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An optical neural chip for implementing complex-
valued neural network
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Complex-valued neural networks have many advantages over their real-valued counterparts.

Conventional digital electronic computing platforms are incapable of executing truly complex-

valued representations and operations. In contrast, optical computing platforms that encode

information in both phase and magnitude can execute complex arithmetic by optical inter-

ference, offering significantly enhanced computational speed and energy efficiency. However,

to date, most demonstrations of optical neural networks still only utilize conventional real-

valued frameworks that are designed for digital computers, forfeiting many of the advantages

of optical computing such as efficient complex-valued operations. In this article, we highlight

an optical neural chip (ONC) that implements truly complex-valued neural networks. We

benchmark the performance of our complex-valued ONC in four settings: simple Boolean

tasks, species classification of an Iris dataset, classifying nonlinear datasets (Circle and

Spiral), and handwriting recognition. Strong learning capabilities (i.e., high accuracy, fast

convergence and the capability to construct nonlinear decision boundaries) are achieved by

our complex-valued ONC compared to its real-valued counterpart.
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A
dvanced machine learning algorithms, such as artificial
neural networks1,2, have received significant attention for
their potential applications in key tasks such as image

recognition and language processing3–5. Notably, neural networks
make heavy use of multiply-accumulate (MAC) operations, causing
heavy computation burden in existing electronic computing hard-
ware (e.g., CPU, GPU, FPGA, ASIC). Application-specific devices
for executing MAC operations are preferred. Currently, the vast
majority of existing neural networks rely entirely on real-valued
arithmetic, whereas complex arithmetic may offer a significant
advantage. For instance, the detection of symmetry problem and
XOR problem can be easily solved by a single complex-valued
neuron with orthogonal decision boundaries, but cannot be done
with a single real-valued neuron6. Meanwhile, recent studies suggest
that complex-valued arithmetic7,8 would significantly improve the
performance of neural networks by offering rich representational
capacity9, fast convergence10, strong generalization11 and noise-
robust memory mechanisms12. Conventional digital electronic
computing platforms exhibit significant slowdown when executing
algorithms using complex-valued operations because complex
numbers have to be represented by two real numbers7,13, which
increases the number of MAC operations—the most frequently
used and computationally expensive component of the neural
network algorithms14,15. To overcome these hurdles, it has been
proposed that the computationally taxing task of implementing
neural networks be outsourced to optical computing16 which is
capable of truly complex-valued arithmetic.

Optical computing offers advantages like low power
consumption17,18, high computational speed19, large information
storage20, inherent parallelism21 that cannot be rivaled by its
electronic counterpart. Several optical implementations of neural
networks have been proposed. Among these technologies, pho-
tonic chip-based optical neural networks have become increas-
ingly mainstream for their high compatibility, scalability, and
stability. This platform has already achieved notable success in
demonstrating neuromorphic photonic weight banks22–24, all-
optical neural networks25,26 and optical reservoir computing27,28.
A classical fully connected neural network has been experimen-
tally demonstrated on an integrated silicon photonic chip29,30.
Although this optical chip is based on light interference, the
implemented neural network algorithms are real-valued, which
forfeits the benefits of complex-valued neural networks. A highly
parallelized optical neural network accelerator based on photo-
electric multiplication has been reported31,32, which is also
designed for real arithmetic because the optical signals had
already been converted to photocurrents before reaching the
accumulator. Other topics related to optical neural networks
include on-chip training33, optical nonlinear activations34–36 and
various neural network architectures37–39.

Besides optical computing platforms, analogue electronic devices,
as opposed to the more mainstream digital electronic devices, have
successfully demonstrated multilayer perceptrons40,41 and con-
volutional neural networks42. Complex-valued neural networks on
analogue electronic devices have already been explored in some
previous works43–45. In reservoir computing, complex-valued
reservoirs also contribute to enriched system dynamics and
improved performance46,47. However, few explorations have been
made in optical computing platforms for implementing general-
purpose and complex-valued neural networks despite the fact that
the optical neural networks are able to process information in
multiple degrees of freedom (e.g., magnitude and phase) by
complex-valued arithmetic and obtain more efficient information
processing and analysis48,49. Existing optical implementations have
not stepped into this potential flatland due to their reliance on
classical deep learning algorithms designed for real-valued arith-
metic on conventional electronic computers. These real-valued

optical neural networks are implemented solely using the intensity
information of the optical signals while discarding the phase
information, which forfeits a key benefit of optical computing.

We tackle these issues by proposing and experimentally realizing
an optical neural chip (ONC) that executes complex-valued arith-
metic, highlighting the advantages of chip-based complex-valued
networks by optical computing. This results in a complex-valued
neural network that integrates input preparation, weight multi-
plication and output generation in a single photonic chip. Mean-
while, previous complications of complex-valued networks—
cumbersome arithmetic on complex numbers—are alleviated by
directly realizing such operations through optical interference. We
experimentally benchmark our complex-valued ONC in multiple
practical settings including (a) realization of elementary logic gates,
(b) classification of Iris species, (c) classification of nonlinear
datasets (i.e., Circle and Spiral) and (d) handwriting recognition
using a multilayer perceptron (MLP) network, and compare its
performance with a similar on-chip implementation using real-
valued perceptrons. In all cases, our complex-valued ONC
demonstrates remarkable performance. In the elementary gate
realization, we illustrate the realization of several logic gates
including a nonlinear XOR gate by a single complex-valued neuron
—a task which is impossible for a single real-valued neuron. In Iris
classification, we obtain an accuracy of up to 97.4% in chip testing.
The nonlinear decision boundaries are visualized in the classifica-
tion of Circle and Spiral datasets. In the handwriting recognition
task, we achieve a testing accuracy of 90.5% using a 4 × 4 hidden
layer, being an 8.5% improvement over the real-valued counterpart.
Moreover, the performance gap persists when the encoding and
decoding modules are in intensity only—indicating that tour phase-
sensitive ONC exhibits operational advantage even for all real-
valued interfaces. Our results present a promising avenue towards
realizing deep complex-valued neural networks with dedicated
integrated optical computing chips, and potential implementations
of high dimensional quantum neural networks.

Results
Design and fabrication. Figure 1a shows the architecture of the
optical neural network, which is composed of an input layer,
multiple hidden layers and an output layer. In the complex-
valued architecture, light signals are encoded and manipulated by
both optical magnitude and phase during the initial input signal
preparation and network evolution. Figure 1b shows the sche-
matic of the ONC to implement complex-valued neural networks.
The input preparation, weight multiplication and coherent
detection are all integrated onto a single chip. A coherent laser
(wavelength 1550 nm) is used to generate the input signals. The
ONC is essentially a multiport interferometer, in which
Mach–Zehnder interferometers (MZIs) are arranged in a specific
manner50–52. Each MZI consists of two beam splitter (BS)–phase
shifter (PS) pairs. The transmissivity of the BS is fixed at 50:50,
and the PS is thermally modulated to tune the phase. In the
diagram, MZIs marked with different colours have different
functionalities. The coherent laser is coupled into the chip from
the bottom port. Input light division and modulation are realized
by the chain of MZIs marked in red. The green marked MZI
separates the reference light that will be used for coherent
detection. The on-chip light division makes sure that the light
signals propagating along different optical paths have the same
polarization and share a stable relative phase. The input mod-
ulation is dictated by the machine learning task. For tasks with
real-valued inputs, the light signals are modulated by the mag-
nitude, and the relative phases between different paths are set to
zero. For complex-valued inputs, the modulation includes both
magnitude modulation and path-dependent phase rotations. All
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light signals, as well as the reference light, are generated on chip
from a single coherent laser and are modulated by the same chain
of PSs. Stringent control is required over the phases of the light
signals, when implementing either complex-valued or real-valued
networks on the coherent chip. The integration of the light
division and modulation effectively avoids the possible phase
fluctuations which take place when coupling external light signals
to the chip.

After the input preparation, six light signals and a reference
light are available. Then, the light signals travel through the 6 × 6
optical neural network marked blue in Fig. 1b. An N-mode
network realizes the weight matrix multiplication by transform-
ing the input states into output states according to Sout=U(N)Sin.
U(N) is a N ×N unitary matrix that represents the product of
multiple rotation matrices {Tpq} and a diagonal matrix D, such

that U Nð Þ ¼
QN

p¼2

Qp�1
q¼1 TpqD, where the modulus of complex

elements on the diagonal of D equal to one, and Tpq is defined as
the N-dimensional identity matrix with the elements tpp, tpq, tqp
and tqq replaced by

tpp tpq

tqp tqq

" #

¼ iei
θ
2

eiϕsin θ
2 eiϕcos θ2

cos θ2 �sin θ
2

" #

ð1Þ

where θ is defined as the internal PS between two BSs and ϕ is the
external PS. An optical network with N inputs realizes an
arbitrary N ×N unitary weight matrices U(N) by adjusting the
tuneable PSs on the MZIs. Detection-based implementation of
activation functions are adopted in our demonstrations.

The MZIs marked in grey are used for on-chip coherent
detection. The output light signals of the optical chip contain
information in both magnitude and phase, while conventional
intensity detection techniques only access magnitude informa-
tion. Our integrated chip is capable of both intensity and coherent
detection. The goal of coherent detection is to determine the
phase angle ϕs between the reference light and signal light. By
connecting photodiodes at both outputs in a balanced way, the
obtained output current is II / 2AsAlcosϕs, where As and Al are
the respective magnitudes of the signal and the reference light.
Similarly, by adding a phase shift of π/2 to the reference light, the
output current is IQ / 2AsAlsinϕs. The ϕs is then determined
from the ratio of II and IQ, which also helps eliminate the physical
noise from the optical components. The choice of detection
method is determined by the activation function. Intensity
detection is naturally adopted for the activation function M(z)
= ||z||, meanwhile the coherent detection is adopted for the
activation function ModReLUðzÞ ¼ ReLUðjjzjj þ bÞeiθz . The

Fig. 1 The composition of complex-valued coherent optical neural network. a An optical neural network is composed of an input layer, multiple hidden

layers and an output layer. In our complex-valued design, the light signals are encoded and manipulated by both magnitude and phase during the initial

input preparation and network evolution. b The schematic of the ONC in implementing complex-valued networks. The input preparation, weight

multiplication and coherent detection are all integrated onto a single chip. The division and modulation of the light signals (i1–i6) are realized by the MZIs

marked in red. The green marked MZI separates the reference light that will later be used for coherent detection. The MZIs used to implement the 6 × 6

complex-valued weight matrix are marked in blue. The remaining grey marked MZIs are used for on-chip coherent detection. c The workflow of the ONC

system. A coherent laser at 1550 nm is used to generate signal light and reference light. The signal light on each path is modulated by its magnitude and

phase according to the machine learning (ML) task. The weighted sum operation is accomplished passively through light inference. The measurement

results are sent to the electrical interface for processing, including the application of activation function and the calculation of cost function. The ONC chip

are then reconfigured accordingly by the updated weight matrices.
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detected photocurrents are converted into voltage signals by a
transimpedance amplifier (TIA), and then collected and pro-
cessed by a classical processor with an analogue-to-digital
converter (DAC). Feedback signals can be generated and sent
back to the ONC to adjust the chip configurations as shown in
Fig. 1c.

The packaged ONC for a complex-valued neural network is
shown in Fig. 2a. The false-colour micrographs of the optical

network and the waveguide-coupled Ge-on-SOI photodetector
are shown in Fig. 2b, c, respectively. In this work, an ONC with 8
modes and 56 PSs is used. The internal PS θ and external PS ϕ of
each MZI are as marked. The 50:50 BS is realized by a multimode
interference (MMI) device. All the PSs are thermally tuned with
integrated titanium nitride (TiN) heaters bonded to a PCB. The
heaters are calibrated and fitted with an average R-square value of
0.99 (see Supplementary Fig. 5). The decomposition of a
complex-valued matrix follows the MZI arrangement as shown
in Fig. 1b, and each MZI is described by Eq. (1). Also refer to
Supplementary Notes 4–6, including the input encoding process,
the decomposition and implementation of the weight matrices on
chip. Coherent detection is conducted on chip (see Supplemen-
tary Note 7).

Neuron model and task briefing. The complex-valued neuron
mirrors the conventional neuron model, where all parameters and
variables are complex-valued, and the computation employs
complex-valued arithmetic. The neuron is built by weighting each
input with a complex number, as shown in Fig. 3a. The weighted
inputs are summed up and processed by an activation function.
The output of the neuron is expressed as

y ¼ f
X

n

i¼1

wixi þ b

 !

ð2Þ

where the weights wi and bias b are in general complex numbers.
Each input xi to the neuron can either be complex-valued or real-
valued.

We benchmark our ONC implementation of such complex-
valued computations in several separate tasks, and compare them

Fig. 2 Fabrication and packaging of silicon photonic chip. a Chip

packaging. b A false-colour micrograph of the the MZI network with

integrated heaters. c A false-colour micrograph of an on-chip

photodetector.

Fig. 3 A single complex-valued neuron for logic gate task. a The diagram of a complex-valued neuron and its on-chip implementation. The neuron output

is the weighted sum of the input (e.g., x1R+ jx1I, where the footnote R/I represents the real and imaginary part, respectively) and complex weights (e.g., w1R

+ jw1I), after being processed by an activation function f. The bias is implemented with an additional constant input weighted by a trainable complex-valued

weight (i.e., bR+ jbI). The weight matrix is decomposed to the phase shift values (θi and ϕi) on chip. b The training process of NAND gate and c The

training process of XOR gate. 10 iterations are conducted and recorded for each logic gate. The quadrants representing logical 0 are painted blue and those

representing logical 1 are painted pink. Being processed by a complex-valued neuron, each of the four possible combinations of logical inputs converges

from a random starting point to the expected end point, via a continuous modulation of magnitude and phase rotation.
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against a similarly configured optical chip that computes only on
real values:

(a) The implementation of fundamental two-bit logic gates
using a single complex neuron. Notably, this includes XOR
gate, which cannot be accomplished by a real-valued
neuron, and usually requires a three-layered real-valued
neural network53.

(b) The use of a single complex layer to classify Iris54,55 dataset
into three subspecies, benchmarking against a three-layer
real network56,57. The complex layer achieves a high
accuracy of 97.4% with a single layer, thereby reducing
cumulative errors.

(c) The classification of the nonlinear dataset Circle and Spiral
by simple complex networks, with visualization of the
decision boundaries. The complex networks achieve
significantly high accuracy, which is unmatched by similar
real networks, showing its strong capability in learning
nonlinear patterns.

(d) The task of handwriting recognition using a complex MLP
configured on the ONC. Our benchmarks based on the
MNIST database58 illustrate that the complex-valued
network attains a much higher accuracy (90.5% vs.
82.0%), even when the neural chip was only given real-
valued inputs and constrained to deliver real valued outputs
(86.5% vs. 82.0%).

Logic gate realization. The logic gate task provides a illustrative
example, in which we emulate the implementation of logic gates
by complex-valued networks to showcase the capability of the
basic unit (a single complex-valued neuron) of our device. When
implementing fundamental logic gates, the inputs to a neuron are
real values, which can also be regarded as complex values whose
phases are constrained to 0 or π. The bias is implemented by a
constant input 1, and an additional complex-valued variable b is
allocated in the weight vector to make the bias trainable. In this
task, identity activation function (Supplementary Note 14) is
applied to the single neuron. Therefore, Eq. (2) is simplified to

y= x ·W, where the input vector x ¼ x1; x2; ¼ ; xn; 1½ � 2 R
1 ´ ðnþ1Þ

and the weight vector W ¼ w1;w2; ¼ ;wn; b½ �T2 C
ðnþ1Þ ´ 1. The

weight vector is updated after each iteration byW←W+ΔW, where
ΔW ¼ η ŷ � yð Þ ´ xT, η is the learning rate, ŷ is the expected output
and y is the actual output. For all logic tasks, the mapping from
complex-valued output to logical value is predefined as odd quad-
rants to logical value 0 and even quadrants to logical value 1. Fig-
ure 3a shows the schematic of the on-chip implementation of a

complex-valued neuron. The three inputs to the neuron are encoded
by magnitude, two of which are used for the logical inputs, and the
remaining one is a constant 1 for bias. The weight vectorW 2 C

3 ´ 1

is realized on chip by configuring three MZIs containing six adjus-
table parameters {θi, ϕi}, i= 1, 2, 3. Coherent detection is applied to
obtain both the magnitude and phase of the output light signal.

Figure 3b, c show the training process of the NAND and XOR
gates, respectively (see also Supplementary Fig. 10 for AND and
OR gates). A total of 10 iterations are conducted and recorded for
each logic gate. Quadrants that represent logical value 0 are
painted in blue and those represent logical value 1 are painted
pink. In a complex-valued neuron, each of the four possible
combinations of logical inputs converges from a random starting
point to the expected end point, through continuous magnitude
modulation and phase rotation. Convergence is also observed in
the arithmetic loss between the expected end point and the
prediction result of the complex neuron, in both real and
imaginary parts (Supplementary Fig. 11). Meanwhile, the final
classification results are consistent with the truth tables
(Supplementary Table 2). The complex-valued neuron can also
be applied to solve general XOR problem (Supplementary Fig. 12).
By using a single complex-valued neuron on ONC to realize logic
gates, we demonstrate its ability to solve linear tasks, as well as
certain tasks that are linearly inseparable in the real domain like
the XOR gate. Notably, these tasks aim to reveal the qualitative
differences in learning capability between a complex and a real
neuron, rather than the physical realization of logic gates. The
XOR gate represents a pattern that a complex neuron can
recognize but a real neuron cannot. Even in the simplest case of a
single neuron, the complex neuron exhibits richer behaviour than
its real counterpart. Suppose that we are provided with a fixed
number of neurons, the complex network could identify more
sophisticated patterns than its real counterpart.

Classification of dataset Iris. Our second benchmark of ONC is
Iris classification by a single complex layer. Here, the task is to
classify a given Iris flower into one of the three possible subspecies
(setosa, versicolor and virginica) based on four real-valued inputs
(the length and width of the petals and sepals). The non-triviality
of this task is that the three species are indistinguishable by any
single one of the four features. The overlaps between features of
the three subspecies are shown in Supplementary Fig. 13.

The entire dataset with 150 instances is split into training set
and testing set by a ratio of 0.75:0.25. The weights are trained only
on the training set, based on the same numerical model as in the
logic gate task. In addition to the four inputs, the bias is included

Fig. 4 A complex-valued layer for classification of dataset Iris. The ONC is reconfigured with the complex-valued weight matrix trained for Iris task. The

complex-valued neuron outputs are measured and displayed in two-dimensional Cartesian diagrams, as in a–c. The three shown cases are trained by three

respective targets: phase only (φ1, φ2, φ3), magnitude only (ρ1, ρ2, ρ3) and their combinations (ρ1, (ρ2, φ1), (ρ2, φ2)). The circle markers are the validation

results of training dataset while the triangle markers are those of the blind test instances. Data points which were wrongly predicted in the blind test are

circled in red. It is shown by validation results that the optical chip identifies successfully the three species from the known data. While from testing results,

we learn that the generalized model also fits well to unknown data.
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in the input vector as an entry. An additional variable is included
in the weight matrix to make the bias trainable. In chip
implementation, the real-valued input vectors are encoded by
the magnitude of the light signals, while keeping their phases
identical. The outputs are complex values and are acquired by
coherent detection. The input vectors and trained weights are
numerically decomposed into exact phase shift values (Supple-
mentary Notes 5 and 6). The electric power required by each PS is
calculated by its calibration curve (Supplementary Fig. 5). In this
way, we configure our ONC with trained weights and show the
neuron outputs in Fig. 4a–c. Here, the three cases shown are
trained using three respective targets: phase only (φ1, φ2, φ3),
magnitude only (ρ1, ρ2, ρ3) and their combinations (ρ1, (ρ2, φ1),
(ρ2, φ2)). From the output distribution in the complex plane, it
can be intuitively observed that instances from the same
subspecies are distributed in clusters. Both the training set and
the testing set are evaluated on-chip, in order to validate the
training process as well as to demonstrate the generalization
capability of the trained model. In the figures, the validation
results (on training set) are displayed by coloured circles, while
the blind test results (on testing set) are displayed by triangles.
Different colours represent different subspecies. The validation
results show that the optical chip successfully classifies the three
species on known data, while the testing results prove that the
generalized model also fits well to unknown data. The species
setosa is clearly distinguished from the rest, and the species
versicolor and virginica are separated into two clusters with
marginal overlap. Instances that are misclassified in the blind test
are circled in red. The accuracies of the three blind tests are
92.1%, 89.5% and 97.4%, respectively.

We benchmark the single complex layer against three-layer real
network that is commonly required for Iris classification in other
photonic implementations of neural networks58,59. Our complex
layer has a simulated accuracy of 99.3% (Supplementary Figs. 14
and 15) and a chip testing accuracy of 97.4%. Whereas for the
three-layer real network, despite its comparable simulated
accuracy of 97.3%, would experience a large decrease in accuracy
due to the multilayer cumulative error during physical imple-
mentation (Supplementary Fig. 16). Although the improvement
in simulated accuracy is not evident, our complex model obtains
high accuracy in physical implementation using fewer layers and
neurons, thereby avoiding excessive cumulative errors.

Classification of nonlinear datasets Circle and Spiral. Here, we
highlight the capability of complex networks in forming non-
linear decision boundaries, in comparison to their real counter-
parts. Two nonlinear datasets are studied, namely the Circle and
the Spiral. The dataset visualization, model construction (real/
complex-valued for comparison) and chip measurement results
are shown from left to right in Fig. 5a. Both datasets are entangled
and linearly inseparable. They have two real-valued inputs and
two classification classes. For each task, a complex model and an
equivalent (same number of layers and neurons) real model are
compared. For classification of the Circle, a single complex/real
layer with two neurons is adopted. Intensity detection is per-
formed at the output ports of the chip. For the Spiral, a two-layer
network is adopted. The first layer has four neurons and are
designed as complex-/real-valued for comparison. Intensity
detection is performed at this layer, which is equivalent to the
application of the activation function M(z)= ||z||. The second
layer is a real-valued linear mapping from the four hidden nodes
to the two output nodes. The classification results can be inter-
preted from the chip outputs y1, y2 by a simple manner of Arg-
max: if y1 ≥ y2, the corresponding instance belongs to the class
blue, otherwise if y1 < y2, it belongs to the class pink.

In the binary classification, the decision boundary partitions
the underlying vector space into two regions, one for each class.
The decision boundaries of the simulated real-valued model, the
complex-valued model and the on-chip implemented complex
model when classifying the Circle and the Spiral are shown in
Fig. 5b, c, respectively. As shown, the decision boundaries of the
real model are formed by straight lines, while the decision
boundaries of the complex model are nonlinear curves that
perfectly match the entangled shape of the datasets. The complex
model is also appreciably superior in classification accuracy. The
complex model achieves simulated accuracy of 100% on both
datasets, far exceeding the 55% (on Circle) and 89% (on Spiral)
achieved by the real model. In chip implementation, we scan both
inputs x1 and x2 from −1 to 1 by a step size of 0.1. A total 441
input sets are tested. In experiment results, the black wires are our
expected decision boundaries while the white wires are experi-
mental ones, from which we can easily figure out which points are
incorrectly classified. The chip testing accuracies are 98% for the
Circle and 95% for the Spiral. The theoretical decision boundaries
of the complex model are smooth, while the visualized resolution
is reduced by the input interval in experiment.

The theoretical decision boundaries can be derived. Suppose
we have a single layer with two neurons, the outputs of the real
model are

y1

y2

� �

¼
w11 w12

w21 w22

� �

x1

x2

� �

þ
b1

b2

� �

ð3Þ

where the w11,12,21,22 and b1,2 are real-valued, x1,2 are real inputs
and y1,2 are the outputs. The decision boundary is derived by
solving the equation ||y1||= ||y2||. Therefore, the decision surface
is formed by two straight lines:

l1 : ðw11 � w21Þx1 þ ðw12 � w22Þx2 þ ðb1 � b2Þ ¼ 0

l2 : ðw11 þ w21Þx1 þ ðw12 þ w22Þx2 þ ðb1 þ b2Þ ¼ 0

�

ð4Þ

In the complex model, we replace the weight matrices by wjk=

pjk+ iqjk, and bj=mj+ inj, where j, k= 1, 2. By solving ||y1||=
||y2||, a nonlinear decision boundary is formed by

p11x1 þ p12x2 þm1ð Þ2þ q11x1 þ q12x2 þ n1ð Þ2

¼ p21x1 þ p22x2 þm2ð Þ2þ q21x1 þ q22x2 þ n2ð Þ2
ð5Þ

which can be simplified to a binary quadratic equation:

Ax21 þ Bx22 þ Cx1x2 þ Dx1 þ Ex2 þ F ¼ 0 ð6Þ

Equation (5) can form various curves, such as parabola, circle,
ellipse, and hyperbola, with different parameters A–F, which can
be learned from training data. For nonlinear dataset, the
complex-valued network shows strong learning capability, by
forming nonlinear decision boundaries and achieving high
classification accuracy.

Handwriting recognition by a complex-valued multilayer per-
ceptron. A single complex layer implemented on ONC is
employed to build a multilayer perceptron (MLP) to classify
handwritten digits in the dataset MNIST. The dataset is split into
training and testing sets. Our model is trained on the entire
training set, and 200 instances in the testing set are used to
validate the trained model on-chip. As shown in Fig. 6a, the
network consists of an input layer Win, a hidden layer W and an
output layer Wout. The neuron numbers in the three layers are 4,
4 and 10, respectively. The input 28 × 28 grayscale image is
reshaped into a 784 × 1 vector and compressed by the input layer
into four features, which are then fed to the 4 × 4 hidden layer.
The output layer maps the four hidden outputs to 10 classes,
representing digits from 0 to 9. The simulation model is built in
TensorFlow and trained by RMSPropOptimizer, with a learning
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rate of 0.005, a training period of 100 iterations and a batch size
of 100. The activation functions used in the real model and the
complex model is ReLU and ModReLU, respectively (see Sup-
plementary Note 14). The hidden layer is implemented on ONC,
while the input layer (784 × 4) and the output layer (4 × 10) are
executed electrically. Theoretically, the input and output layers
are implementable on our ONC by decomposing a large matrix
into multiple small matrices. Considering the practical workload
and the same principles, we only focus on the proof-of-principle
implementation of the hidden layer. Figure 6b shows the training
process of complex-valued and real-valued models with same
dimensions. The complex-valued model achieves a training
accuracy of 93.1% and a testing accuracy of 90.5%, while the real-
valued model obtains a training accuracy of only 84.3% and a
testing accuracy of 82.0%. Their confusion matrices on testing

instances are shown in Fig. 6c, d. The complex-valued neural
network significantly outperforms its real-valued counterpart. In
addition, faster convergence is observed in the complex-valued
model during the training process.

Part of the reason for the ~10% increase in the accuracy of the
complex model is that it receives more information (both
magnitude and phase) from the previous layer. Here, ablation
studies are carried out to verify the contribution of the complex-
valued weight matrix itself to the increase in accuracy, as well as
to illustrate the roles of the encoding and detection methods in
optical realization, by the following implementations on our
ONC: (a) completely complex: both magnitude and phase are
encoded and detected; (b) real encoding: only magnitude is
encoded, but both magnitude and phase are detected (by coherent
detection); (c) real detection: both magnitude and phase are

Fig. 5 Nonlinear decision boundaries by complex-valued networks. a Displayed from left to right are the dataset visualization, model construction and

measured chip outputs. Two nonlinear datasets, the Circle and the Spiral, are investigated. Both datasets have two real-valued inputs and two classes. For

classification of the Circle, a single layer (designed as complex vs. real for comparison) with two neurons is used. Intensity detection (represented by the

PDs) is performed to the chip outputs. For the Spiral, a two-layer network is adopted. The first layer has four neurons, which are designed as complex/real-

valued for comparison. Intensity detection is performed to the first layer. The second layer is a real-valued linear mapping between the hidden and output

nodes. In chip implementation, we scan both inputs x1 and x2 from −1 to 1 by a step of 0.1. The output distribution (y1, y2) measured on the chip are shown,

from which the classification results can be interpreted by the manner of Argmax: if y1≥ y2, the instance belongs to the class blue, otherwise it belongs to

the class pink. b The subfigures from left to right are the decision boundaries of the Circle, achieved, respectively, by the simulated real and complex model,

as well as the chip implementation of complex model. In experiment results, the black wires are our expected decision boundaries, while the white wires

are the experimental ones. The classification accuracy is displayed at the lower right corner of each subfigure. The same results of the Spiral are shown in c.
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encoded, but only the magnitude is detected (by intensity
detection); (d) real encoding and real detection: only magnitude
is encoded and detected, and (e) completely real: real weight
matrix, real encoding and real detection. In either of the
first four scenarios, the hidden weight matrix W is parameterized
by complex values. The intensity and coherent detection
respectively correspond to the activation function M(z)= ||z||,
and ModReLUðzÞ ¼ ReLUðjjzjj þ bÞeiθz . The confusion matrices
under scenarios (b), (c) and (e) are shown in Supplementary
Fig. 17. As shown in the training curves in Fig. 6e, the complex-
valued model, even when both encoding and detection are
implemented with real values, outperforms the real-valued model
(86.5% vs. 82.0%). In other words, the complex-valued model
outperforms its real-valued counterpart regardless of the encod-
ing and detection methods. In addition, the complex encoding
achieves better performance than the complex detection, indicat-
ing that enlarged input information has a greater contribution to
improving the network performance, while the compromise on

detection method would have a relatively marginal impact. We
also demonstrate that under comparable capacity, a complex
model achieves higher accuracy. Here, the capacity is defined as
the number of effective real-valued parameters contained in a
network model, which is a function of the neuron number N. The
performance of complex models with N= 4 and N= 8 is shown
in Table 1. A 4 × 4 complex model (whose capacity is 32) beats an
8 × 8 real model (whose capacity is 64) in terms of accuracy
(93.1% vs. 92.3%). To obtain comparable performance, the
complex-valued model requires a smaller chip size and thereby
requires fewer free components (12 PSs on a 4-mode complex-
valued chip vs. 56 PSs on an 8-mode real-valued chip).

We compare the costs of optically implementing the complex
and real neural network from three aspects: the input encoding,
the weight multiplication and the detection method. Firstly, real
encoding has the same cost as complex encoding, because real
inputs to the optical chip can be regarded as complex inputs with
their phases limited to 0 or π, which also requires the same

Fig. 6 Handwriting recognition with a complex-valued multilayer perceptron. a The network consists of an input layer Win, a hidden layer W and an

output layer Wout. All 10 digits are included in our experiment. The input image sized as 28 × 28 is stretched into a 784 × 1 vector. The output layer maps

the four hidden outputs to 10 classes. b The performance comparison of complex-valued and real-valued network implemented on the same chip. The blue

and orange curves represent the accuracy and the cost of training, respectively. The solid line represents the complex-valued algorithm while the dashed

line represents the real-valued algorithm. The training accuracy of complex-valued and real-valued models are 93.1% and 84.3%, respectively. In addition, a

faster convergence is observed in complex model. c The confusion matrix by the chip-implemented complex model, when evaluating on testing set. Each

column of the matrix represents the instances in a predicted label while each row represents the instances in a true label. The diagonal elements represent

the number of instances that are correctly predicted. The chip testing accuracy is 90.5%. d The confusion matrix by the real model, showing a testing

accuracy of 82.0%. e Sceneries are investigated, where complex-valued weights are implemented on chip, but input encoding and output detection are

either complex-valued or real-valued. Their training curves are shown. Notably, even when we restrict both the encoding and detection to be real-valued,

the complex-valued model exhibits a superior performance (87.7%) over its real-valued counterpart (84.3%).

Table 1 Performance of complex-valued neural networks under different encoding and detection methods.

Size of

hidden layer

Evaluation set Completely

complex (%)

Real encoding (%) Real detection (%) Real encoding &

real detection (%)

Completely

real (%)

N= 4 Training 93.1 88.3 91.1 87.7 84.3

Testing 90.5 87.0 88.5 86.5 82.0

N= 8 Training 96.0 93.1 96.9 93.6 92.3

Testing 93.5 91.0 93.0 91.5 91.0
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control over the relative phases between different paths. There-
fore, complex encoding is more informative (encoding informa-
tion on both magnitude and phase, and correspondingly doubling
the hidden input), while occupying the same number of chip
components. Secondly, the implementation of both real and
complex weight matrices requires the modulation of all internal
and external PSs. The only additional cost of the complex model
comes from coherent detection, which requires twice the amount
of measurements required for intensity detection. However, even
if we only perform intensity detection (Table 1), the complex-
valued model maintains accuracy of 88.5%, which is still
significantly higher than the real-valued model (82.0%).

The scale of most practical neural networks on conventional
electronic computers is difficult to achieve with current optical
circuits, although it is potentially achievable by the further
development of the industry foundary59,60. Our work highlights
that complex-valued optical neural networks, although at a small
scale, can achieve performance comparable to larger-scale real-
valued implementations. In addition, our complex-valued
implementations enhance the learning capability of optical neural
networks without increasing the complexity of the hardware,
thereby helping to alleviate the problems imposed by the current
limitations of manufacturing large-scale optical chips.

Discussion
Complex values in neural networks host a number of perfor-
mance advantages but were burdened by the heavy computational
costs of complex multiplication in conventional computers. Here,
we have demonstrated the implementation of genuine complex-
valued neural networks on a single ONC, where complex multi-
plication can be realized passively by optical interference. The
resulting ONCs have significant performance advantages over
real-valued counterparts in a range of tasks at both the single-
neuron and the network level. Notably, a single complex-valued
neuron is able to solve certain nonlinear tasks that cannot be
done by its real-valued counterpart. Moreover, complex-valued
networks on our ONCs demonstrate marked improvements in
classification of nonlinear datasets and handwriting recognition
tasks. The advantages are briefly concluded as: (a) It offers dou-
bled number of trainable free parameters, using the same physical
chip as real-valued networks. (b) It is capable of classifying
nonlinear patterns with simple architectures, e.g., fewer layers and
neurons, as well as achievable activation function (M(z)= ||z|| by
intensity detection). Thus, we have illustrated the potential of
complex-valued optical neural networks to feature versatile
representations, easy optimization and rapid learning. Mean-
while, the small chip size, low cost, high computational speed and
low power consumption make it practical to implement large-
scale optical deep learning algorithms on our ONC.

Our ONC also provides a natural pathway towards the near-
term quantum computation. Notably, our perceptrons here are
realized by networks of optical interferometers. Such networks—
when coupled with non-classical light—can enable sampling tasks
that are classically intractable. Indeed, there has been a number of
recent proposals in generalizing neural networks to the quantum
domain61, such as the quantum optical neural network which
utilizes high dimensionality of Boson sampling distributions62.
Our platform, with the incorporation of non-classical light
sources (e.g., single photon Fock states) and photon number
resolving detectors, thus provides a promising avenue for their
realization. Our platform can also be used to demonstrate some
specific algorithms, such as quantum variational autoencoder63

and quantum generative adversarial networks64.
We can extend our ONC into a fully fledged multilayer neural

network by cascading the optical circuits. Thus our proposal

satisfy all the criteria of cascadable photonic neural networks,
including isomorphism, physical cascadability, gain cascadability,
and noise cascadability22. The isomorphism and physical cas-
cadability are inherently satisfied since each neuron has a hard-
ware counterpart on the ONC, and the output is in the same
physical format as the input. Our multilayer proposal is assisted
by an electrical interface that matches the gain of input and
output with a good gain cascadability, which is distinct from all-
optical configurations that demand high-gain optical-to-optical
nonlinearity. However, because our neuron variables are repre-
sented by light waves, the noise is inevitably susceptible to many
factors, including imprecise phase, photodetection noise, coupling
drift, and thermal crosstalk. To achieve a good noise cascadability,
besides carefully controlling the aforementioned factors, we can
take the noise into account during training procedure and com-
pensate the noise using validated strategies65.

Methods
Experimental set-up. The light source was a 1550-nm laser with 12 dBm power
from a Santec TSL-510 tunable laser. A polarization controller was applied to
maximize the coupling of the light source to the ONC. A Peltier controlled by
Thorlabs TED200C was used to assist heat dissipation, stabilize the temperature of
the chip and reduce the heat fluctuations caused by ambient temperature and the
heat crosstalk within the chip. The data acquisition module included a gainable
TIA and an Analogue-to-Digital convertor NI-9215 with a resolution of 16 bit. The
performing circuit which provided the electrical power to PSs had a 16-bit output
precision.

Chip characterization. The I–V characteristics of each heater was calibrated. The
relationship between electrical power and current were fitted by a non-resistive
model P Ið Þ ¼ p1I

3
+ p2I

2 þ p3I þ p4 . The characterization of each PS was done by
varying the applied current while measuring the optical power at the output port.
The collected measurement data were fitted with y ¼ �a � cos b � P þ cð Þð Þ þ d,
where y was the optical power, d was a constant background, a was the maximum
magnitude of the signal, b and c were coefficients depicting the relationship
between the phase and the electrical power P computed by the non-resistive model.
An average R-square value of 0.99 was achieved with the fittings, which indicated
that the model adequately reproduced the data observed from the measurements.
The average visibility was 99.85%.

Coherent detection. The switching between the intensity and coherent detection is
assisted by the rightmost column of MZIs with adjustable interference state (grey-
coloured in Fig. 1b). For intensity detection, the MZI was configured with θ= π.
The electrical field of each signal light was converted to photocurrent by the
photodiode placed at its end. For coherent detection, the PS θ was set to π/2 for
maximum interference between the signal and reference light. By connecting the
two photodiodes at both output ports of the MZI in a balanced way, the subtracted
output current was II / 2AsAlcosϕs, where As and Al were the magnitudes of the
signal and the reference light. Similarly, by adding a phase shift of π/2 to the
reference light, the output current was IQ / 2AsAlsinϕs. The ϕs was then deter-
mined from the ratio of II and IQ, which also eliminates the physical noises
from the optical components. Instead of coupling the chip to an off-chip 90°
optical hybrid that was conventionally used for coherent detection, our on-chip
coherent detection avoided the phase fluctuating caused by fibre coupling and
improved the stability and reliability of coherent detection with simplified
experimental setup.

Data availability
The data that support the findings of this study are available from the corresponding
authors on reasonable request.
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