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Abstract- A new interconnection network for massively par- 
allel computing is introduced. This network is called an Op- 
tical Multi-Mesh Hypercube (OMMH) network. The OMMH 
integrates positive features of both hypercube (small diameter, 
high connectivity, symmetry, simple control and routing, fault 
tolerance, etc.) and mesh (constant node degree and scalability) 
topologies and at the same time circumvents their limitations 
(e.g., the lack of scalability of hypercubes, and the large diameter 
of meshes). The OMMH can maintain a constant node degree 
regardless of the increase in the network size. In addition, the 
flexibility of the OMMH network makes it well suited for opti- 
cal implementations. This paper presents the OMMH topology, 
analyzes its architectural properties and potentials for massively 
parallel computing, and compares it to the hypercube. Moreover, 
it also presents a three-dimensional optical design methodology 
based on free-space optics. The proposed optical implementation 
has totally space-invariant connection patterns at every node, 
which enables the OMMH to be highly amenable to optical 
implementation using simple and efficient large space-bandwidth 
product space-invariant optical elements. 

Index Terms-Hypercube, interconnection network, optical in- 
terconnect, parallel computing, scalability, space-invariance. 

I. INTRODUCTION 

T has become very clear that significant improvements in I computer performance in the future can only be achieved 

through exploitation of parallelism at all machine design 

levels [ 11. On the architectural side, communication among 

the elements of a high-performance computing system is 

recognized as the limiting and decisive factor in determining 

the performance and cost of the system [2], [3]. In recent 
years, there have been considerable efforts in the design 
of interconnection networks for parallel computers. Two of 

the most popular point-to-point interconnection networks for 
parallel computers today are the binary n-cube, also called the 

hypercube, and the mesh interconnection networks. Several 

companies, including NCUBE, Connection Machine Inc., FPS, 
Intel, and Ametek, are currently selling parallel machines 

based on the hypercube topology [ l ] .  In a binary n-cube we 

have N = 2" nodes each of degree n, where the degree of 

a node means the number of nodes directly connected to it. 

A node in this paper could be a processing element (PE), a 
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memory unit, or a switch. The attractiveness of the hypercube 
tQpology is its small diameter, which is the maximum number 

of links (or hops) a message has to travel to reach its final 

destination between any two nodes. For a binary n-cube 

network the diameter is identical to the degree of a node 

n = log,N. Each node is numbered in such a way that 
there is a one binary bit difference between any node and 

its log, N neighbors that are directly connected to it. This 

property greatly facilitates the routing of messages through 
the network. In addition, the regular and symmetric nature of 

the network provides fault tolerance. 
However, a major drawback of the hypercube network is 

its lack of scalability, which limits its use in building large 

size systems out of small size systems with little changes in 

the Configuration. Among important parameters of an intercon- 

nection network of a multicomputer system are its scalability 

and modularity [ 2 ] ,  [ 3 ] .  Scalable networks have the property 

that the size of the system (e.g., the number of communicating 

nodes) can be increased with minor or no change in the 

existing configuration. Also, the increase in system size is 

expected to result in an increase in performance to the extent 

of the increase in size. As the dimension of the hypercube is 

increased by one, one more link needs to be added to every 
node in the network. In addition to the changes in the node 

configuration, at least a doubling of the size is required for 
the regular hypercube network to expand and to remain as a 

hypercube. 

The second interconnection network that has been ex- 
tensively studied is the mesh. Mesh networks are easily 

implemented because of the simple regular connection and 

small number of links (four) per node. Due to the constant node 
degree, the mesh network is highly scalable. With a network 

size of N nodes, the minimal incremental size is approximately 

N1/' for the perfectly balanced network. However, the mesh 

network also suffers from a major limitation which is its 

large diameter (N1/' for an N-node network). Moreover, 

a relatively small portion of algorithms for scientific and 

engineering problems efficiently fits the mesh topology. 

On the technological side, optics, owing to its inherent 

parallelism, high spectral and spatial bandwidth, and low 

signal crosstalk, possesses the potential for a better solution 

to the communication problem in parallel and distributed 

computing [4]-[8]. Recent studies have shown that free-space 
optical interconnects provide far better communication band- 

width and power dissipation for sufficiently long connection 
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paths than possible with VLSI technology 191, [IO]. There 
have already been considerable efforts in designing optical 

interconnection networks [SI, [7], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 111-[16]. However, optical 

implementations of these networks often require the use of 

space-variant optics, which often results in low interconnection 

densities, and requires complex optical (active) components 

[ 171. The degree of space-variance determines the complexity 

and regularity of an interconnection network [17], 171. A to- 
tally space-invariant system has a very regular structure where 

all the nodes have the same connection patterns which conse- 

quently lower the design complexity. There is a fundamental 
trade-off between the space-bandwidth product (SBWP), the 

total degree of freedom in an optical interconnect (the space 

is considered the cross section area and the bandwidth is the 

highest spatial frequency handled by the system), and the 

degree of space-variance. A totally space-invariant system has 

minimal SBWP requirements, whereas a totally space-variant 

system has extensive SBWP requirements. Also, totally space- 

invariant systems are much easier to implement than totally 

space-variant systems. 

Motivated by these limitations, we have explored a novel 

network topology, called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOptical Multi-Mesh Hypercube 
(OMMH), which combines advantages of both the hypercube 
(small diameter, high connectivity, symmetry, simple control 

and routing, fault tolerance, etc.) and the mesh (constant 

node degree and scalability) topologies, while circumventing 

their disadvantages (lack of scalability of the hypercube, and 
large diameter of the mesh). We have also developed a three- 

dimensional (3-D) optical implementation for the OMMH. The 

distinctive advantages of the proposed design methodology 

include: 1) an efficient and scalable interconnection network, 

2) better utilization of the SBWP of optical imaging systems, 

3) full exploitation of the parallelism of free-space optics, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4) simple optical implementations because of the use of 
large SBWP space-invariant optical elements, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 )  cost-efficient 

implementations because the beams which will be directed 

orthogonal to the device plane would share the same set of 

imaging optics for interconnects, and consequently, the cost 

of the optical hardware would be shared by a large amount 
of communicating elements, and 6) compatibility with the 

emerging two-dimensional (2-D) optical logic and switching, 

and opto-electronic integrated circuit (OEIC) technologies. 
The rest of the paper is organized as follows. Section I1 

introduces the OMMH network and its architectural properties. 

Section I11 presents the proposed (3-D) optical implementation 

methodology. Section IV describes possible optical hardware 

and settings of the physical implementation of the OMMH 

network. Section V concludes the paper. 

11. OPTICAL MULTI-MESH HYPERCUBE NETWORKS 

A. Definition of OMMH Network 

An OMMH is characterized by a triplet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( l ,m,n), where 

1 represents the row dimension of a four-nearest-neighbor- 

connected mesh, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArn the column dimension of the mesh, and 

n the dimension of a binary hypercube. The total number of 

nodes in (l,rn,n)-OMMH is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 x m x 2". An address of a 

node consists of three components: (z,j, k ) ,  where 0 5 i < 
1,O 5 j < m, 0 5 k < 2*, and i , j , k  are integers. The 

first two components, i and j ,  represent the address of the 

node in a mesh, and the last component, k ,  represents the 

address of the node in a hypercube. Connection rules of the 

(1, m, n)-OMMH, for two nodes (Zl, j~,  k l )  and ( i z , j p ,  k z ) ,  
are as follows: 

There is a link, called a hypercube link, between 

two nodes if and only if (1) il = i p ,  and (2) j1 = j 2 ,  

and (3) kl and k2 differ by one bit position in their binary 

representation (Hamming distance of one). Connection rule 

1 generates 1 x m hypercubes with dimension n and these 

hypercubes are separated from each other until the following 

connection rule is applied. 

Rule 2 A link, called a mesh link, exists between two nodes 

if and only if ( I )  kl = kz and (2) two components, i and j ,  
differ by one in one component while the other component is 

identical. This rule generates 2" meshes with dimension 1 x m. 
If we neglect hypercube links made by rule I ,  the meshes 

generated by rule 2 are also separated from each other. The 

combination of both rule I and rule 2 connects hypercubes and 

meshes such that 1 x m nodes (one node from one hypercube) 

in the same positions of 1 x m hypercubes are linked together 

to form a mesh with dimension 1 x m. 
From the above connection rules, the interconnection func- 

tions 1181, denoted by ommh ( z , j ,  k )  where i, j ,  k are three 

address components of a node, of the (I, m, n)-OMMH net- 

work with the wrap-around mesh can be described as follows: 

Rule 1 

ommh,,(z , j ,k)  = ((i + 1)mod 1 , j , k )  
ommh,,( i , j ,k)  = ( ( I  + i - 1)mod 1. j . k )  
ommhm3( i , j , k )  = ( i ,  ( j  + 1)mod m , k )  
ommhm4( i , j ,  k )  = ( i ,  (m + j - 1)mod m, k )  
ommh cd  ( i , j ,  5-1 . . . kd+lkdkd-1 ' . ' k o )  = 
( Z , j ,  k,-l ' ' .  kd+lkdkd-l ... ko),  ford  = 0,1, . . ' ,  72- 1, 

whereknPl . ' . kd+lkdk&l . . ' kois 

representation of integer k. 
a binary 

The first four interconnection functions, ommh,, , ommh,, , 
ommh m 3 ,  and ommh,, , are for the four-nearest-neighbor con- 

nections including wrap-around connections and ommhCd, for 

d = 0, 1, . . . , n - 1, determines the hypercube interconnection. 

Fig. 1 shows a (4,4, 3)-OMMH interconnection where solid 

lines represent hypercube links and dashed lines represent 

mesh links. Small black circles represent nodes of the OMMH 

network which are, in this paper, abstractions of processing 

elements or memory modules or switches. Both ends of mesh 

links, dashed lines, are connected for wrap-around connections 

of the mesh if they have the same labels. The size of the 

OMMH can grow without altering the number of links per 

node by expanding the size of the mesh; for example, by 

adding three cubes on the perimeter of the mesh in Fig. 1. This 

feature allows the OMMH to be scalable. More discussion on 

the scalability issue will follow in Section 11-C. A (4,4,3)- 
OMMH consists of 4 x 4 x 23 = 128 nodes. It can be viewed 

as eight concurrent meshes where eight nodes having identical 

mesh addresses form one three-cube. Alternatively, it can be 

viewed as 16 concurrent three-cubes in which 16 nodes having 

identical hypercube addresses form a 4 x 4 mesh. The (4.4,3)- 
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Fig. I .  An example of the optical multi-mesh hypercube network: a (4.4.3)-OMMH (128 nodes) interconnection is shown. Two links with the same 
labels are connected for the wrap-aroundconnections of the mesh. Only few addresses are shown in the parenthesis for clarity. Solid lines represent 
hypercube connections and dashed linesmesh connections. 

OMMH in Fig. 1 looks like a three-cube-clustered 4 x 4 

mesh. 

An interesting isomorphic network is shown in Fig. 2. The 
same network is redrawn as a 4 x 4 mesh-clustered three- 

cube. Depending on the problems at hand, the OMMH can 
be configured as mesh-clustered hypercubes or hypercube- 

clustered meshes. This configuration flexibility is very suitable 

for MIMD (multiple instruction stream multiple data stream) 

mode of computation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOMMH Network Properties 

Message Routing in OMMH The distributed routing 

scheme for the OMMH network gives many alternative paths 
between any two nodes. For an ( I ,  m, n)-OMMH network, let 

the addresses of two arbitrary nodes S and T be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(zs,js, lcs) 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( i t , j t ,  k t ) ,  respectively, where O 5 i ,  < I ,  0 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAit < 1,0 5 
j ,  < m,O 5 j ,  < m,O 5 k,T < 2n ,  and 0 5 kt < 2". The 
message routing scheme from S to T is that of an n-cube 

network or that of an 1 x m mesh network or a combination 

of the two depending upon the relative locations of the nodes. 

1) Routing within a hypercube: if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis  = it and j ,  = j,, then 

S and T are within the same hypercube. The routing 

scheme for this case is exactly the same as that of the 

regular n-cube network [18]. 

2)  Routing within a mesh: if k,  = kt ,  then S and T are 
within the same mesh. The routing scheme for this case 

is exactly the same as that of the regular I x m mesh 

network [19]. 

3) Routing through meshes and hypercubes: if none of 

the above two cases is true, S and T share neither a 

hypercube nor a mesh. The routing scheme for this case 

is first to use the hypercube routing scheme until the 

message arrives at the same mesh where T resides, and 

then to use the mesh routing scheme for the message 

to arrive at T.  Or the mesh routing scheme can first be 

applied to forward the message to the same hypercube 

where T resides, and then the message can reach T 
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Fig. 2. 
are shown in the parenthesis for clarity. Solid lines represent hypercube connections and dashed lines meshconnections. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA (4,4,3)-OMMH interconnection network, another isomorphic view. Wrap-around connections of the mesh are omitted and only a few addresses 

using the hypercube routing scheme. We can also mix 

the hypercube and the mesh routing until the message is 

forwarded to the same hypercube or to the same mesh 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT resides, and then we can forward the message 

to T using the hypercube or the mesh routing scheme, 

respectively. 

The OMMH is less sensitive to performance degradation due 

to faults in links or nodes because the routing scheme in the 

OMMH has no preferred path, meaning all alternative paths 

have the same number of hops between any two nodes. This 

is an important advantage over other networks which have 

preferred paths such as Hypernet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 2 ] ,  Enhanced hypercube 

[20], or Extended hypercube [21]. 
Diameter and Link Complexity The distance between two 

nodes in a network is defined as the number of links connecting 

these two nodes. The diameter of a network is defined as the 

maximum of all the shortest distances between any two nodes. 

The diameter of the network is of great importance since it 

determines the maximum number of hops that a message may 

have to take. For two extreme cases, the diameter of a linear 

array with N nodes is ( N  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1) while that of a completely 

connected network is unity. An zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI x m four-nearest-neighbor 

mesh has diameter (L1/2] + Lm/2]) if the mesh has wrapped- 

around connections, otherwise zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 + m - 2). The diameter of 
a hypercube with N nodes is log,N. Thus, the diameter of 

(1, m, n)-OMMH is ( I  + m + n - 2) if the mesh does not have 

wrapped-around connections, otherwise (LZ/2J + Lm/2J + n). 
Link complexity or node degree is defined as the num- 

ber of links per node. The higher the link complexity, the 

greater is the hardware complexity and, consequently, the 

cost of the network. The node degree of a hypercube with 

N nodes is log,N and that of (1, m, n)-OMMH is (n  + 2 )  
or (n + 3) for outermost nodes, (n + 4) for inner nodes 

if the mesh does not have wrapped-around connections. An 

(E,m,n)-OMMH with the wrap-around mesh has (n  + 4) 

links at every node. N is equal to (1 x m x 2") if the 

hypercube and the OMMH have the same network size. 

A comparison of diameters should be accompanied by a 

comparison of link complexity, because a higher connectivity 
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Fig. 3. 
the OMMH when the two networks have the same number of nodes. 

Comparison of (a) diameter, (b) link complexity, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(c)  total number of links, and (d) normalized average message distance of the hypercube and 

resulting &om a higher link complexity is expected to lead 

to smaller diameters. Fig. 3(a) compares the diameters of the 

hypercube and the OMMH, where (16,16, n)-OMMH means 
the size of the mesh in the OMMH is fixed and the size of 

the hypercube in the OMMH is changed to have the same 

network size for comparison purposes. Similarly, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( I ,  m, 4)- 

OMMH implies the size of the hypercube in the OMMH is 

fixed and that of the mesh is changed. Fig. 3(b) compares 

link complexities or node degrees of the hypercube and the 

OMMH. It should be noted that (I, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArn, 4)-OMMH has constant 

link complexity over the network size. This feature enables 

OMMH network to be scalable; that is, the growth of the 

network size does not affect the link complexity. Fig. 3(c) 

depicts the growth of the total number of links in the network 

as the network size increases. For a network size of one 

million nodes, the hypercube network contains about 10.5 

million links while the (I, m, 4)-OMMH has about 4.2 million 

links and (16,16, n)-OMMH has approximately 8.4 million 

links. Since one link implies one physical path, electrical 

or optical, between two nodes, the OMMH network is cost- 

efficient compared to the regular hypercube network in terms 

of hardware requirement. 
The average message distance 

in a network is defined as the average number of links that a 

message should travel between any two nodes. It plays a key 

role in determining the queueing delay in a computer network 

[22]. In general, as the number of links per node increases, 

the average message distance decreases. In order to obtain a 

realistic comparison between different networks with different 

link complexity, some normalization should be made. For 

this purpose, it is assumed that the communication bandwidth 

available at a node is constant. As a consequence, the available 

communication bandwidth per link at a node decreases as 

the number of links at a node increases. In this context, the 

normalized average message distance was proposed as the 

average message distance multiplied by the number of links 

at the node [3]. This normalization is practical since, with no 
limits on the number of links, a completely connected network 

whose average message distance is unity could be designed. 

Thus, the above assumption is based on the fact that there are 

Communication ESJiciency 
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Fig. 4. (a) Normalized average message distance using threshold model with 8-link threshold when probability within the threshold is 0.9, 0.95, or 0.99. (b) 
Normalized average message distance using geometric distribution model with four-link wide region. Probability within each region is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.5, 0.6,0.7, 0.8, or 0.9. 

physical limitations in the number of pins and in the amount 

of power available to drive communication lines. Figure 3(d) 

plots the normalized average message distances against the 

network size of the hypercube and the OMMH, assuming that 

the message traffic is globally uniform; that is, the probability 

of a message being sent from any node to any other node 

is the same for all pairs of nodes. If the message traffic is 

globally uniform, the normalized average message distance of 

the OMMH with the fixed mesh size is no more than that of 

the regular hypercube. 

However, it seems reasonable to assume that an efficient 

and realistic multicomputer system will show much heavier 

traffic over short distances than over long communication 

paths since tasks which can be partitioned into smaller sub- 

tasks would usually be assigned to neighboring processors. 

To characterize the locality of messages in multicomputer 

systems, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThreshold Model and the Geometric Distribution 
Model have been suggested and used to show performance of 

computer networks [2 ,  31. The threshold model assumes that 

a fraction of all message destinations is uniformly distributed 

within some distance (threshold) of the source. The remaining 

destinations are uniformly distributed over the entire network. 

The geometric distribution model is defined as follows. For 

every source S, the nodes of the network are divided into 

regions RI ,  Rz, . . . of increasing distance from S. A fraction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p of all messages is destined for region RI of S,p  of the 

remaining messages go to region Rz, and so on, Within each 

region, the distribution is uniform. 

Fig. 4(a) shows the normalized average message distance 

of localized messages using the threshold model of eight- 

link threshold and Fig. 4(b) shows the the normalized average 

message distance using the geometric distribution model where 

each region is four-hop wide. We compare normalized average 

message distances of the hypercube and the (1, m, n)-OMMH 

when the two networks have the same number of nodes. With 

N nodes as the network size, the dimension of the hypercube 

is log,N and 1 x rn x 2" nodes in the OMMH must be 

equal to N .  The size of the mesh in the OMMH is chosen 

as square as possible. Fig. 4(a) indicates that as the message 

traffic becomes more localized, the network size within which 

the normalized average message distance of the (1 ,  m, 10)- 

OMMH is shorter than that of the hypercube increases, where 

( I ,  m, 10)-OMMH means that the size of the hypercube in the 

OMMH is fixed and the size of the mesh is changed to have the 

same network size. Fig. 4(b) reveals that, with the geometric 

message distribution model, the increase of the normalized 

average message distance of the OMMH with constant cube 

with respect to the growth of the network size is negligible 

(constant in the graph) while that of the hypercube grows 

logarithmically with respect to the network size. This implies 

that the OMMH can be scaled up with little increase in the 

normalized average message distance. 

C. Architectural Considerations 

Scalabilio Scalable networks have the property that the 

size of the system (e.g., the number of communicating nodes) 

can be increased with nominal change in the existing config- 

uration. Also, the increase in system size is expected to result 

in an increase in performance to the extent of the increase in 

size. As the dimension of the hypercube is increased by one, 

one more link needs to be added to every node in the network. 

In addition to the changes in the node configuration, at least 

a doubling of the size is required for the regular hypercube 

network to expand and remain a hypercube. This implies that 

the regular hypercube does not allow an incremental expansion 

of small sizes. Thus the regular hypercube network is not 
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I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

h 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 - Routing in Absence of Faults 
.."."+ Rerouting in Presence of Faults 

X Faulty Node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 5 .  Rerouting messages in the OMMH in the presence of a single fault. 

Fig. 6. , A model for 3-D optical interconnects. 

scalable according to the above definition. We should note 

that the regular hypercube network may be scalable at a 

greater coit. Moreover, it is not modular [2], [3]. The lack 

of scalability and modularity have limited the application 

of the hypercube topology to large-scale high-speed data 

transmission systems despite the many other advantages it 

possesses. 

This major limitation has motivated us to develop a new 

network topology that not only retains the many attractive 

properties of the hypercube network but also provides scala- 

bility. As can be seen in Fig. 3(b), the OMMH with a constant 

cube as a basic building block has a constant node degree, 

which means that the size of the OMMH is ready to be scaled 

up by expanding the size of the mesh without affecting the 

link complexity (number of links per node) of existing nodes 

as is the case in expanding the size of the hypercube network. 

However, we cannot just add one node to the OMMH. For 

an (l,m,n)-OMMH, we need to add at least 1 x 2" nodes 

(if 1 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm) to have perfectly balanced mesh. In addition, 

in Fig. 4(b), the normalized average distance of the OMMH 

under geometric message distribution remains constant as the 

network size grows. This implies that the OMMH can be 

scaled up without increasing the normalized average distance. 

On the contrary, the regular hypercube can only be scaled up 

with logarithmic increase in the normalized average distance. 

Fault Tolerance As the number of components in a system 

grows, the probability of the existence of faulty components 

increases. For a large-scale system, we cannot always expect 

that all components in such a system are free from failures. 

However, we need to expect such a system to continue to 

operate correctly in the presence of a reasonable number 

of failures. Due to the concurrent presence of meshes and 

hypercubes in the OMMH, rerouting of messages in the 

presence of a single faulty link or a single faulty node can 

easily be done with little modification of existing fault-free 

routing algorithms. 

In the OMMH, any single faulty link or any single faulty 

node can be bypassed by only two additional hops as long 

as that particular node is not involved in the communication, 

namely, the node is neither the source nor the destination for 

any message. This can be proved as follows. As discussed 

in Section 11-B-l), a message in the OMMH is routed using a 

mesh routing function if both the source and the destination of 

the message are in the same mesh subnetwork, or a hypercube 

routing function if those of the message are in the same 

hypercube subnetwork, or combination of these two routing 

functions if those of the message are neither in the same 

mesh nor in the same hypercube subnetwork. Consider the 

rerouting scheme in the presence of a single faulty link when 

the mesh routing function is being applied. When the message 

arrives at the node which is connected to the faulty link, it 

is forwarded to the neighboring mesh via one hop of the 

hypercube link (n such neighboring meshes exist in ( E ,  m, n)- 

OMMH.). By applying the mesh routing function, the message 

arrives at a node which is one hop (one hypercube link) away 

from the destination since the message has been routed in 
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COI,,J~) = *I, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 
(b) 

Fig. 7. Conceptual realization of a 3-D space-invariant five-cube network (a) the 32 nodes of the five-cube network are partitioned into two partitions 
with totally space-invariant connections between them, (b) a conceptual optical realization of the space-invariant five-cube network. The connections of 
two nodes, one from each plane, are shown as an example. The shift rule defines the amount of row-wise and column-wise shifts to be performed 
by the optical interconnect module. 

the neighboring mesh to detour the faulty link. Similarly, a 

single faulty link when the hypercube routing function is being 

applied can be bypassed by forwarding the message to the 

neighboring hypercube via a mesh link (four such hypercubes 

always exist in the OMMH). The rerouting scheme in the 

presence of a single faulty node is the same as that in the 

presence of a single faulty link but the message forwarding is 

done at the node located at one hop ahead of the faulty node. 

Thus, rerouting in the presence of a single faulty node or link 

can be done with two additional hops with little modification 

of the fault-free routing methods. 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 shows a rerouting scheme in the OMMH network in 

the presence of a single faulty node. Suppose that the source of 

a message is node a and the destination node f .  In the absence 

of faults, a message is forwarded from a to c by a hypercube 

routing scheme and from c to f by a mesh routing scheme. 

In the presence of a faulty node e, the message is forwarded 

to a neighboring mesh at node d which is one hop ahead 

of the faulty node. From g, the same mesh routing scheme is 

applied and when the message arrives at node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, it is returned to 

the original mesh where the final destination f belongs. Thus 
two additional hops are sufficient for rerouting the message to 

bypass the faulty node. 

111. OPTICAL IMPLEMENTATION OF OMMH NETWORK 

Recently there has been a great deal of interest in the 

application of optics as an interconnection medium for high- 

speed computing and parallel processing [4]-[8], [23]. One 
of the most promising approaches is the use of free-space 

optical interconnects as opposed to guidewave (e.g., fibers or 
waveguides based on polymers) because of their tremendous 

spatial parallelism [5] .  In this section, we first summarize a 

3-D totally space-invariant optical implementation method- 

ology of the hypercube network and, then, present a totally 

space-invariant implementation methodology of the proposed 

OMMH network. A model for 3-D optical interconnects used 

in this paper is shown in Fig. 6. 
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Fig. 8. (2.4.5)-OMMH embedding: (a) PlaneL (b) PlaneR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. 3-0 Space-Invariant Optical Implementation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
of Hypercube Networks 

The basic idea is derived from an observation that nodes in 

an interconnection network can be partitioned into two sets of 

nodes such that any two nodes in a set do not have a direct 

link. This is a well-known problem of bipartitioning a graph 

if the interconnection network is represented as a graph. For a 

binary n-cube, nodes whose addresses differ by more than one 

in Hamming distance can be in the same partition, since no link 

Plane, Legend: 
Big number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: Address in mesh 
Small number : Address in hypercube 

(b) 

exists between two nodes if their Hamming distance is greater 

than one. Besides bipartitioning the graph, we arrange the 

nodes in each partition onto the plane such that interconnection 

between two planes becomes space-invariant. 

A conceptual three-dimensional implementation of a five- 

cube (32 nodes) interconnection using the optical interconnect 

model is shown in Fig. 7. Fig. 7(a) illustrates the 3-D space- 

invariant embedding of a five-cube (32 nodes) network. All 

nodes on the left plane (PlaneL) (16 nodes) have the same 
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Fig. 9. Optical setup for the barrier synchronization. 

connection patterns to nodes on the right plane (Planed (16 

nodes). Since the links are bidirectional, all nodes on the right 
plane have the same exact connection patterns to the left plane. 

A number in a node on the plane represents the binary address 
of the corresponding node. Conceptual implementation of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3- 
D five-cube interconnection using the proposed model system 

is shown in Fig. 7(b). The required connections for a 3-D 
five-cube network are obtained by superimposing nine images 

of one plane onto the other plane (eight spatially shifted and 

one directly imaged onto the receiving plane). The amount of 
spatial shifts are *ld and f 3 d  in both horizontal and vertical 

directions where d is the size of a node, and the origin is 

taken to be the center of the plane. Recall that communication 

patterns from planer, to planeR are identical to those from 

planeR to planeL. The nine images are simultaneously incident 

on the receiving plane in which a receiving node gets five 

different optical signals representing the required hypercube 

connections. 

The construction of an arbitrary n-cube network is carried 

out incrementally by putting together two (n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1)-cube net- 

works, one of the two is column-wise or row-wise rotated 

version of the other. For more details, see [24] and [25]. The 

scheme in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[25] is used for the implementation of the OMMH 
network. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. 3 - 0  Space-Invariant Implementation of OMMH Networks 

3-D space-invariant optical implementation of the OMMH 
is derived in this Subsection. To facilitate the description of 

the embedding scheme, a few notations are defined below 

which have been used in [24] for the description of embedding 

space-invariant hypercube networks. 

The embedding scheme of the (1,7n, n)-OMMH using the 

model of Fig. 6 can be described as follows: 

1. Construct layouts (two layouts per hypercube, one for 
PlaneL and the other for PlaneR) of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI x m hypercubes 

with dimension n. 

column-wise - 
broadcast d Detector array 
mitor vector 

2. Place hypercube layouts in the above step as building 
blocks in a 2-D matrix form with 1 rows and m columns 

on each plane. 

3. Interchange the layout for PlaneL and the layout for 
PlaneR of hypercubes in every other row and in every 

other column. 

4. Separate each hypercube layout in the matrix by r empty 

rows and by c empty columns, where r = 0 , c  = 1 if 

n = 2 , r  = 1 , c  = 1 if n = 3, r = 1 ,c  = 3 i f n  = 
4, r = 3, c = 3 if n = 5, and r = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADT(n) - Dr(n - 3), 
c = Dc(n )  - Dc(n - 3) if n > 5 .  

Fig. 8 shows the 3-D implementation of (2,4,5)-OMMH 
network using the proposed construction algorithm (Fig. 8(a) 

corresponds to Planer, and Fig. 8(b) to PlaneR.). The required 
connections for the (1, m, n)-OMMH network constructed by 

the algorithm are as follows. Let d be the size of a node 
square. Shifts in the amount of f [ 2  x DT(n) - DT(n - 
3)] x d in row-wise direction and f [2  x Dc(n)  - Dc(n - 
3)] x d in column-wise direction accomplish the required 

connection for the four-nearest-neighbor links in the mesh. 

Shifts in the amount of f [ 2  x DT(n)  - DT(n - 3)] x (m - 
1) x d in row-wise direction and f [ 2  x D,(n) - Dc(n - 
3)] x ( I  - 1) x d in column-wise direction accomplish the 

required connection for the wrap-around links in the mesh. The 

shift rule for an n-cube, RowHc(n) and C o l ~ c ( n ) ,  generates 

required connection for the hypercube links. Thus the shift 
rule for an ( I ,  7n, n)-OMMH, denoted by R o w o ~ ~ ~ ( 1 ,  m, n) 
and CdOMMH(l, m, n), can be expressed as follows: 

ROWOI\.ZMH(~, m, n) = RowHc(~) ,  [2DT(n) - DT(n - 311, 

C O ~ O M M H ( ~ ,  m,n) = C O ~ H C ( ~ ) ,  [2Dc(n) - Dc(n - 311, 

x [2DT(n) - DT(n  - 3)] x (1 - 1) 

x [2Dc(n) - D,(n - 3)] x (m - 1) 

(1) 

As can be seen in Fig. 8, we can expand the size of the 

OMMH by adding more hypercube layouts used as basic 

PlaneL (or PlaneR) : A plane on which one of the two partitions of nodes is placed. 

n- (n )  (or Do,(n)) : the row (or column) dimension of the resulting n-cube on one plane. 
R o w ~ c ( n )  (or C o l ~ c ( n ) )  : the amount of row-wise (or column-wise) shifts to be performed 

by the optical interconnect module to realize an n-cube network. 
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Fig. 10. 
to nodes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(O,O,l), (0,0,4), (0,0,16), (I,O,O)is shown for clarity. 

A (2,4,5)-OMMH implementation using a space-invariant Fourier plane hologram: Only side view (rz-plane) for connections from node (O,O,O) 

building blocks along the perimeter of the mesh. The num- 

ber of shifts (number of fanouts) in the shift rule remains 
unchanged. If we use the OMMH with meshes having no 

wrap around connections, the amount of shifts in the shift rule 

does not change, either. This is very desirable feature because 

the optical interconnect module that generates the required 
number of shifts and the required amount of each shift remains 

unchanged even if the network grows in size. 

C. Optical Support for the Barrier Synchronization 

Architectural support for efficient process synchronization 

is an important aspect of the design of any MIMD multi- 

processor. Message-based synchronization primitives require 

minimal hardware support but they would not be appropri- 

ate in a massively parallel system since lots of messages 

(overhead) are required in such a system whenever a barrier 

is encountered. Barrier synchronization is a mechanism that 

guarantees that all processes have reached a specified point 
in their execution before any are allowed to proceed. In Fig. 

9, we present an optical setup which implements a barrier 

mechanism for fast synchronization. This setup could be used 

as a control subnetwork when the OMMH network is used 

in a massively parallel system. The source array could be a 

spatial light modulator illuminated by a laser where the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi- 
th row represents processor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPi and the j-th column represents 

barrier point bj .  In the detector array, the rows and the columns 

have the same meaning as those in the source array but the 

rows are numbered from bottom to top due to the image 

inversion. Let (Pi, b j )  denote a cell where 1:-th row and j -  
th column meet. Suppose that a logical 1 is coded as the 

presence of light and a logical 0 as the absence of light. For a 
given synchronization pattern, (Pi, b j )  is set to 1 if barrier 

point b j  is involved in the synchronization pattern and Pi 
is initiated. When Pi finishes its execution, (Pi, b 3 )  is reset 

to 0. Since the monitor vector is a row vector which is the 

column-wise logical OR (by cylindrical lens L1) of the source 

array, m j  is 0 only when all processors which need to be 

synchronized at barrier b j  finish their jobs. Now, the value of 

mj is broadcasted to all processors through cylindrical lenses 

Lz and L3 on the detector array. Processor Pi knows the 

time when all other processors reach the barrier point bj by 
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detecting when the value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(P;,hj) changes from 1 to 0. A 
similar electronic implementation can be found in Ref. [26] 
where wired-NOR logic is used. The above dynamic barrier 
synchronization is possible only if the synchronization pattern 

is predicted at compile time and process preemption is not 

allowed. However, as discussed in Ref. [26], the above scheme 
along with counting semaphores can support multiprogrammed 

multiprocessors where preemption is allowed. 

IV. OPTICAL HARDWARE REQUIRED 

There is a wide variety of optical components for accom- 

plishing the basic interconnect operations, including, lenslet 

arrays [27] multi-split lenses [28], off-axis lenses [13], mirror 

arrays [ 141, gratings [29], and holographic techniques [3O]. In 

order to illustrate the approach, we choose as a target network 

an OMMH network with five-cubes as basic building blocks 
(e.g., (Z,m,5)-OMMH where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 and m are integers) and will 

describe an optical module for its implementation. 

One particularly attractive approach for the realization of 

optical interconnects is the use of holographic optical elements 

(HOEs). HOEs offer high densities 104/cm2 for space-variant 

and as high as 108/cm2 for space-invariant interconnects using 

a single holographic element, while providing relatively low 

crosstalk. In addition, holographic approaches may be mass 

produced. 
One simple space-invariant Fourier plane hologram would 

realize the entire 3-D OMMH interconnection network [7]. An 

envisaged implementation with HOEs of an (2,4,5)-OMMH 

network, for example, is illustrated in Figure 10. In the figure 

only the side view (zz-plane) is shown for clarity and nodes 
in PlaneR are numbered from bottom to top because of image 

inversion due to the use of lenses. This figure illustrates how 

node (O,O,O) sends signals to node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(O,O,l), (0,0,4), (O,O, 16), 

and ( l ,O,O).  The light beam from a source is collimated by 
the lenslet array (LA1) and incident on the hologram through 

a Fourier transform lens (151). The hologram, in this case, is 

placed in the Fourier plane. The hologram splits and spatially 

shifts the incident beam. Multiple beams are then focused 

on the corresponding detectors for the required connections 
through another Fourier transform lens (L2) and a lenslet 
array (LA2). Since the hologram is not bidirectional, methods 

for providing bidirectional communications need to be used. 
A possible setup would be the use of the two orthogonal 

polarization states of light. The hologram can be recorded 

optically or can be a computer generated hologram. In either 

case, since the hologram is space-invariant, it is expected to 

be relatively simple to construct. 

V. CONCLUSION 

To overcome the lack of scalability in the regular hypercube 

networks, a new interconnection network topology, called an 
Optical Multi-Mesh Hypercube, is presented. The proposed 

network is a combination of hypercube and mesh topologies. 

The analysis and simulation results show that the new intercon- 
nection network is very scalable, meaning the configuration of 

the existing nodes is relatively insensitive to the growth of the 

network size, and more efficient in terms of communication. It 
is also shown that the new interconnection network is highly 

fault-tolerant. Any faulty node or link can be bypassed by only 

two additional hops with little modification of the fault-free 

routing scheme. Due to the concurrent existence of multiple 

meshes and hypercubes, the new network provides a great 
architectural support for parallel processing and distributed 

computing. In addition, a wide body of parallel algorithms 
that have been designed for the hypercube and the mesh 

interconnection are readily implementable on the proposed 

network. 

More importantly, the proposed network is highly amenable 

to optical implementations. A three-dimensional optical imple- 

mentation technique of the proposed network is provided. It 

is based on an efficient three-dimensional space-invariant im- 

plementation scheme for the regular hypercube. The proposed 

optical implementation technique for the new network results 
in totally space-invariant connection pattern at every node. 

Consequently, simple and cost-efficient optical implementation 

of the proposed network with existing optical hardware would 

be possible. 
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