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An optical neural network using less than 1 photon
per multiplication
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Peter L. McMahon 1✉

Deep learning has become a widespread tool in both science and industry. However, con-

tinued progress is hampered by the rapid growth in energy costs of ever-larger deep neural

networks. Optical neural networks provide a potential means to solve the energy-cost pro-

blem faced by deep learning. Here, we experimentally demonstrate an optical neural network

based on optical dot products that achieves 99% accuracy on handwritten-digit classification

using ~3.1 detected photons per weight multiplication and ~90% accuracy using ~0.66

photons (~2.5 × 10−19 J of optical energy) per weight multiplication. The fundamental prin-

ciple enabling our sub-photon-per-multiplication demonstration—noise reduction from the

accumulation of scalar multiplications in dot-product sums—is applicable to many different

optical-neural-network architectures. Our work shows that optical neural networks can

achieve accurate results using extremely low optical energies.
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Much of the progress in deep learning over the past
decade has been facilitated by the use of deeper and
larger models1, with commensurately larger computa-

tion requirements and energy consumption2. The growth in
energy consumption is unsustainable given the energy efficiency
of conventional digital processors2. As 80–90% of the cost of
large-scale commercial deployments of deep neural networks
(DNNs) is due to machine-learning inference3, there is a strong
incentive to develop more energy-efficient hardware that is spe-
cialized to DNN inference processing4.

Optical processors have been proposed as deep-learning
accelerators that can in principle achieve better energy effi-
ciency and lower latency than electronic processors5–9. For deep
learning, optical processors’ main proposed role is to implement
matrix-vector multiplications10,11, which are typically the most
computationally-intensive operations in DNNs4.

Theory and simulations have suggested that optical neural
networks (ONNs) built using optical matrix-vector multipliers
can exhibit extreme energy efficiency surpassing even the fun-
damental limit of irreversible digital computers7. It has been
predicted that for sufficiently large vector sizes, matrix-vector
multiplication can be performed with an optical energy cost of
less than 1 photon (~10−19 J) per scalar multiplication, assuming
the standard quantum limit for noise7,8. This suggests a possi-
bility for optical processors to have an energy advantage of several
orders of magnitude over electronic processors using digital
multipliers, which currently consume between 10−14 and 10−12 J
per scalar multiplication12,13.

The energy efficiency of optical matrix-vector multiplication
improves with the sizes of the matrix and vectors that are to be
multiplied. With large operands, many constituent scalar multi-
plication and accumulation operations can be performed in
parallel completely in the optical domain, and the costs of con-
versions between electronic and optical signals can be amortized8.
Many innovative designs have achieved large-scale parallel pro-
cessing based on several degrees of freedom unique to optics,
including using wavelength multiplexing14–16, spatial multi-
plexing in photonic integrated circuits10,14,16–19, and spatial
multiplexing in 3D free-space optical processors11,20–29. In many
of these architectures, matrix-vector multiplications are per-
formed by computing vector-vector dot products in parallel and
concatenating the resulting scalar outputs to form the output
vectors.

While ONNs across all multiplexing approaches and archi-
tectures are making rapid progress in terms of scaling and energy
efficiency5,15,27–30, the ability of ONNs to operate close to the
shot-noise limit of detected photons has not yet been studied in
experiments. ONNs can approach the high energy efficiency
predicted by theory7,8 in part by exploiting the parallelism in
optical matrix-vector multipliers, and in part because DNNs can
be trained to achieve robust performance in the presence of
noise31, and when using low-precision arithmetic operations32.

Here, we report on our experimental validation of the opera-
tion of an ONN in the sub-photon-per-multiplication regime.
Based on a piece of customized experimental apparatus per-
forming optical vector-vector dot products, we demonstrate
image classification using on average <1 detected photon per
scalar multiplication, matching theoretical predictions for the
quantum-limited optimal efficiency of ONNs7.

Results
Large-scale optical vector-vector dot products. To study ONNs
in the large-vector limit where accurate sub-photon operation has
been predicted to be possible7,8, we constructed a demonstration
setup using the scheme shown in Fig. 1 to compute optical vector-

vector dot products, which can be thought of as a modified
Stanford-Vector-Multiplier architecture21 without optical fan-out
(Supplementary Fig. 12). Our experimental scheme and setup are
not intended as a prototype to directly compete with conventional
electronic processors or even other ONN systems, since it has not
been optimized for speed or electrical energy consumption.
Instead, it was designed to support a clean and quantitative
investigation of the limits of optical energy consumption in large-
scale ONNs.

Fig. 1 An optical vector-vector dot product multiplier for characterizing
the optical energy consumption of an ONN. a The role of optical vector-
vector dot products in executing the forward-pass operation in a fully
connected neural network. The weighted sums of neural activations are
performed optically (shaded area) and the element-wise nonlinear
activation functions are performed electronically. Each neuron in the middle
(hidden) layer is color-coded to show the correspondence to their
representations in (b). The shaded area in the neural-network schematic
illustrates the neurons and weights involved in one dot product. b A step-
by-step illustration of the computation of optical vector-vector-dot product
between x

*
and w

*

1. The top row shows mathematically abstract operations,
and the bottom row shows the corresponding physical operations with
optics. “�” denotes element-wise multiplication between two vectors of the
same size. c An illustration of how the optical fan-in operation allows less-
than-1-photon-per-scalar multiplication when the vector size is large. A
single lens is used to sum the intensities of the spatial modes encoding the
element-wise products onto a detector. For sufficiently large vector size N,
even if each individual spatial mode contains ϵ< 1 photon on average, the
total number of photons impinging on the detector ϵN will be ››1.
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Our setup uses the following scheme to perform vector-vector

dot products yi ¼ x
* �w*i ¼ ∑jxjwij, where x

*
is the input vector

of neural activations in the previous layer, and w
*

i is the weight

vector consisting of the weights connecting each neuron in x
*

to
the ith neuron in the next layer (Fig. 1a). Each element xj of

vector x
*
is encoded in the intensity of a stand-alone spatial mode

illuminated by a light source pixel, and each weight wij is encoded
as the transmissivity of a modulator pixel. We used an organic
light-emitting diode (OLED) display as the light source and a
spatial light modulator (SLM) for intensity modulation. Dot
products were computed in two physical steps: (1) Element-wise
Multiplication: Each OLED pixel encoding a single vector element
xj was aligned and imaged to a corresponding pixel on the SLM,
whose transmissivity was set to be / wij. This performs the scalar
multiplication wijxj (Fig. 1b bottom middle). (2) Optical Fan-in:
The intensity-modulated pixels from each block were physically
summed by focusing the light transmitted by them onto a
detector. The total number of photons impinging on the detector
is proportional to the dot product result yi (Fig. 1b bottom right).
The encoding of vector elements in optical intensity constrains
the setup to performing dot products with vectors that have non-
negative elements, which can be converted to dot products with
signed elements21 (Supplementary Note 11).

Our optical dot product multiplier can perform at most
711 × 711= 505,521 scalar multiplications and additions in
parallel, enabled by the alignment of an array of 711 × 711 pixels
on the OLED display to an array of 711 × 711 pixels on the SLM

(Supplementary Notes 5–7). The 2D layout of vector x
*

and w
*

i
maximizes the dimension of the vectors by taking full advantage of
the 2D imaging plane. Our experimental setup was, with a single
pass of light through the setup, capable of performing a single
vector-vector dot product with vectors having sizes up to 505,521.

Computing dot products between very large vectors with
optical fan-in allows extremely low optical energy consumption,
which is a unique advantage offered by optics33. For each dot
product that the system computes, the summation of the element-
wise products is performed by focusing the spatial modes
corresponding to the element-wise products onto a single
detector. If the vectors have size N, then N spatial modes are
incoherently summed on the detector. Consequently, the
detector’s output, which is proportional to the dot-product
answer, has a signal-to-noise ratio (SNR) that scales as

ffiffiffiffi

N
p

at the
shot-noise limit8. If the vector size N is sufficiently large, then
even if the individual spatial modes each have an average photon
number far less than 1, the total number of photons impinging on
the detector can be much greater than 1, and so precise readout of
the dot-product answer is possible (Fig. 1c).

Accuracy of sub-photon dot products. We characterized the
accuracy of dot products performed by our setup while varying
the number of photons used. In our first characterization
experiments, we computed the dot products of randomly chosen
pairs of vectors (Fig. 2a; see Methods). The optical signal
encoding the dot-product solution was measured by a sensitive
photodetector, and the number of photons used for each dot
product was controlled by changing the detector integration time
and by inserting neutral-density filters immediately after the
OLED display (see Methods). The number of photons per mul-
tiplication was calculated directly as the total measured optical
energy divided by the number of scalar multiplications in the dot
product (Supplementary Note 15).

To investigate the possibility of using less than 1 photon per
scalar multiplication for large vector sizes, we measured the

numerical precision of dot products between vectors each of size
~0.5 million. With 0.001 photons per scalar multiplication, the
error was measured to be ~6% (Fig. 2b; see Supplementary
Note 12 for the details of RMS-error calculation); the dominant
contribution to this error was from shot noise at the detector
(Supplementary Note 8). As we increased the number of photons
used, the error decreased until it reached a minimum of ~0.2% at
2 photons per multiplication or higher (Fig. 2b). We hypothesize
that the dominant sources of error at high photon counts are
imperfect imaging of the OLED display pixels to SLM pixels, and
crosstalk between SLM pixels. To enable comparison between the
experimentally achieved analog numerical precision with the
numerical precision in digital processors, we can interpret each
measured analog error percentage (Fig. 2b) as corresponding to
an effective bit-precision for the computed dot product’s answer.
Using the metric of noise-equivalent bits8, an analog RMS error
of 6% corresponds to 4 bits, and 0.2% RMS error corresponds to
~9 bits (see Methods).

We also verified that we could compute dot products between
shorter vectors when using low numbers of photons per scalar
multiplication (Fig. 2c). For photon budgets ranging from 0.001
to 0.1 photons per multiplication, the numerical error was
dominated by shot noise for all vector sizes tested. When the
number of photons used was sufficiently large, the error was no
longer dominated by shot noise, which is consistent with the
single-vector-size results shown in Fig. 2b. For every photon
budget tested, dot products between larger vectors had lower
error; we attribute this to dot products between larger vectors
involving the effective averaging of larger numbers of terms.

ONN using sub-photon multiplications. Having characterized
the accuracy of our experimental setup for performing multi-
plication operations with random vectors, we set out to demon-
strate its use as the core of an experimental ONN
implementation. We realized an ONN comprised of fully con-
nected layers where the vector-vector dot products between each
layer were computed optically using our experimental setup, and
where the digital biases and nonlinearity were applied electro-
nically (using a digital processor) between each layer.

Our main goal was to determine the extent to which our ONN
could tolerate multiplication inaccuracy resulting from the use of
a very limited photon budget. Theoretical studies indicate DNNs
can be constructed and trained to be intrinsically resilient to
noise, including photon shot noise and technical noise7,31. Our
approach was to run a trained neural network with our setup and
measure the classification accuracy as a function of the number of
photons used. We used handwritten-digit classification with the
MNIST dataset as our benchmark task and trained a 4-layer fully
connected multi-layer perceptron (MLP) (Fig. 3a) with a back-
propagation procedure designed for use with low-precision
inference hardware (Quantization-Aware Training—QAT34; see
Methods).

We evaluated the first 130 test images in the MNIST dataset
under 5 different photon budgets: 0.03, 0.16, 0.32, 0.66, and 3.1
average detected photons per scalar multiplication (Fig. 3b, center
panel, orange dots; Supplementary Note 15 describes the
procedure for calculating photons per scalar multiplication).
We found that using 3.1 photons per multiplication led to a
classification accuracy of ~99% (Fig. 3b, top-right panel), which
was almost identical to the accuracy (99%) of the same trained
neural network run on a digital computer without any noise. In
the sub-photon regime, using 0.66 photons per multiplication, the
ONN achieved ~90% classification accuracy (Fig. 3b, top-middle
panel). The reported experimental accuracies were obtained with
single-shot execution of the neural network without any
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repetition. The simulation curve (Fig. 3b, center panel, dark-blue
line) was produced by executing the same trained neural network
model completely on a digital computer with simulated shot
noise, but without modeling any other physical process in the
experimental setup. The only cause for the classification accuracy
of the simulation curve to drop at lower photon budgets is the
presence of the simulated photon shot noise. The reasonable
agreement between the experimental and the simulation results
supports the hypothesis that the classification accuracy of the
experimental ONN was primarily limited by the photon detection
shot noise at low photon budgets, and indeed the SNR measured
by the detector was close to the shot-noise limit (Supplementary
Fig. 10).

To achieve an accuracy of 99%, the detected optical energy per
inference of a handwritten digit was ~107 fJ (Fig. 3b). For the
weight matrices used in these experiments, the average SLM
transmission was ~46%, so when considering the unavoidable loss
at the SLM, the total optical energy needed for each inference was
~230 fJ. For comparison, this energy is less than the energy
typically used for only a single float-point scalar multiplication in
electronic processors35, and our model required 90,384 scalar
multiplications per inference (Supplementary Note 15) with each
optical operation simply replacing a corresponding operation in

the digital version of the same fully trained neural network (see
the concept of isomorphism in ONNs in Ref. 5).

Discussion
Here we have presented experimental results that support the
notion that optical neural networks can in principle5–8 have a
fundamental energy advantage over electronic neural-network
implementations. We showed that ONNs can operate in a
photon-budget regime in which the standard quantum limit (i.e.,
optical shot noise) governs the achievable accuracy. In particular,
we achieved high classification accuracies using our ONN even
when restricted to a photon budget of less than one detected
photon per scalar multiplication.

The sub-photon-per-multiplication result in this study can be
interpreted in the following way: in a single pass of light through
the experimental setup for computing element-wise products (i.e.,
past the modulator in Fig. 1b, but before optical fan-in), the
number of measured photons in each spatial mode would be an
integer if each spatial mode were measured separately. However,
after optical fan-in, only the total number of photons across all
the spatial modes is measured. Since many of the spatial modes
are likely to contribute zero measured photon when they have low

Fig. 2 Vector-vector dot products were computed with high accuracy using as few as 0.001 photons per scalar multiplication. a The procedure for
characterizing optical vector-vector dot products. N-pixel images were used as test vectors by interpreting each image as an N-dimensional vector. The
setup was used to compute the dot products between many different random pairs of vectors, with each computation producing a result ymeas (top and
center rows; example experimental measurement of element-wise multiplication w

* � x
*

was captured with a camera before optical fan-in for illustrative
purposes). The dot-product ground truth ytruth was computed on a digital computer (bottom row). The error was calculated as ymeas � ytruth. OLED:
organic light-emitting display; SLM: spatial light modulator. b The root-mean-square (RMS) error of the dot product computation as a function of the
average number of detected photons per scalar multiplication. The vector length N was ~0.5 million (711 × 711). The error bars show 10× the standard
deviation of the RMS error, calculated using repeated measurements. The insets show error histograms (over different vector pairs and repeated
measurements) from experiments using 10 and 0.001 photons per multiplication, respectively. c The RMS error as a function of the vector size N. For each
vector size, the RMS error was computed using five different photon budgets, ranging from 0.001 to 10 photons per scalar multiplication. The shaded
column indicates data points that are also shown in (b). The error bars show 3× the standard deviation of the RMS error, calculated using repeated
measurements.
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expected photon number, the number of photons averaged across
all the spatial modes, each performing one scalar multiplication in
our ONN, can be between 0 and 1.

Our results indicate that ONNs not only have the potential to
achieve orders of magnitude higher energy efficiency than elec-
tronic processors on the per-operation basis, but even more so on
the per-inference basis. In the broader DNN accelerator com-
munity, the energy-per-inference metric is a standard means of
quantifying system efficiency36. The use of this metric is moti-
vated by the fact that it is uniformly defined across different
physical platforms, while the definition and efficacy of an
operation varies depending on the implementation details of a
particular processor, especially for analog computing. Here we
report ~99% accuracy achieved on MNIST handwritten-digit
classification with at least ~230 fJ total optical energy required to
perform all the matrix-vector multiplications for each inference.
We now briefly consider what these results suggest for the future
potential of ONNs. Several hardware analyses30,37–39 have

suggested that optical energy consumption could account for 1%
of the system’s total (i.e., of the sum of the electrical and optical)
energy consumption; such a foreseeable ONN system would
consume on the order of 10−11 J per inference. For comparison,
running the same neural-network model that we obtained our
results with (Fig. 3a) on state-of-the-art electronic DNN
accelerators12 would require 10−13 J/operation × 90,384 opera-
tions ~10−8 J per inference (our experiment allows such a direct
comparison since the model run on our optical setup was the
same as the one run on a digital computer). For additional
comparison, some custom electronic chips report whole-system
energy efficiency on the order of 10−7 J per inference for MNIST
classification with >97% accuracy40,41. The achievable energy
advantage of ONNs over electronic processors would likely vary
with the dataset and neural-network structure. Nevertheless, our
work provides a starting point for the experimental determination
of the required optical energy in ONNs for different machine-
learning tasks and neural-network architectures19,23,24,26,42.

Our proof-of-principle results for sub-photon-per-multiplication
ONN operation are likely to translate to other ONN platforms.
Many existing ONN schemes can be boiled down to parallel
execution of vector-vector dot products by summing element-wise-
modulated spatial20–24, temporal7, or frequency modes14–16. When
summing incoherent spatial modes on a detector, the measured
energy equals the sum of energy of each mode. The same statement
applies to summing optical modes of different wavelengths14–16 or
light pulses arriving at different times7 on the same detector, even if
coherent light is used in these cases. For this reason, while we chose
to use spatial modes to demonstrate the computation of vector-
vector dot products, our results should apply generally to schemes
that involve the summation of a sufficiently large number of optical
modes (be they spatial, frequency, or temporal modes) at each
detector7,8,39.

The focus on the required optical energy in ONNs instead of
the whole-system energy in this paper is motivated by the fact
that the former is approximately universal across different plat-
forms and implementations, while the latter is more specific to a
particular hardware implementation. Although the data
throughput rate in our setup was limited by the update rate of
input hardware (10 s Hz for both OLED and SLM), the detector
was fast enough (with ~100 ns minimum integration time) to
allow the extension of our conclusions based on photon detection
to high-speed systems. Using our results on optical-energy

Fig. 3 MNIST handwritten-digit classification was demonstrated with an
optical neural network using less than one detected photon per scalar
multiplication. a Illustration of the 4-layer neural network for handwritten-
digit classification that we implemented as an ONN. Top panel: the neural
network is composed of a sequence of fully connected layers represented
as either a block (input image) or vertical bar (hidden and output layers)
comprising green pixels, the brightness of which is proportional to the
activation of each neuron. The weights of the connections between neurons
for all four layers are visualized; the pixel values in each square array
(bottom panel) indicate the weights from all the neurons in one layer to one
of the neurons in the next layer. b Classification accuracy tested using the
MNIST dataset as a function of optical energy consumption (middle panel),
and confusion matrices of each corresponding experiment data point (top
and bottom panels). The detected optical energy per inference is defined as
the total optical energy received by the photodetector during the execution
of the three matrix-vector multiplications comprising a single forward pass
through the entire neural network. The shaded area in the plot indicates the
regime where less than 1 detected photon was used for each scalar
multiplication. Each shaded vertical bar in the plot directs to the confusion
matrix corresponding to each experimental data point.
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consumption, the best-case whole-system energy consumption of
various architectures can be estimated based on several detailed
studies focused on hardware analysis7,8,16,28,37,39.

One critical step towards building practical ONNs with high
overall energy efficiency is to design a full-scale optical matrix-
vector multiplier with optical fan-out and fan-in (Supplementary
Notes 9 and 10), integrated with fast and highly efficient
modulators43 and detectors44. While the 2D-block matrix-vector
multiplier used in this work is not the architecture most closely
matched to incorporating integrated-photonics modules in the
short term, it may serve as a viable platform for image-processing
tasks involving incoherent light sources, which are common in
biomedical imaging and robotics45.

More broadly, the ability to perform matrix-vector multi-
plications more efficiently could find applications beyond neural
networks, including in other machine-learning algorithms46 and
for combinatorial-optimization heuristics47–49.

Methods
Experimental setup. We used the OLED display of an Android phone (Google
Pixel 2016) as the incoherent light source for encoding input vectors in our
experimental setup. Only green pixels (with an emission spectrum centered around
525 nm) were used in the experiments; the OLED display contains an array of ~2
million (1920 × 1080) green pixels that can be refreshed at 60 Hz at most (Sup-
plementary Note 2). Custom Android software was developed to load bitmap
images onto the OLED display through Python scripts running on a control
computer. The phone was found capable of displaying 124 distinct brightness levels
(~7 bits) in a linear brightness ramp (Supplementary Note 2). At the beginning of
each matrix-vector-multiplication computation, the vector was reshaped into a 2D
block (Fig. 1a) and displayed as an image on the phone screen for the duration of
the computation. The brightness of each OLED pixel was set to be proportional to
the value of the non-negative vector element it encoded. Fan-out of the vector
elements was performed by duplicating the vector block on the OLED display.

Scalar multiplication of vector elements with non-negative numbers was
performed by intensity modulation of the light that was emitted from the OLED
pixels. An intensity-modulation module was implemented by combining a phase-
only reflective liquid-crystal spatial light modulator (SLM, P1920-500-1100-HDMI,
Meadowlark) with a polarizing beam splitter and a half-wave plate in a double-pass
configuration (Supplementary Note 3). An intensity look-up table (LUT) was
created to map SLM pixel values to transmission percentages, with an 8-bit
resolution (Supplementary Note 3).

Element-wise multiplication between two vectors w
*

and x
*

was performed by

aligning the image of each OLED pixel (encoding an element of x
*
) to its

counterpart pixel on the SLM (encoding an element of w
*
) (Fig. 1b). By

implementing such pixel-to-pixel alignment, as opposed to aligning patches of
pixels to patches of pixels, we maximized the size of the vector-vector
multiplication that could be performed by this setup. A zoom-lens system (Resolve
4 K, Navitar) was employed to de-magnify the image of the OLED pixels by ~0.16×
to match the pixel pitch of the SLM (Supplementary Note 5). The image of each
OLED pixel was diffraction-limited with a spot diameter of ~6.5 μm, which is
smaller than the 9.2 μm size of pixels in the SLM, to avoid crosstalk between
neighboring pixels. Pixel-to-pixel alignment was achieved for ~0.5 million pixels
(Supplementary Note 5). This enabled the setup to perform vector-vector dot
products with 0.5-million-dimensional vectors in single passes of light through the
setup (Fig. 2b). The optical fan-in operation was performed by focusing the
modulated light field onto a detector, through a 4 f system consisting of the rear
adapter of the zoom-lens system and an objective lens (XLFLUOR4x/340,
NA= 0.28, Olympus) (Supplementary Fig. 1 and Supplementary Note 9).

The detector measured optical power by integrating the photon flux impinging
on the detector’s active area over a specified time window. Different types of
detector were employed for different experiments. A multi-pixel photon counter
(MPPC, C13366-3050GA, Hamamatsu) was used as a bucket detector for low-
light-level measurements. This detector has a large dynamic range (pW to nW) and
moderately high bandwidth (~3MHz) (Supplementary Note 4). The MPPC
outputted a single voltage signal representing the integrated optical energy of the
spatial modes focused onto the detector area by the optical fan-in operation
(Supplementary Note 9). The MPPC is capable of resolving the arrival time of
single-photon events for low photon fluxes (<106 per second); for higher fluxes that
exceed the bandwidth of MPPC (~3MHz), the MPPC output voltage is
proportional to the instantaneous optical power (Supplementary Fig. 6 and
Supplementary Note 4). The SNR of the measurements made with the MPPC was
roughly half of the SNR expected for a shot-noise-limited measurement
(Supplementary Note 8). The integration time of the MPPC was set between 100 ns
and 1 ms for the experiments shown in Fig. 2, and between 1 μs to 60 μs for the
experiments shown in Fig. 3. Since the MPPC does not provide a spatial resolution
within its active area, it effectively acts as a single-pixel detector (Fig. 1c) and

consequently could only be used to read out one dot product at a time. For the
parallel computation of multiple dot products (as is desirable when performing
matrix-vector multiplications that are decomposed into many vector-vector dot
products), a CMOS camera (Moment-95B, monochromatic, Teledyne) was used.
The intensity of the modulated light field was captured by the camera as an image,
which was divided into regions of interest (ROIs), each representing the result of an
element-wise product of two vectors. The pixels in each ROI could be then
summed digitally to obtain the total photon counts, which correspond to the value
of the dot product between the two vectors. Compared to the MPPC, the CMOS
camera was able to capture the spatial distribution of the modulated light but could
not be used for the low-photon-budget experiments due to its much higher readout
noise (~2 electrons per pixel) and long frame-exposure time (≥10 μs).
Consequently, the camera was only used for setup alignment and for visualizing the
element-wise products of two vectors with highoptical powers, and the MPPC was
used for the principal experiments in this work—vector-vector dot-product
calculation and machine-learning inference with an ONN involving low numbers
of photons per scalar multiplication (Fig. 2 and Fig. 3).

Evaluation of dot-product accuracy. The numerical accuracy of dot products was
characterized with pairs of vectors consisting of non-negative elements; since there
is a straightforward procedural modification to handle vectors whose elements are
signed numbers, the results obtained are general (Supplementary Note 11). The
dot-product answers were normalized such that the answers for all the vector pairs
used to fall between 0 and 1; this normalization was performed such that the
difference between true and measured answers could be interpreted as the
achievable accuracy in comparison to the full dynamic range of all possible answers
(for the equations used for the error calculation, see Supplementary Note 12).

Before the accuracy-characterization experiments were performed, the setup
was calibrated by recording the output of the detector for many different pairs of
input vectors and fitting the linear relationship between the ground truth of
the dot-product answer and the detector’s output (Supplementary Note 12).

The vector pairs used for accuracy characterization were generated from
randomly chosen grayscale natural-scene images (STL-10 dataset50). The error of
each computed dot product was defined as the difference between the measured
dot-product result and the ground truth calculated by a digital computer (Fig. 2a).
The number of photons detected for each dot product was tuned by controlling the
integration time window of the detector (Supplementary Note 12). The
measurements were repeated many times to capture the error distribution resulting
from noise. For each vector size displayed in Fig. 2c, the dot products for 100 vector
pairs were computed. The root-mean-square (RMS) error was calculated based on
data collected for different vector pairs and multiple measurement trials. Therefore,
the RMS error includes contributions from both the systematic error and trial-to-
trial error resulting from noise. The RMS error can be interpreted as the “expected”
error from a single-shot computation of a dot product with the setup. The noise
equivalent bits were calculated using the formula8 NEB=−log2(RMS Error).

Training of noise-resilient neural networks. To perform handwritten-digit
classification, we trained a neural network with 4 fully connected layers (Fig. 3a).
The input layer consists of 784 neurons, corresponding to the 28 × 28= 784 pixels
in grayscale images of handwritten digits. This is followed by two fully connected
hidden layers with 100 neurons each. We used ReLU51 as the nonlinear activation
function. The output layer has 10 neurons; each neuron corresponds to a digit from
0 to 9, and the prediction of which digit is contained in the input image is made
based on which of the output neurons had the largest value. The neural network
was implemented and trained in PyTorch52. The training of the neural network
was conducted exclusively on a digital computer (our optical experiments perform
neural-network inference only). To improve the robustness of the model against
numerical error, we employed quantization-aware training (QAT)34, which was set
to quantize the activations of neurons to 4 bits and weights to 5 bits. The PyTorch
implementation of QAT was adapted from Ref. 53. In addition, we performed data
augmentation: we applied small random affine transformations and convolutions
to the input images during training. This is a standard technique in neural-network
training for image-classification tasks to avoid overfitting34 and intuitively should
also improve the model’s tolerance to potential hardware imperfections (e.g., image
distortion and blurring). The training parameters we used are documented in
Supplementary Note 13. The training methods used not only effectively improved
model robustness against numerical errors but also helped to reduce the optical
energy consumption during inference. We note that the 4-bit quantization of
neuron activations was only performed during training, and not during the
inference experiments conducted with the optical setup: the activations were loaded
onto the OLED display using the full available precision (7 bits).

Optical neural networks with controlled photon budgets. To execute the trained
neural network with the optical vector-vector dot product multiplier, we needed to
perform 3 different matrix-vector multiplications, each responsible for the forward
propagation from one layer to the next. The weights of each matrix of the MLP
model were loaded onto the SLM, and the vector encoding the neuron values for a
particular layer was loaded onto the OLED display. (There is a technicality asso-
ciated with the handling of negative values, as was mentioned in the above

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27774-8

6 NATURE COMMUNICATIONS |          (2022) 13:123 | https://doi.org/10.1038/s41467-021-27774-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Methods section on dot-product characterization and is explained in detail in
Supplementary Note 11). We performed matrix-vector multiplication as a set of
vector-vector dot products. For each vector-vector dot product, the total photon
counts (or optical energy) measured by the detector were mapped to the answer of
the dot product through a predetermined calibration curve. The calibration curve
was made using the first 10 samples of the MNIST test dataset by fitting the
measured photon counts to the ground truth of the dot products (Supplementary
Note 14). The number of photons per multiplication was controlled by adjusting
the detector’s integration time (Supplementary Note 12). The measured dot-
product results were communicated to a digital computer where bias terms were
added and the nonlinear activation function (ReLU) was applied. The resulting
neuron activations of each hidden layer were used as the input vector to the matrix-
vector multiplication for the next weight matrix. At the output layer, the prediction
was made in a digital computer based on the neuron with the highest value.

Data availability
The raw data generated in this study, including the characterization of dot-product
accuracy (Fig. 2) and the layer-by-layer execution of the ONN (Fig. 3), along with the
code used to analyze them, have been deposited in the Zenodo database under the
permanent link: https://doi.org/10.5281/zenodo.4722066.

Code availability
The code we used to train neural networks with QAT in PyTorch and controlling the
experimental devices is available at: https://doi.org/10.5281/zenodo.4722066.
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