unknown
node at time t− 1, with the formula shown in the Equation (4). p(lt | ot) represents the
probability that the current node is at lt according to the observation. Therefore, we could
take advantage of lt to predict the location distribution of nodes at time t and then filter the
impossible location according to ot. Finally, the possible position distribution of N samples
Lt is obtained. The filter distribution on each time unit needs to be calculated. The set of
N samples Lt represents the final position distribution of the node. The MCL calculates
recursively in each time unit, and Lt−1 represents all previous observations. Therefore, the
results can be obtained only using Lt−1 and ot.
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p(lt | lt−1) =

{
1

πv2
max

if d(lt, lt−1) < Vmax

0 if d(lt, lt−1) ≥ Vmax
. (4)

As the anchor node moves in Figure 1, the unknown node in region A will not be
detected by it, the unknown node in region B will enter the detection range of the anchor
node, and the unknown node in region C will always be in the detection range of the anchor
node. The node adjacent to the current anchor node can also convey similar information
about the approximate location of the unknown node.

Figure 1. The anchor node is at pos0 at time 0 and moves to pos1 at time 1.

If unknown nodes can be detected by anchor nodes, the distance between them is
within r. If unknown nodes are not directly monitored by the anchor node but can be
monitored by the neighbor of the anchor node, the distance between them is within [r, 2r].

Therefore, if the unknown node l is not in the monitoring region of the anchor nodes
T but in the detection region of the neighbor nodes N, anchor node S can directly monitor
l, the location of the unknown node can be filtered according to the following formula:

f ilter(l) = d(l, S) ≤ r ∧ d(l, N) ≤ r ∧ r < d(l, T) ≤ 2r. (5)

3. Background
Black Bole Algorithm

Black holes are celestial bodies that exist in nature and constantly attract objects around
them. In terms of the horizon of the black hole, also known as the radius of the black hole,
once an object enters it, it will never escape. The BH algorithm is based on this characteristic
of black holes. The individuals in the BH [33] algorithm are called stars, and the optimal
solution is called a black hole. The radius of the black hole is calculated as follows:

R =
fBH

∑N
i=1 fi

. (6)

Here, fBH is the fitness of the black hole, fi is the fitness of the i-th star, and N is
the population size. When the black hole attracts the stars around it, the position update
formula of the stars is as follows:

pi(t + 1) = pi(t) + rand× (pBH − pi(t)) i = 1, 2, . . . , N. (7)

pi(t) is the position of the i-th star at iteration t, pBH is the position of the black hole in
the population at iteration t, and rand is a random number between 0 and 1.

The black hole will devour the stars entering its radius. In order to keep the number
of populations unchanged, a new star will be randomly generated. If no new individuals
are regenerated after the black hole devours the star, the population will drop sharply in
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the later stage of the algorithm because the black hole continues to devour the star. At this
time, a small number of individuals cannot undertake the task of exploring and developing
the search space, which will seriously affect the final performance of the algorithm.

A pseudocode of the BH algorithm is shown in Algorithm 2, which shows that the BH
algorithm has a simple process and few parameters, which is more suitable for wireless
sensor network localization applications.

Algorithm 2 Black Hole algorithm

1: Initialization: Generate individuals randomly
2: while (t < MaxGeneration) do
3: Calculate the fitness of the population on the test function set
4: Select black hole individuals according to fitness
5: Move individuals in the population according to the Equation (6)
6: If the fitness of individual after moving is better than that of the black hole, it will

become a new generation of black holes
7: The star entering the radius of the black hole is swallowed by it, and the algorithm

will randomly generate a new star.
8: t = t + 1
9: end while

4. Opposition-Based Learning Black Hole Algorithm

The OBL strategy [34] is to improve the learning rate. The opposite operation can fully
explore the search space, quickly find a promising region, and accelerate the population
toward global optimization.

Define x as an individual in the population. Assume that the upper and lower bounds
of x are a and b, respectively. The reflective opposition of x is as follows:

xo = a + b− x. (8)

The relationship between x, xo, a, and b is shown in the Figure 2.

Figure 2. c is the midpoint of the interval [a, b], and xo is the opposite point of x.

Divide the interval in Figure 2 to obtain the other three kinds of opposition about x,
namely, xqo (quasi-opposition of x), xso (super-opposition of x), and xqr (quasi-reflective
opposition of x), which are calculated by the following formula:

xqo = rand(c, xo), (9)

xso =

{
rand(xo, b), x < c
rand(a, xo), x ≥ c

, (10)

xqr = rand(x, c). (11)

Figure 3 clearly shows the four opposition forms of x on the interval [a, b]:
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Figure 3. xno, xqo, xso, and xqr are near opposition, quasi opposition, super opposition, and quasi
reflective opposition of x, respectively.

Further observation of Figure 3 shows that no opposition rule is defined on the interval
[a, x]. Through experiments, this paper finds that it is necessary to further explore the
interval [a, x]. There will also be promising points on this interval, which can considerably
improve individual performance and help break away from local optimization. Therefore,
we propose a new opposition rule called near opposition (xno), which is defined on the
interval [a, x].

In the opposition strategy, parameter Jr represents the probability of the individual
being the opposite. If the value of Jr is too large, the opposite individuals will be generated
frequently, which makes the population repeat the opposite operation in the search space,
wasting time in evaluating the fitness function. If Jr is too small, the number of opposite
individuals generated is too small to explore the unknown area fully. In this paper, the
initial value of Jr is 0.8, eventually reaching 0.4 as the iteration gradually decreases.

The evolution process of the population can be divided into four states, namely,
exploration [35], exploitation, convergence, and jumping out. Exploration and development
are essential parts of the swarm intelligence algorithm. It is an essential condition for the
algorithm to realize intelligence. Exploration refers to the group searching for promising
areas in the search space. In contrast, exploitation [36] refers to the full development of
promising areas to find the best performance position in the area. Too much exploration
will increase the randomness of the algorithm, while too much exploitation will reduce the
randomness of the algorithm. Exploration and exploitation are critical to the algorithm, so to
make the algorithm achieve better performance, we need to balance the two. Convergence
means that the current population has found a better global optimal value. At this time,
all individuals in the population are close to the new global optimal value. Jumping out
means that the current population has fallen into the local optimal value but found a better
performance position in the latest evolution. However, this position is relatively far from
the local optimal position. At this time, all individuals in the population are close to the
better-performance individuals, which is jumping out of state.

Since the population is divided into four states, determining the state of the popu-
lation becomes very important. Obviously, the average distance between individuals in
a population is a good criterion for judging the state. The average distance between all
individuals and the i-th individual is calculated using the following formula:

di =
1

N − 1

N

∑
j=1,j!=i

√√√√ D

∑
k=1

(
xk

i − xk
j

)2
. (12)

D represents the dimension that the individual has, and K represents a certain dimen-
sion of the individual. The average distance between the globally optimal individual and
the other individuals is the smallest under the convergence state because individuals in the
population only surround the global optimal individual. The average distance is the largest
when jumping out because the global optimal individual may be far away from other
individuals in the population. This paper lets dg represent the average distance between
all individuals and the globally optimal individuals. The maximum value dmax represents
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the average distance between individuals and others in the group, and dmin represents the
minimum value.

µSa( f ) =


0, 0 ≤ f ≤ 0.4
5× f − 2, 0.4 < f ≤ 0.6
1, 0.6 < f ≤ 0.7
−10× f + 8, 0.7 < f ≤ 0.8
0, 0.8 < f ≤ 1.

(13)

µSb( f ) =


0, 0 ≤ f ≤ 0.2
10× f − 2, 0.2 < f ≤ 0.3
1, 0.3 < f ≤ 0.4
−5× f + 3, 0.4 < f ≤ 0.6
0, 0.6 < f ≤ 1

(14)

µSc( f ) =


1, 0 ≤ f ≤ 0.1
−5× f + 1.5, 0.1 < f ≤ 0.3
0, 0.3 < f ≤ 1

(15)

µSd( f ) =


0, 0 ≤ f ≤ 0.7
5× f − 3.5, 0.7 < f ≤ 0.9
1, 0.9 < f ≤ 1

(16)

Equations (13)–(16) describe the fuzzy membership functions of exploration, develop-
ment, convergence, and jump-out stages, respectively. The following formula can show the
evolution factor f judging the population state:

f =
dg − dmin

dmax − dmin
∈ [0, 1]. (17)

During the iteration, the population is in the exploration stage, and f is at a significant
value. As the iteration progresses, the population enters the exploitation stage, and f starts
to decrease gradually until the population enters the convergence state, and f also reaches
the minimum value. Once the algorithm finds a better individual in another location, the
population enters the jumping state, and f increases sharply until the population enters
the convergence state again. Many test results have proved a specific range of intersection
between each interval. Figure 4 clearly describes how the evolution factor f describes the
state of the population.

The transition rule between states is S1⇒ S2⇒ S3⇒ S4⇒ S1. Assuming that f is
currently in the crossing interval of S1 and S2 and the previous state is S4, it can be seen that
the current population has entered the exploration state. After knowing the evolution state
of the current population, we can take corresponding opposite strategies for the population
at the appropriate time. This method of obtaining the population state according to the
population evolution factor f and then adopting different strategies for the population is
also called an adaptive strategy.

When the algorithm encounters a deceptive location, the global optimal individual
will always hover at that location, making the algorithm always explore a worthless area,
wasting much fitness evaluation times. In order to make the OBH algorithm take advantage
of the optimization opportunities as much as possible and avoid the endless exploration
and development in the worthless areas, this paper will use Levy flight to accelerate the
particles to jump out of the local optimal. Levy flight is a unique random walk, meaning an
individual can advance any distance. Figure 5 shows the step size of the Levy flight, each
line segment represents a random walk of the individual.
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Figure 4. Fuzzy membership functions for the four evolutionary states.

Figure 5. Step size of Levy flight.

It can be seen that the Levy flight has a significant probability of being of a large step
size. When an individual falls into a local optimum, the Levy flight can be used to let
the individual jump out of the current position and find a new optimal position through
a large step size. Moreover, the Levy flight not only helps individuals jump out of the
local optimum but also allows individuals to move forward at a significant pace in the
exploration stage and to find promising areas in the whole search space as soon as possible
after exploration.
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In order to avoid the profound negative impact on the population caused by the elite
individuals trapped in the local optimal, this paper introduces several elite individuals to
the OBH algorithm. At the same time, we found that the BH algorithm did not fully use the
achievements of previous generations of individuals in the search space, so we introduced
the inertia weight ω in the algorithm to use the current population information fully. The
experiments show that the two improved methods can improve the algorithm’s perfor-
mance. The following is the position update formula of individuals in the OBH algorithm:

p(t + 1) = p(t) + ω× rand× (BH1− p(t) + BH2− p(t) + BH3− p(t)). (18)

The flow of the OBH algorithm is described in Algorithm 3. At each iteration, the
population is moved according to the evolutionary logic of the black hole algorithm. Then,
the population will be sorted according to fitness. In order to retain more useful information
in the population, this paper retains the best k elite individuals in the population. In order
to perform reverse operations on the remaining individuals, it is necessary to calculate
the evolutionary state of the current population. Finally, according to Jr and population
evolution status, corresponding opposite operations are generated for individuals and their
fitness is evaluated.

Algorithm 3 OBH algorithm.

1: Initialization: popsize, Dimension D, max_iter, Jump Rate Jr, The optimal number of
individuals to be reserved k

2: while (t < MaxGeneration) do
3: for i = 1; i <= popsize; i ++ do
4: Calculate the fitness of the population on the test function set
5: Select black hole individuals according to fitness
6: Update the population location according to the Equation (18)
7: If the performance of an individual after moving is better than that of a black

hole, it will become a new generation of black holes
8: end for
9: Sort the population after one iteration and keep the top k individuals

10: Calculate the average distance according to the Equation (12)
11: Calculate population evolution factor f according to the Equation (17)
12: Judge the state of population according to the previous state of the population and

f
13: for i = k + 1; i <= popsize; i ++ do
14: Generate a random number p
15: if p ≤ Jr then
16: Generate corresponding opposite individuals according to the current state

of the population
17: Evaluate the individuals after opposition. If the performance is better than

the global optimal solution, it will become the new generation of black hole
18: end if
19: end for
20: t = t + 1
21: end while

Algorithm 4 describes how to select the appropriate opposite rule for individuals
according to the current evolutionary state of the population. It is worth noting that the
probability of imposing reverse rules on individuals is not fixed and needs to be constantly
adjusted. At the same time, individuals with low fitness gain more benefits from severe
reverse operations than individuals with high fitness.
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Algorithm 4 Reverse rules.

1: Initialization: population evolution factor f , individual x
2: When the population is in the exploration state, it reduces the probability of xno of the

population while increasing the probability of xso of the population.
3: When the population is in a converged state, it reduces the probability of xso of the

population while increasing the probability of xno of the population.
4: When the population is in the development state, the probability of xno and xqr of the

population can be appropriately increased, otherwise the probability of xqo and xqr of
the population can be appropriately increased.

f itness(i) =
N

∑
i=1

√√√√ D

∑
d=1

(RPos(d)−VPos(d))2. (19)

Equation (19) describes the fitness function when OBH optimizes MCL, where D is the
dimension of the individual and N is the number of unknown nodes. The OBH algorithm
is used to optimize the approximate position VPos of the unknown node obtained by
MCL positioning and to finally obtain a more accurate position RPos of the unknown
node. Therefore, it is necessary to take VPos as the input and output the optimized precise
position RPos as the result. Since this is a simulation experiment, the real positions of
unknown nodes are known. When OBH optimizes MCL, the fitness function is the sum of
the distances between the approximate positions of all nodes and the real positions.

For swarm intelligence algorithms, the number of fitness evaluations is a precious
resource. In the OBH algorithm, each individual may perform multiple fitness evaluations
during each iteration. The opposite individuals generated must also be evaluated. There-
fore, in order to ensure that the total number of fitness evaluations remains unchanged, we
need to reduce the number of iterations of the algorithm.

Fitness evaluation is the most time-consuming operation in the algorithm, so when
calculating the time complexity of the algorithm, the number of fitness evaluations should
be used as a measure. The time complexity of calling the BH algorithm each time is
O(N ∗ T), where N is the size of the population and T is the number of iterations each
time. The Levy flight is added to the OBH algorithm. Since the Levy flight will not
increase the number of fitness evaluations of the algorithm, it will not cause an increase in
the complexity of the algorithm. When judging the evolutionary state of the population,
there is a N ∗ N ∗ D cycle in the algorithm, where D is the dimension of the individual,
but judging the evolutionary state of the population will not perform fitness evaluation,
so it will not significantly increase the running time of the algorithm. When the opposite
operation is performed on the individual, the fitness function will be evaluated. In order to
ensure that the number of fitness evaluations of the OBH algorithm is consistent with that
of the BH algorithm, the total number of iterations of the OBH algorithm will be reduced
accordingly. Therefore, the time complexity of the OBH algorithm is also O(C ∗ N ∗ T),
and C is a number less than 2. According to the above discussion, compared with the
performance improvement brought by the OBH algorithm, the increased running time of
the OBH algorithm is acceptable.

5. Experimental Analysis of Algorithm

This section first illustrates the improvement in the OBL strategy to the BH algorithm
by comparing OBH with BH. Then, OBH is compared with other first-class swarm intelli-
gence algorithms to highlight the outstanding performance of the OBH algorithm. At the
end of this section, this paper analyzes the algorithm’s convergence through the fitness
function curve. All algorithms in this section are tested on the CEC2013 test function set.
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5.1. Comparison between OBH Algorithm and BH Algorithm

This section first uses Friedman’s test [37] to verify the improvement in the OBL
strategy on the BH algorithm. Friedman’s test can give a score to the algorithm. The
algorithm with excellent performance has the lowest score. The experimental results are
shown in the following table:

As seen from Table 1, in terms of score, the performance of the OBH algorithm is much
better than BH. Compared with BH, the OBH performance is improved by 49%.

Table 1. Friedman’s on OBH and BH algorithms.

Algorithm OBH BH

Score 1.8214 (<) 3.5714

Next, the results of the OBH and BH algorithms are measured at a significant level
at α = 0.05 under Wilcoxon’s signed rank test. When BH performs better than OBH,
it is represented by >, < represents the opposite meaning, and = represents the same
performance for the two algorithms.

We can see from Table 2 that the BH algorithm only slightly outperforms the OBH
algorithm on the function f26. In the remaining 27 test functions, the performance of the
OBH algorithm is far better than that of the traditional BH algorithm, which shows that
the OBL strategy significantly improves the performance of the BH algorithm. The simple
logic of the BH algorithm makes it very suitable for application in various fields. If the
algorithm wants to effectively explore the space, exploit promising areas in the search
space, quickly move towards the current optimal position, and quickly jump out of the
local optimal, it is not feasible to rely on the simple logic of the BH algorithm alone. The
OBL strategy added to the algorithm can improve the learning rate of the BH algorithm.
In short, under the same number of iterations, the OBH algorithm can use the experience
gained more effectively and quickly to find a better solution. Even the deviation in the
process of optimization does not matter. Depending on the error correction mechanism
designed in this paper, the OBH algorithm can return to the correct direction in time and
find the global optimal position.

Table 2. Comparison of BH with the OBH.

Function BH OBH

f1 5.67 × 103 (<) −1.40 × 103

f2 3.00 × 107 (<) 1.49 × 106

f3 1.78 × 1014 (<) 7.80 × 108

f4 4.25 × 104 (<) 5.51 × 103

f5 5.56 × 102 (<) −1.00 × 103

f6 4.43 × 102 (<) −8.77 × 102

f7 2.00 × 104 (<) −7.00 × 102

f8 −6.79 × 102 (<) −6.79 × 102

f9 −5.77 × 102 (<) −5.80 × 102

f10 1.63 × 102 (<) −4.98 × 102

f11 −1.06 × 102 (<) −3.84 × 102

f12 5.57 × 100 (<) −1.99 × 102

f13 1.32 × 102 (<) −4.46 × 101

f14 4.09 × 103 (<) 3.67 × 102

f15 3.87 × 103 (<) 2.74 × 103

f16 2.02 × 102 (<) 2.01 × 102

f17 5.49 × 102 (<) 3.22 × 102

f18 6.95 × 102 (<) 5.23 × 102

f19 1.67 × 103 (<) 5.02 × 102

f20 6.10 × 102 (<) 6.09 × 102
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Table 2. Cont.

Function BH OBH

f21 1.64 × 103 (<) 1.01 × 103

f22 5.67 × 103 (<) 1.37 × 103

f23 5.80 × 103 (<) 4.11 × 103

f24 1.29 × 103 (<) 1.26 × 103

f25 1.41 × 103 (<) 1.36 × 103

f26 1.40 × 103 (>) 1.51 × 103

f27 2.31 × 103 (<) 2.14 × 103

f28 4.94 × 103 (<) 3.48 × 103

< / = / > 1/0/27

5.2. Comparison with Common Optimization Algorithms

To make the improvement in the algorithm more convincing, this paper chooses to
compare the OBH algorithm with five outstanding swarm intelligence optimization algo-
rithms, such as the bat algorithm (BA) [38,39], the beluga whale optimization (BWO) [40],
fish migration optimization (FMO) [41], snake optimization (SO) [42], and comprehensive
learning particle swarm optimization (CLPSO) [43]. The test data are presented in Table 3.

Table 3. Comparison of OBH with the BA, BWO, CLPSO, FMO, and SO.

Function BA BWO CLPSO FMO SO OBH

f1 −1.40× 103 = 2.16 × 104 < −1.40× 103 = −1.30× 103 = −1.40× 103 < −1.40× 103

f2 1.96 × 106 < 1.48 × 108 < 7.58 × 106 < 3.69 × 106 < 4.57 × 106 < 1.74 × 106

f3 1.80 × 108 > 2.72 × 1016 < 8.70 × 107 > 1.03 × 109 < 3.14 × 108 > 6.81 × 108

f4 6.06 × 104 < 6.35 × 104 < 3.95 × 104 = 4.02 × 104 = 2.69 × 104 < 5.29 × 103

f5 −9.99× 102 = 4.73 × 103 < −1.00× 103 > −1.00× 103 < −9.98× 102 < −1.00× 103

f6 −8.60× 102 = 4.58 × 103 < −8.93× 102 > −8.77× 102 = −8.63× 102 < −8.87× 102

f7 1.30 × 106 < 1.24 × 105 < −7.58× 102 > −6.28× 102 < −7.27× 102 > −6.96× 102

f8 −6.79× 102 < −6.79× 102 < −6.79× 102 < −6.79× 102 = −6.79× 102 < −6.79× 102

f9 −5.76× 102 < −5.76× 102 < −5.83× 102 > −5.78× 102 < −5.84× 102 > −5.81× 102

f10 −4.98× 102 < 2.06 × 103 < −4.91× 102 = −4.77× 102 = −4.75× 102 < −4.99× 102

f11 8.93 × 101 < 1.11 × 101 < −3.52× 102 < −2.54× 102 < −3.56× 102 < −3.82× 102

f12 3.17 × 102 < 1.72 × 102 < −1.78× 102 < −1.39× 102 < −2.26× 102 > −1.88× 102

f13 4.38 × 102 < 2.77 × 102 < −7.00× 101 > −3.17× 101 < −6.20× 101 > −5.58× 101

f14 3.17 × 103 < 4.38 × 103 < 1.70 × 103 < 4.23 × 103 < 9.47 × 102 < 3.50 × 102

f15 3.24 × 103 = 4.44 × 103 < 2.67 × 103 > 4.24 × 103 < 4.23 × 103 < 2.95 × 103

f16 2.02 × 102 < 2.02 × 102 < 2.02 × 102 < 2.02 × 102 < 2.02 × 102 < 2.01 × 102

f17 1.07 × 103 < 7.46 × 102 < 3.73 × 102 < 5.21 × 102 < 3.88 × 102 < 3.22 × 102

f18 1.18 × 103 < 8.40 × 102 < 5.42 × 102 = 6.16 × 102 < 5.40 × 102 < 5.25 × 102

f19 5.24 × 102 < 6.10 × 104 < 5.05 × 102 < 5.06 × 102 = 5.06 × 102 = 5.02 × 102

f20 6.10 × 102 < 6.10 × 102 < 6.10 × 102 < 6.10 × 102 < 6.09 × 102 > 6.09 × 102

f21 1.02 × 103 > 2.11 × 103 < 1.04 × 103 < 1.07 × 103 = 9.58 × 102 > 1.02 × 103

f22 5.18 × 103 < 5.68 × 103 < 3.32 × 103 < 5.80 × 103 < 2.20 × 103 < 1.35 × 103

f23 5.06 × 103 < 5.97 × 103 < 4.61 × 103 < 6.05 × 103 < 4.23 × 103 < 4.00 × 103

f24 1.31 × 103 < 1.30 × 103 < 1.25 × 103 > 1.26 × 103 > 1.25 × 103 > 1.26 × 103

f25 1.36 × 103 = 1.38 × 103 < 1.37 × 103 < 1.37 × 103 < 1.36 × 103 < 1.36 × 103

f26 1.47 × 103 < 1.44 × 103 > 1.40 × 103 > 1.44 × 103 > 1.43 × 103 > 1.46 × 103

f27 2.34 × 103 < 2.39 × 103 < 1.85 × 103 > 2.11 × 103 > 2.02 × 103 > 2.17 × 103

f28 5.96 × 103 < 5.65 × 103 < 3.55 × 103 < 3.49 × 103 < 3.76 × 103 < 3.39 × 103

< / = / > 2/5/21 1/0/27 10/4/14 3/7/18 10/1/17 −

On the 28 test functions of the CEC2013, the OBH algorithm outperformed BA on
21 functions and BWO on 27 test functions, and CLPSO outperformed OBH on only 10 test
functions, but on the remaining 14 functions, CLPSO performed worse than the OBH
algorithm. Compared with the FMO algorithm, the OBH algorithm performs better on
18 functions. The OBH algorithm performs better than SO on 17 functions and is inferior to
SO on only ten.
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The OBH algorithm performs better than many excellent swarm intelligence algo-
rithms, and the advantages of the OBL strategy will be further described in combination
with the fitness curve.

We selects nine functions in the test function set to demonstrate the convergence of the
algorithm in Figure 6. The performance of the other five algorithms is generally inferior to
OBH. Even if they can achieve the same effect as the OBH algorithm in a specific function,
the OBH algorithm can also find the optimal value faster than they can. We can see from
Figure 6 that the fitness curve of the OBH will decline rapidly at a certain time, which
shows that the jumping out of the local optimization mechanism designed for the OBH
algorithm in this paper highlights its power and benefits from the adaptive mechanism,
which can accurately judge the evolution state of the algorithm and select the appropriate
reverse strategy for the algorithm so that the algorithm can find the global optimization as
soon as possible.

(a) f11 (b) f14 (c) f16

(d) f17 (e) f18 (f) f20

(g) f22 (h) f23 (i) f28

Figure 6. Comparison results between OBH and six common optimization algorithms.

6. Application in Monte Carlo localization

This section applies the OBH algorithm to MCL and replaces the general algorithm in
Section 5.2 with several excellent algorithms to exploit the potential of the OBH algorithm
further, such as adaptive particle swarm optimization (APSO) [44], differential evolution
(DE) [45], GWO, and PSO. In each group of experiments, the number of nodes remained
unchanged, with a total of 200, and the number of anchor nodes gradually increased from
5 to 30.

Figure 7 shows the comparison results of the OBH algorithm and the other six intelli-
gent algorithms applied in MCL in a deployment area of 200 m× 200 m× 200 m. The y-axis
represents the mean value of positioning error. As the number of anchor nodes increases,
each population intelligence algorithm’s positioning accuracy significantly improves. The
average positioning accuracy of seven algorithms optimizing MCL are shown in Table 4.
The localization accuracy of the OBH algorithm is always the highest, which shows that
the positioning accuracy of this algorithm is the best of the seven algorithms.
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Figure 7. Comparison results in 200 m × 200 m × 200 m deployment area.

Table 4. In a deployment area of 200 m×200 m×200 m, the average positioning accuracy of seven
algorithms optimizing MCL.

Algorithm OBH APSO CLPSO DE GWO PSO SO

Mean value 1.130 1.672 1.775 1.761 2.001 1.681 2.490

To further verify the performance of the OBH algorithm, the deployment area of
the 3D experiment is further expanded to 400 m × 400 m × 400 m. Figure 8 shows the
comparison of the positioning accuracy of seven algorithms:

Figure 8. Comparison results in 400 m × 400 m × 400 m deployment area.

As seen from Figure 8, OBH is also the best among the seven algorithms in a larger
deployment area. Even if the number of anchor nodes in the deployment area is only five,
OBH can still effectively eliminate the interference of external error information, give full



Sensors 2023, 23, 4520 16 of 19

play to the power of the algorithm, and further improve positioning accuracy. With the
increased anchor node density, the OBH algorithm still maintains considerable advantages.
It can optimize the positioning results of the MCL algorithm to the greatest extent and
achieve the best results in the seven population intelligence algorithms.

The average positioning accuracy of seven algorithms optimizing MCL are shown
in Table 5. It can be seen that in the deployment area of 400 m × 400 m × 400 m, the
best positioning accuracy can be obtained by using OBH to optimize the unknown node
position obtained by MCL.

Table 5. In a deployment area of 400 m × 400 m × 400 m, the average positioning accuracy of seven
algorithms optimizing MCL.

Algorithm OBH APSO CLPSO DE GWO PSO SO

Mean value 3.366 6.922 6.961 6.919 7.191 6.923 7.312

When the increase in the deployment area leads to a decrease in the density of anchor
nodes, the available information transmitted by the anchor nodes in the network is very
small, and OBH can use this small amount of useful information to be optimized in the
search space. It can be seen that the approximate position of the unknown node obtained
by MCL positioning is passed to seven optimization algorithms for optimization, and OBH
can perform the best solution in the search space.

7. Conclusions

The BH algorithm has a simple structure and fewer parameters, making it more
suitable for wireless sensor network localization with limited memory and computing
power. However, the traditional BH algorithm performs generally and cannot stand out
among many swarm intelligence algorithms. In this paper, we combine the OBL strategy
and BH algorithm, and the OBH algorithm is proposed.

The OBH algorithm reduces the number of duplicate individuals as much as pos-
sible based on preserving the dominant individuals, fully uses the current population
information, and avoids wasting valuable fitness evaluation time. At the same time, an
adaptive strategy can accurately judge the evolution state of the population, formulate
the best OBL strategy for the algorithm, and significantly improve the performance of the
algorithm. To verify the improvement in the OBH algorithm, this paper compares five
excellent swarm intelligence algorithms with OBH, and the results show that the OBH
algorithm performs best among the six algorithms. Finally, this paper applies the OBH and
the other six algorithms to MCL. The simulation results show that the MCL positioning
accuracy optimized by OBH is the highest, which indicates that the performance of the
OBH algorithm is first class.

Compared with the BH algorithm, the performance improvement in the OBH algo-
rithm is very obvious, but it comes at a price. At each iteration, the algorithm calculates the
evolutionary state of the population and operates oppositely, which increases the runtime
of the algorithm. In a certain period of time, there are populations and opposite populations
in the algorithm at the same time, which also increases the demand for memory resources
from the sensor nodes to a certain extent.

It is inevitable that the opposite operation will increase the runtime of the algorithm,
but we can reduce the memory resource requirements of the algorithm through the compact
strategy. The compact strategy uses the probability distribution to simulate the population,
so the algorithm only needs to maintain the parameters of the probability distribution, and
the updating of the parameters replaces the updating of the population, which will greatly
reduce the memory requirements of the algorithm. Therefore, if we want to reduce the
burden of sensor node memory, using the compact strategy to improve will be the focus of
future work.
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OBL Opposition-Based Learning
BA Bat Algorithm
BWO Beluga Whale Optimization
FMO Fish Migration Optimization
SO Snake Optimization
CLPSO Comprehensive Learning Particle Swarm Optimization

References
1. Singh, S.; Shivangna; Mittal, E. Range based wireless sensor node localization using PSO and BBO and its variants. In Proceedings

of the 2013 International Conference on Communication Systems and Network Technologies, Gwalior, India, 6–8 April 2013;
IEEE: Piscataway, NJ, USA, 2013; pp. 309–315.

2. Sharma, V.; Patel, R.; Bhadauria, H.; Prasad, D. Policy for planned placement of sensor nodes in large scale wireless sensor
network. KSII Trans. Internet Inf. Syst. (TIIS) 2016, 10, 3213–3230.

3. Niculescu, D.; Nath, B. Ad hoc positioning system (APS). In Proceedings of the GLOBECOM’01. IEEE Global Telecommunications
Conference (Cat. No. 01CH37270), San Antonio, TX, USA, 25–29 November 2001; IEEE: Piscataway, NJ, USA, 2001; Volume 5,
pp. 2926–2931.

4. He, T.; Huang, C.; Blum, B.M.; Stankovic, J.A.; Abdelzaher, T. Range-free localization schemes for large scale sensor networks.
In Proceedings of the Proceedings of the 9th Annual International Conference on Mobile Computing and Networking, San Diego,
CA, USA, 14–19 September 2003; pp. 81–95.

5. Bulusu, N.; Heidemann, J.; Estrin, D. GPS-less low-cost outdoor localization for very small devices. IEEE Pers. Commun. 2000,
7, 28–34. [CrossRef]

6. Amundson, I.; Koutsoukos, X.D. A survey on localization for mobile wireless sensor networks. In Proceedings of the Mobile
Entity Localization and Tracking in GPS-less Environnments: Second International Workshop, MELT 2009, Orlando, FL, USA,
30 September 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 235–254.

7. Zhou, S.; Wu, M.Y.; Shu, W. Finding optimal placements for mobile sensors: Wireless sensor network topology adjustment.
In Proceedings of the IEEE 6th Circuits and Systems Symposium on Emerging Technologies: Frontiers of Mobile and Wireless
Communication (IEEE Cat. No. 04EX710), Shanghai, China, 31 May–2 June 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 2,
pp. 529–532.

8. Dellaert, F.; Fox, D.; Burgard, W.; Thrun, S. Monte carlo localization for mobile robots. In Proceedings of the Proceedings 1999
IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C), Detroit, MI, USA, 10–15 May 1999; IEEE:
Piscataway, NJ, USA; 1999; Volume 2, pp. 1322–1328.

9. Pan, J.S.; Hu, P.; Snášel, V.; Chu, S.C. A survey on binary metaheuristic algorithms and their engineering applications. Artif. Intell.
Rev. 2022, 1–67. [CrossRef]

http://doi.org/10.1109/98.878533
http://dx.doi.org/10.1007/s10462-022-10328-9


Sensors 2023, 23, 4520 18 of 19

10. Chakraborty, A.; Kar, A.K. Swarm intelligence: A review of algorithms. In Nature-Inspired Computing and Optimization: Theory and
Applications; Springer International Publishing AG: Cham, Switzerland, 2017; pp. 475–494. [CrossRef]

11. Beni, G.; Wang, J. Swarm intelligence in cellular robotic systems. In Proceedings of the Robots and Biological Systems: Towards a New
Bionics? Springer: Berlin/Heidelberg, Germany, 1993; pp. 703–712.

12. Shi, Y. Brain storm optimization algorithm. In Proceedings of the Advances in Swarm Intelligence: Second International
Conference, ICSI 2011, Chongqing, China, 12–15 June 2011; Proceedings, Part I 2; Springer: Berlin/Heidelberg, Germany, 2011;
pp. 303–309.

13. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: Piscataway, NJ, USA; 1995; Volume 4, pp. 1942–1948.

14. Yang, X.S.; Slowik, A. Firefly algorithm. In Swarm Intelligence Algorithms; CRC Press: Boca Raton, FL, USA, 2020; pp. 163–174.
15. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
16. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
17. Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [CrossRef]
18. Ahmad, M.F.; Isa, N.A.M.; Lim, W.H.; Ang, K.M. Differential evolution: A recent review based on state-of-the-art works. Alex.

Eng. J. 2022, 61, 3831–3872. [CrossRef]
19. Schaffer, J.D.; Roebber, P.J.; Evans, C. Development and evaluation of an evolutionary programming-based tropical cyclone

intensity model. Mon. Weather. Rev. 2020, 148, 1951–1970. [CrossRef]
20. Zahir, A.M.; Alhady, S.S.N.; Wahab, A.; Ahmad, M. Objective functions modification of GA optimized PID controller for brushed

DC motor. Int. J. Electr. Comput. Eng. 2020, 10, 2426. [CrossRef]
21. Cao, Y.; Yin, K.; Zhou, C.; Ahmed, B. Establishment of landslide groundwater level prediction model based on GA-SVM and

influencing factor analysis. Sensors 2020, 20, 845. [CrossRef]
22. Mehr, A.D.; Nourani, V.; Kahya, E.; Hrnjica, B.; Sattar, A.M.; Yaseen, Z.M. Genetic programming in water resources engineering:

A state-of-the-art review. J. Hydrol. 2018, 566, 643–667. [CrossRef]
23. Sun, D.; Wei, E.; Ma, Z.; Wu, C.; Xu, S. Optimized cnns to indoor localization through ble sensors using improved pso. Sensors

2021, 21, 1995. [CrossRef] [PubMed]
24. Hou, Y.; Gao, H.; Wang, Z.; Du, C. Improved grey wolf optimization algorithm and application. Sensors 2022, 22, 3810. [CrossRef]

[PubMed]
25. Yue, Z.; Zhang, S.; Xiao, W. A novel hybrid algorithm based on grey wolf optimizer and fireworks algorithm. Sensors 2020,

20, 2147. [CrossRef]
26. Luu, T.V.; Nguyen, N.S. Parameters extraction of solar cells using modified JAYA algorithm. Optik 2020, 203, 164034. [CrossRef]
27. Wagan, A.I.; Shaikh, M.M. A new metaheuristic optimization algorithm inspired by human dynasties with an application to the

wind turbine micrositing problem. Appl. Soft Comput. 2020, 90, 106176.
28. Shukla, A.K.; Singh, P.; Vardhan, M. An adaptive inertia weight teaching-learning-based optimization algorithm and its

applications. Appl. Math. Model. 2020, 77, 309–326. [CrossRef]
29. Feng, Z.K.; Liu, S.; Niu, W.J.; Li, S.S.; Wu, H.J.; Wang, J.Y. Ecological operation of cascade hydropower reservoirs by elite-guide

gravitational search algorithm with Lévy flight local search and mutation. J. Hydrol. 2020, 581, 124425. [CrossRef]
30. Taser, A.E.; Guney, K.; Kurt, E. Circular antenna array synthesis using multiverse optimizer. Int. J. Antennas Propag. 2020,

2020, 1–10. [CrossRef]
31. Zhan, Z.H.; Zhang, J.; Li, Y.; Chung, H.S.H. Adaptive particle swarm optimization. IEEE Trans. Syst. Man. Cybern. Part B

(Cybernetics) 2009, 39, 1362–1381. [CrossRef]
32. Zheng, W.M.; Liu, N.; Chai, Q.W.; Chu, S.C. A Compact Adaptive Particle Swarm Optimization Algorithm in the Application of

the Mobile Sensor Localization. Wirel. Commun. Mob. Comput. 2021, 2021, 1–15. [CrossRef]
33. Chai, Q.W.; Zheng, J.W. Rotated black hole: A new heuristic optimization for reducing localization error of WSN in 3D terrain.

Wirel. Commun. Mob. Comput. 2021, 2021, 1–13. [CrossRef]
34. Omran, M.G.; Al-Sharhan, S. Using opposition-based learning to improve the performance of particle swarm optimization.

In Proceedings of the 2008 IEEE Swarm Intelligence Symposium, St. Louis, MI, USA, 21–23 September 2008; IEEE: Piscataway, NJ,
USA, 2008; pp. 1–6.

35. Mahmoodabadi, M.J.; Mottaghi, Z.S.; Bagheri, A. HEPSO: High exploration particle swarm optimization. Inf. Sci. 2014,
273, 101–111. [CrossRef]

36. Tilahun, S.L. Balancing the degree of exploration and exploitation of swarm intelligence using parallel computing. Int. J. Artif.
Intell. Tools 2019, 28, 1950014. [CrossRef]

37. Pereira, D.G.; Afonso, A.; Medeiros, F.M. Overview of Friedman’s test and post-hoc analysis. Commun. Stat.-Simul. Comput. 2015,
44, 2636–2653. [CrossRef]

38. Yang, X.S.; Hossein Gandomi, A. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput. 2012,
29, 464–483. [CrossRef]

39. Kim, J.; Yoo, Y. Sensor node activation using bat algorithm for connected target coverage in WSNs. Sensors 2020, 20, 3733.
[CrossRef]

40. Zhong, C.; Li, G.; Meng, Z. Beluga whale optimization: A novel nature-inspired metaheuristic algorithm. Knowl.-Based Syst. 2022,
251, 109215. [CrossRef]

http://dx.doi.org/10.1007/978-3-319-50920-4_19
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.ins.2012.08.023
http://dx.doi.org/10.1016/j.aej.2021.09.013
http://dx.doi.org/10.1175/MWR-D-19-0346.1
http://dx.doi.org/10.11591/ijece.v10i3.pp2426-2433
http://dx.doi.org/10.3390/s20030845
http://dx.doi.org/10.1016/j.jhydrol.2018.09.043
http://dx.doi.org/10.3390/s21061995
http://www.ncbi.nlm.nih.gov/pubmed/33808972
http://dx.doi.org/10.3390/s22103810
http://www.ncbi.nlm.nih.gov/pubmed/35632219
http://dx.doi.org/10.3390/s20072147
http://dx.doi.org/10.1016/j.ijleo.2019.164034
http://dx.doi.org/10.1016/j.apm.2019.07.046
http://dx.doi.org/10.1016/j.jhydrol.2019.124425
http://dx.doi.org/10.1155/2020/3149826
http://dx.doi.org/10.1109/TSMCB.2009.2015956
http://dx.doi.org/10.1155/2021/7260806
http://dx.doi.org/10.1155/2021/9255810
http://dx.doi.org/10.1016/j.ins.2014.02.150
http://dx.doi.org/10.1142/S0218213019500143
http://dx.doi.org/10.1080/03610918.2014.931971
http://dx.doi.org/10.1108/02644401211235834
http://dx.doi.org/10.3390/s20133733
http://dx.doi.org/10.1016/j.knosys.2022.109215


Sensors 2023, 23, 4520 19 of 19

41. Chai, Q.W.; Chu, S.C.; Pan, J.S.; Zheng, W.M. Applying Adaptive and Self Assessment Fish Migration Optimization on
Localization of Wireless Sensor Network on 3-D Te rrain. J. Inf. Hiding Multim. Signal Process. 2020, 11, 90–102.

42. Hashim, F.A.; Hussien, A.G. Snake Optimizer: A novel meta-heuristic optimization algorithm. Knowl.-Based Syst. 2022,
242, 108320. [CrossRef]

43. Mahadevan, K.; Kannan, P. Comprehensive learning particle swarm optimization for reactive power dispatch. Appl. Soft Comput.
2010, 10, 641–652. [CrossRef]

44. Liang, J.; Xu, X.; Dong, P.; Feng, T.; Guo, W.; Wang, S. Energy management strategy of a novel electric dual-motor transmission
for heavy commercial vehicles based on APSO algorithm. Sustainability 2022, 14, 1163. [CrossRef]

45. Wu, T.; Li, X.; Zhou, D.; Li, N.; Shi, J. Differential evolution based layer-wise weight pruning for compressing deep neural
networks. Sensors 2021, 21, 880. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.knosys.2022.108320
http://dx.doi.org/10.1016/j.asoc.2009.08.038
http://dx.doi.org/10.3390/su14031163
http://dx.doi.org/10.3390/s21030880
http://www.ncbi.nlm.nih.gov/pubmed/33525527

	Introduction
	Related Work
	Background
	Opposition-Based Learning Black Hole Algorithm
	Experimental Analysis of Algorithm
	Comparison between OBH Algorithm and BH Algorithm
	Comparison with Common Optimization Algorithms

	Application in Monte Carlo localization
	Conclusions
	References

