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Abstract. Optical transition-edge sensors have shown energy resolution for resolving the

number of incident photons at the telecommunication wavelength. Higher energy resolution

is required for biological imaging and microscope spectroscopy. In this paper, we report on

a Au/Ti (10/20 nm) bilayer TES that showed high energy resolution. This was achieved by

lowering the critical temperature Tc to 115 mK and the resultant energy resolution was 67

meV full width at half maximum (FWHM) at 0.8 eV. When Tc was lowered to 115 mK, the

theoretical resolution would scaled up to 30 meV FWHM, considering that the typical energy

resolution of optical TESs is 150 meV and Tc is 300 mK. To investigate the gap between the

theoretical expectation (30 meV) and the measured value (67 meV), we measured its complex

impedance and current noise. We found excess Johnson noise in the TES and an excess

Johnson term M was 1.5 at a bias point where the resistance was 10% of normal resistance.

For reference, the TES was compared with a TES showing typical energy resolution (156 meV

FWHM). We will discuss what improved the energy resolution and what might have been the

limiting factor on it.

Keywords: Transition-edge sensor, thermodynamic noise, complex impedance, single-photon

detector, photon-number resolving detector
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1. Introduction

Transition-edge sensors can resolve the energy of a single photon by detecting a slight change

in temperature caused by absorption of the photon1. The detector design is optimized to detect

photons of desired energy, ranging from gamma-ray, X-ray, UV, visible, and near-infrared2 3.

We have been developing optical TESs capable of detecting visible and near-infrared photons.

An optical TES can resolve the number of photons abosrbed in the detector simultaneously

when a monochromatic light source is used. This photon-number resolution is important in

fields such as quantum computing4, quantum information5 6 7 and quantum metrology8 9. In

these fields, fast detector response is required. The size of optical TESs are set small to obtain

sub-µs responses. A TES has achieved the time constant of 150 ns10. The small size also

allows for efficient coupling to an optical fiber. The highest energy resolution was reported

to be 105 meV 11 full width at half maximum (FWHM), which is sufficient to identify the

number of photons in the telecommunication wavelength bands.

Recently, new applications of optical TESs have been proposed. One such application

is the combination of an optical TES and a scanning microscope12 13. In this system, two-

dimensional color images were obtained by resolving the energy of each photon. When

multi-color imaging is performed with photon detectors without the energy resolution, filters

are generally required. To obtain color images with such the detectors, monochromatic images

taken with filters transmitting light at wavelengths of interest are overlaid. The TES did not

necessitate this procedure and provided multi-color images without filters.

The TES had a low dark count rate and was able to be used for imaging under weak

illumination. The TES was sensitive to photons at wavelengths ranging from near-infrared

to visible light, and provided visible and near-infrared images in the wide bandwidth. This

feature has the potential to open a new window for observation of biological samples. The new

microscope system allowed the use of multiple fluorescent dyes for imaging11. The number of

available dyes is determined by the energy resolution of a TES. The spacing between adjacent

emission peak wavelengths of the dyes must be wider than the wavelength resolution. This

system can also be used for microscopic spectroscopy, where the microscope focuses on a

fixed point and collects photons over a long period of time to obtain a spectrum. As the energy

resolution of a detector becomes higher, a measured spectra can provide more information.

In photon-number counting, requirement on the energy resolution is less stringent. A

detector must exhibit the energy resolution high enough to avoid overlap between peaks of

adjacent photon number states. To reduce an error in the photon number down to 1 %, the

peaks must be separated more than 5.2σ , where σ is the standard deviation of the peaks. For

this purpose, the typical energy resolution of optical TESs (150 meV) is sufficient for use of

1550 nm telecommunication band. On the other hand, for biological imaging and microscopic

spectroscopy, higher resolution is desired.

The energy resolution ∆EFWHM is expressed in terms of the wavelength resolution

∆λFWHM = λ 2∆EFWHM/hc, where λ is the wavelength of incident photons, h is Planck

constant and c is the speed of light. When the energy resolution is 0.1 eV, the wavelength

resolution at 550 nm (green) is 24 nm, which may be comparable with spacing between
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adjacent emission peak wavelengths of dyes. To separate the peaks, the energy resolution

must be improved.

The theoretical energy resolution of a TES is given by

∆EFWHM = 2
√

2ln2

√

4kT 2
c

C

αI

√

n(1+2βI)(1+M2)/2, (1)

where k is the Boltzmann constant, Tc is the critical temperature, C is the heat capacity,

αI =
T
R

∂R
∂T

|I is the temperature sensitivity, βI =
I
R

∂R
∂ I
|T is the current sensitivity, R is the

resistance of the TES, I is the current flowing through the TES, n = 5 in the electron-phonon

limited conductance, and M expresses the excess Johnson noise term . The energy resolution

can be improved by lowering Tc, the heat capacity C and βI, and increasing αI . At present,

there is no established method to control αI and βI . To reduce the heat capacity, the size of

a TES must be smaller. The size must be comparable or larger than the mode field diameter

(MFD) of an optical fiber to obtain the high detection efficiency of photons. MFD of single-

mode fibers is typically several µm, ex., 3.2 µm at 1550 nm for UHNA-7. When a TES is

smaller than MFD, it enhances the coupling loss and deteriorates the detection efficiency14.

The size of a TES is typically 8 µm× 8 µm, which is sufficient with MFD. To obtain high

energy resolution with maintaining the detection efficiency, we chose to lower Tc. A low-Tc

TES has a reduced heat capacity, which is proportional to Tc with a given volume. From Eq.1,

the energy resolution is proportional to T 1.5
c . The typical Tc and the energy resolution of our

TESs are 300 mK and 150 meV, respectively. When this is lowered to 100 mK, the resolution

is expected to be 30 meV.

In this paper, we will show that the energy resolution reached 67 meV FWHM at 0.8 eV

by lowering Tc to 115 mK. The energy resolution was significantly enhanced but was did not

reach the expected resolution of approximately 30 meV. To investigate the gap between the

theoretical expectation and the measured value, the current noise of the detector was measured

and compared with the theoretical noise. For TESs designed to detect X-ray photons, the

excess Johnson noise is one of the limiting factors15 16 17. Here, we will show that there was

the excess Johnson noise in the optical TES, and will discuss if it significantly contributed to

deterioration of the energy resolution, and what were the major factors avoiding the energy

resolution from reaching below 50 meV.

We also tested an optical TES which showed typical energy resolution (156 meV FWHM

at 1.46 eV), compared the two TESs to discuss their differences and similarities.

2. Measurements and results

2.1. Optical transition-edge sensors

In this study, we tested two TESs, one that achieved the high energy resolution (TES2 in Tab.1)

and other that showed typical resolution (TES1 in Tab.1). They have Ti/Au thickness of 20/10

nm. Their size was 8 µm×8 µm. The critical temperature (Tc) of TES2 was 115 mK. Tc of

TES1 was also fairly low, 143 mK. The TESs were cooled down in a dilution refrigerator. The

bath temperature was set to 7 mK. The TESs were embedded in optical cavities optimized to
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Figure 1: TES2 response on a pulsed laser at 1550 nm (0.8 eV). The energy resolution of a

Au/Ti bilayer TES (TES2 in Tab. 1) reached 67 meV FWHM at 0.8 eV (the single-photon

peak) by lowering Tc (115 mK).

maximize the detection efficiency at wavelengths of interest (950 nm for TES1 and 1550 nm

for TES2).

The energy resolution was measured using pulsed lasers. Figure 1 showed response of

TES2 to a pulsed laser at 1550 nm (0.8 eV). The energy resolution was 67 meV. Since TES1

was designed to detect photons at around 950 nm, an 850 nm (1.46 eV) pulsed laser was used.

The measured energy resolution was 156 meV.

Table 1: Table of parameters regarding to TESs

TES1 TES2

Material Ti (20 nm) / Au (10 nm) Ti (20 nm) / Au (10 nm)

Size [µm2] 8×8 8×8

Critical temperature [mK] 143 115

Normal resistance [Ω] 2.7 2.8

Energy resolution (FWHM) [meV] 156 (at 1.46 eV) 67 (at 0.8 eV)

Thermal model Single block Two block

C/αI [J/K] at 0.1Rn 4.1×10−18 4.8×10−19

Excess Johnson noise term M at 0.1Rn 0.95 1.5

2.2. Complex impedance

We measured the complex impedance to extract parameters characterizing the TESs and to

calculate the theoretical values for current noise and the energy resolution. The complex
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impedance is determined by a thermal model of a TES. The simplest model is a single-block

model consisting of a TES and the thermal bath, as shown in Fig. 2(a). This model described

behavior of optical TESs well18 19. The complex impedance of a single-block TES at an

angular frequency ω can be written by1,20

ZTES(ω) = R(1+βI)+
RL

1−L

2+βI

1+ iωτI,s
, (2)

where L is the constant-current loop gain given by L = RI2αI/Gtes,bT , Gtes,b is the

thermal conductance between the TES and the thermal bath, and τI is a time constant given

by τI,s = τ0/(1−L ), where τ0 is an intrinsic time constant, C/Gtes,b.

The complex impedance was measured by injecting small signals from a network

analyzer into a voltage-biased TES on a cold stage at 7 mK. The current flowing through

the TES was measured using a SQUID. As shown in Fig. 3(a), the complex impedance of

TES1 can be well described by Eq. 2. Figure 4(a) shows the extracted L and β .

On the other hand, the responses of TES2 apparently deviated from that expected from

the single-block model, as shown in Fig. 3(b)(solid lines). Instead, a two-block model

(Fig. 2(b)) was adopted for TES2. The two-block model includes an additional thermal.

When the thermal conductance between the additional body and the thermal bath is zero,

the model represents a hanging model.This model describes a TES with an absorber15 21.

When the thermal conductance between the TES and the thermal bath is zero, it represents an

intermediate model22. We will show that behavior of TES2 can be explained by the two-block

model in Sec.2.3. The complex impedance given by the model is written as22

ZTES(ω) = R(1+βI)+
RLeff(2+βI)

1−Leff

/

[

1+ iωτI −
gtwo−body

(1−Leff)(1+ iωτ1)

]

,(3)

where τ1 is the time constant of the additional body, Leff is the effective loop gain and

gtwo−body is a term as a function of thermal conductance in the system. These parameters can

be written as

Leff = RI2αI/(Gtes,1(Ttes)+Gtes,b), (4)

τI =
Ctes

(Gtes,1(T0)+Gtes,b)(1−Leff)
, (5)

τ1 =
C1

Gtes,1(T1)+G1,b
, (6)

gtwo−body =
Gtes,1(Ttes)Gtes,1(T1)

(Gtes,1(Ttes)+Gtes,b)(Gtes,1(T1)+G1,b)
, (7)

where C1 and T1 are the heat capacity and the temperature of the additional body,

respectively, Gtes,1 is the thermal conductance between the TES and the additional body, and

G1,b is the thermal conductance between the additional body and the thermal bath.

As shown in Fig. 3(b)(dashed lines), the measured complex impedance of TES2 was

fitted well with Eq.3. Assuming that gtwo−body and τ1 were independent of a bias point, they
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Figure 2: Schematic diagram of thermal models. (a) A single-block model. (b) A two-block

model.

were 0.326 and 11.4 µs, respectively, as extracted from the measured complex impedance

shown in Fig. 3(b). τ1 was similar to τ0 (13.9 µs at 0.5 Rn).

In TES2, while most of important parameters can be extracted from the complex

impedance, some parameters such as the ratio between Gtes,b and Gtes,1 remain unknown.

Therefore, Gtes,b is unknown and αI cannot be derived. However, C/αI, which is an important

parameter for the energy resolution, can be directly extracted from the complex impedance.

In the two-block model, C/αI can be calculated using Eqs. 4, 5, Leff and τI. In the single-

block model, from Eq. 1, the energy resolution is proportional to
√

C/αI, if assuming

that the readout noise is zero. This is also the same applies to the two-block model, as

shown in Appendix Appendix A. The values of C/αI extracted from the complex impedance

measurements are shown in Tab.1. TES2 showed smaller C/αI than TES1. This is consistent

with the fact that TES2 exhibited better energy resolution. Using Eq. 3, the current sensitivity

and the effective loop gain of TES2 were extracted from the complex impedance, as shown in

Fig. 4(b).

2.3. Thermodynamic noise

In this section, we will compare the measured noise with the theoretical noise level to evaluate

the excess Johnson noise. The results of noise measurements for TES1 and TES2 are shown

in Figs.5 and 6.

The theoretical noise requires the thermal conductance between a TES and the heat bath

as an input parameter. The parameter is used for calculation of the thermal fluctuation noise

(TFN)1. The thermal conductance is associated with Joule power dissipation of the a TES.

The power dissipation is equal to the power flow to the heat bath and can be written as

PJ = K(T n −T n
bath), (8)

where n is the exponent determined by the nature of the thermal link to the heat bath.

The parameter K is associated with the thermal conductance by G = nKT n−1. The cool-
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(a) (b)

Figure 3: Measured complex impedance at various bias points. (a) TES1 and (b) TES2. The

lines in (a) and (b) are fitted impedance from the single-block model (solid) and from the

two-block model (dashed). Rn is the normal resistance.

(a) (b)

Figure 4: Parameters extracted from measured complex impedance. (a) Current sensitivity.

(b) Loop gain.

down mechanism of the TESs can be explored by measuring the Joule power dissipation as

a function of the bath temperature. The measured PJ for TES1 and TES2, when they were

biased at 0.5 Rn, were fitted with Eq.8 and the resultant exponents were n = 5.07 and 4.95,

respectively. This implies that the TESs were cooled down by electron-phonon coupling.

The measured thermal conductance of TES1 (Gtes,b) was 9.9× 10−12 W/K. For TES2,

which agreed well with the two-block model, the measured value of 6.3×10−12 W/K was a

function of thermal conductance in the system (Gtes,b, G1,b and Gtes,1).

In the following, we will show that the current noise in TES2 was fitted well with the

two-block model. In this model, we can define the effective thermal conductance Geff, which

was equal to the thermal conductance extracted from Joule power dissipation. We will show

that we can calculate the theoretical current noise without knowing Gtes,b or the exact form of
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(a) (b)

Figure 5: Current noise of TES1. (a) The noise at 0.2 Rn. TFN and Johnson noise were

calculated using parameters extracted from the complex impedance shown in Fig. 3(a). The

temperature at the shunt resistor are assumed to be same as the bath temperature. (b) The

noise at several bias points. The black lines show the sum of the TFN, the Johnson noise, the

shunt resistor Johnson noise and the readout noise. The excess noise term M as a function of

a bias point was taken into account.

Geff.

In order to calculate the theoretical current noise, we also need the responsivity of the

TES to small signals. The responsivity sI(ω) can be associated with the complex impedance

ZTES by22

sI(ω) =− 1

(Ztes +Rsh + iωL)I0

Ztes −R0(1+βI)

R0(2+β )
, (9)

where Rsh is the shunt resistance in the bias circuit and 18 mΩ in our setup. The Johnson

noise is written as

|Iω |2J = 4kTTES
(1+2β )(1+M2)

R0(2+β )

∣

∣

∣

∣

Ztes +R0

Ztes +Rsh + iωL

∣

∣

∣

∣

2

. (10)

The Johnson noise due to the shunt resistor in the bias circuit is |Iω |2sh = 4kTshRsh/|Ztes+

RL+ iωL|2, where Tsh is the temperature of the shunt resistor, L is the SQUID input impedance

and was 18 nH in our readout. The contribution of |Iω |2sh to the total current noise was

negligible as shown in Figs. 5(a) and 6(a). It should be noted that the temperature at the

shunt resistor are assumed to be same as the bath temperature.

Next, we consider the TFN current noise of the single-block model. It is written as

|Iω |2TFN = 4kT 2
TESGtes,bF(Ttes,Tbath) |sI(ω)|2 ≡ Ptes,b |sI(ω)|2 , (11)

where Ptes,b is the power spectral density of the TFN. F(Ttes,Tbath) depends on

the nature of the thermal link. In the radiative limit, it becomes F(Ttes,Tbath) =
[

(Tbath/Ttes)
n+1 +1

]

/223.
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(a) (b)

Figure 6: Current noise of TES2. To calculate theoretical values of the noise, the parameters

extracted the complex impedance (β , Leff, τ0 and τ1), and the measured readout noise were

used. The temperature at the shunt resistor are assumed to be same as the bath temperature.

(a) The noise at 0.2 Rn. (b) The black lines show fits to Eq. 12.

The measured current noise in TES1 shown in Fig.5 agreed well with the sum of the

theoretical noise and the readout noise. The theoretical noise was calculated using the

measured thermal conductivity and parameters extracted from the complex impedance. The

theoretical noise was sum of the TFN noise, the Johnson noise including the excess term M,

and the shunt resistor Johnson noise. M was calculated at each bias point as shown in Fig. 7.

The TFN of the two-block model can be written as22

|Iω |2TFN = |sI(ω)|2






P2

tes,b+P2
tes,1 +

P2
tes,1

1+ω2τ2
1







(

P1,bGtes,1(T1)
Ptes,1

)2

+G2
1,b

(Gtes,1(T1)+G1,b)2
−1












,(12)

where Ptes,1 is the TFN between the TES and the additional thermal block, and P1,b is

that between the additional block and the the thermal bath.

As shown in Fig. 6(b), the measured noise was fitted well to Eq. 12. The

parameters which can be extracted from the fit are P1 ≡ P2
tes,b + P2

tes,1 and P2 ≡

P2
tes,1







(

P1,bGtes,1(T1)

Ptes,1

)2

+G2
1,b

(Gtes,1(T1)+G1,b)2 −1






. We found P1/P2

TFN,0 = 4.12 and P2/P2
TFN,0 =−1.15, where

PTFN,0 =
√

2kT 2Geff((Tbath/T )n+1)+1) is the TFN assuming that TES2 follows the single-

block model and its thermal conductance to the heat bath is Geff. It should be noted that τ1

extracted from the complex impedance was used for the fits. To determine Ptes,b, Ptes,1, G1,b,

T1 individually, additional experiments may be necessary. Without knowing these values, the

measured noise was able to be fitted to Eq. 12, and the excess Johnson noise term was obtained

as shown in Fig. 7.
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Figure 7: Excess noise parameter M2 as a function of a bias point.

2.4. Thermal models

In this section, we will discuss possible models that could explain the behavior of the TESs

based on detector physics. In complex-impedance measurements, response of TES1 was

effectively explained by the single-block model as shown in Fig. 2(a). The more detail model

of TES1 is presented by a thin metal film directly deposited on an insulated substrate, as shown

in Fig. 8(a)24. The relaxation time of phonons in the TES was thought to be much faster than

probe signals for measuring the complex impedance. Therefore, the phonon system can be

effectively treated as the heat bath, and the detector response was described well by the single-

block model.

In case of TES2, its thermal model became more complicated. From the measured

complex impedance and the current noise, thermodynamic model was determined to be the

two-block model. However, the components of the additional block (electrons or photons,

etc) remained unknown. Here, we present a possible model that could explain the behavior of

TES2.

Considering that the time constant of the additional block (τ1) was similar to that of the

TES (τI) when the loop gain was zero, it is straightforward to assume that the block could

be an electron system. When the system is cooled by electron-phonon weak coupling, the

time constant is determined by the temperature. Therefore, the temperature must be similar

to TTES.

To maintain the temperature above the bath temperature, the electron system must be

heated. In our setup, the only mechanism that could heat the electron system was Joule

dissipation. Thus, the additional block should have the resistance R1. To maintain consistency

with the two-block model, the current flowing through the block must be negligible and did

not affect electro-thermal feedback (ETF) of the TES. This implies that R1 must be much

larger than RTES and was connected in parallel with the TES. The model could have the form

shown in Fig. 8(b). The large resistance could be created by a partial volume in the TES. The

volume should be normal regardless of the voltage applying to the TES. The large resistance

may imply that the cross section of the volume was small.

We will show that large resistance in parallel with a TES does not affect ETF and the set
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of equations are reduced to that derived by the two-block model. When a TES is in parallel

with resistance R1, the electrical differential equation is

L
d

dt
(I + I1) =V −

(

RL +

(

1

R
+

1

R1

)−1
)

(I + I1), (13)

where I1 are current flowing through R1 and V is the voltage across the bias circuit. Here

we assume that R1 is constant.

The linearized differential equation is

L
d

dt
(∆I +∆I1) = ∆V − (∆I +∆I1)RL −

(

αIRI

Ttes
∆Ttes +(1+β )R∆I

)

. (14)

when R1 >> R, in frequency domain, ∆I1,ω = Ztes(ω)
R1

∆Iω and thus ∆I1is much smaller

than ∆I. When |∆I1|<< |∆I|, Eq.14 can be reduced to the equation without the resistance R1.

Therefore, the contribution of I1 to electro-thermal feedback is negligible.

Next, we will show that ∆I1 does not affect the thermal response of the additional body.

The linearized equations regarding to the additional body is

C1
d∆T1

dt
= Gtes,1(Ttes)∆Ttes −

(

G1,b(T1)+Gtes,1(T1)
)

∆T1 +2Vtes∆I1, (15)

where Vtes = RI = R1I1 is the voltage across the TES. To show that Vtes∆I1 is negligible

in Eq. 15, one needs to consider the linearized equation regarding to the time derivative of the

change in temperature of the TES,

Ctes
d∆Ttes

dt
=Vtes(2+β )∆I+

(

αRI2

Ttes
−Gtes,1(Ttes)−Gtes,b(Ttes)

)

∆Ttes+Gtes,1(T1)∆T1.(16)

Comparing Eqs. 15 and 16, the terms Gtes,1(Ttes)∆Ttes−Gtes,1(T1)∆T1 should be the same

order of Vtes(2+β )∆I, which is much larger than V∆I1. Thus, the term regarding to ∆I1 in

Eq. 15 is negligible. Therefore, the behavior of a TES in parallel with large resistance can

be described by the two-block model which assumes that an additional body is not heated by

current flowing through it. The Johnson noise of R1 is also negligible, which is obvious from

Eq.10.

2.5. Energy resolution

We examined the measured current noise of the TESs and found that it matched with the sum

of the TFN and the Johnson noise with the excess noise term implemented. Now we can

readily calculate the expected energy resolution based on the current noise and can compare

it to the measured energy resolution. In the small-signal limit, the FWHM energy resolution

of a TES is associated with the current noise as follows23,

∆EFWHM = 2
√

(2ln2)

[

∫ ∞

0

4

|Iω |2total

|sI(ω)|2 d f

]−1/2

. (17)

Using Eq. 17 and the measured current noise, we calculated the expected energy

resolution as shown in Tab. 2. The calculated energy resolution in the presence of the excess
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Figure 8: Schematic diagrams of models for (a) TES1 and (b) TES2. In both TESs, the

relaxation time of phonons is much faster than probe signals for measuring the complex

impedance. Therefore, the phonon system can be effectively treated as the thermal bath.

noise (Ec) was slightly worse than the energy resolution in the absence of the excess noise.

Although the excess noise contributed significantly to the current noise, it could be excluded

as a major source that limits the energy resolution. Note that the calculated energy resolution

took into account the readout noise.

To compare these values with the measured energy resolution, we need to consider the

energy collection efficiency. It is defined as the ratio of the energy absorbed by a TES to

the energy of a photon. The collection efficiency is less than 100 % due to phonon escape

from the detector. In a linear detector, the energy deposited on a TES should be removed

by electrothermal feedback and is equal to EETF =−
∫ ∞

0 Vtes(t)δ I(t)dt. The energy collection

efficiency becomes EETF/Ephoton, where Ephoton is the energy of a photon. As shown in Tab. 2,

TES2 showed better efficiency than TES1 did.

If the current noise is only the source for fluctuations in the measured energy of a photon,

the measured energy resolution ∆Em should agree with the calculated energy resolution

obtained by ∆Ec/η . However, as in Tab. 2, ∆Ec/η is significantly smaller than ∆E. The

difference can be written as
√

∆E2
m −∆E2

c/η2 ≡ ∆Eother. There must be some unexplained

degradation in the energy resolution. In TES2 whose energy resolution is less than 100

meV, ∆Eother had a significant impact on the energy resolution.. Therefore, it is necessary

to prioritize the reduction of ∆Eother to obtain higher energy resolution.. To do this, we need

to understand nature of the unexplained sources.

2.6. Toward higher energy resolution

From the noise measurements, we have found that the optical TESs have the excess Johnson

noise. The effect of the excess noise on the energy resolution of TES2 was relatively small. It

was strongly affected by fluctuations caused by unexplained sources.

It had been considered that the reduction of the current noise is crucial to improve the

energy resolution of an optical TES. Therefore, a TES should have low Tc and β , a small heat
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Table 2: Energy resolution at 0.1Rn.

TES1 TES2

Measured energy resolution (∆Em) [meV] 156 67

Energy resolution calculated from the measured current noise (∆Ec) [meV] 89 40

Energy resolution without excess Johnson noise [meV] 81 34

Energy collection efficiency η [%] 63 88

∆Ec/η [meV] 141 46

∆Eother [meV] 67 50
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Figure 9: Pulse height as a function of the total energy of photons absorbed in a TES

simultaneously. The data were fitted to a quadratic function.

capacity, high αI and low excess noise. We have successfully fabricated such a TES.

The study of the excess Johnson noise may be important for improvement of the energy

resolution, though its contribution was small as shown in Tab.2. For TESs designed to detect

X-ray photons, the excess Johnson noise is known to be one of the limiting factors. Optical

TESs have a different detector design than X-ray TES: They have no membrane or absorber

and an order of magnitude smaller in size. Thus, the cause of the excess Johnson noise in

optical TES could also be different. Many groups have studied the excess noise in X-ray TES,

but few works have been done on the excess noise in optical TESs. This is an issue that needs

to be addressed in the future.

To obtain higher energy resolution, the source of ∆Eother should be investigated and be

reduced. The factors of ∆Eother could be (1) non-linear response, (2) error in the pulse height

estimate of a signal by the optimal filtering method and (3) downconversion phonon noise25.

We discussed the energy resolution in the small-signal limit, assuming that the detector

response is linear. If there is non-linearity in a TES, the energy resolution calculated based on

the small-signal theory may deviate from the measured resolution.

In a linear detector, the pulse height should be proportional to the total energy of photons.

When a linear TES is irradiated with a pulsed laser, the pulse height is proportional to the

number of photons simultaneously absorbed there. In reality, as shown in Fig. 9, the measured

pulse height was fitted to a quadratic function rather than a linear function. TES2 showed more

obvious nonlinear responses than TES1. Note that the pulse height spectra including Fig. 1
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were calibrated using a quadratic function, from which the energy resolution was obtained.

It is questionable whether it is optimal to fit with a quadratic function over the entire

energy region. In Fig. 9, the region where TES2 responded linearly was unclear. There was a

possibility that the TES responded linearly to small-energy deposition, such as a region from 0

eV to the single-photon peak. The single-photon peak in the pulse-height spectrum was fitted

with Gaussian function and the resultant energy resolution was 62 meV. The change in the

resolution was 10% from fit with the quadratic function, and implies uncertainty introduced

by non-linearity. In the case of TES1, which exhibited better linearity, applying the same

procedure to the measured pulse height spectrum resulted in the energy resolution of 150

meV. The change in the resolution was 4% and was smaller.

The non-linear responses also linked to optimal analysis of the pulse height. In the

analysis, the static noise is assumed. However, a large change in the resistance (or a bias point)

invalidate this assumption. This could lead to an error in the pulse height and deteriorate the

energy resolution. For future work, to understand responses of a TES in more detail, we

will study the nonlinear detector response between the small-signal limit and the large signal

region where a TES is saturated.

To improve the energy resolution, lowering Tc furthermore could be still an option in

fields where slow detector response is acceptable. In applications that require the high energy

resolution, such as biological imaging and microscopic spectroscopy, the counting rate of

incident photons are occasionally low, and slow detector response may be acceptable. For

low-Tc TESs, with a given energy of a photon, a change in temperature and thus the resistance

will be larger and their responses will be non-linear. Therefore, it is important to have a better

understanding of the nonlinearity.

In this paper, we have focused on the current noise. Another important source

of fluctuations in the measured energy is downconversion phonon noise. The noise is

independent of the current noise and is originated from fluctuations in the number of phonons

escaping into a substrate. The noise could be reduced by forming a TES on membrane to limit

escape paths of phonons.

This membrane structure was implemented by other group26. Its purpose was to reduce

energy loss and to enhance the energy collection efficiency η . We have achieved fairly high η

without membrane. However, non-uniformity in η was quite high, i.e., typically η was from

50 to 90 %. By adopting the membrane structure, we could improve η and the non-uniformity.

3. Conclusion

In conclusion, the energy resolution of an optical TES reached 67 meV by lowering the critical

temperature Tc and by achieving a high loop gain. The measurements of complex impedance

and current noise show that the behavior of the TES was consistently explained by a two-block

model. We calculated the theoretical values of the current noise and compared them with the

measured data, and found that there was excess Johnson noise. The excess noise term M

was 1.5 at a bias point where the resistance was 10% of normal resistance. Another TES

with a typical energy resolution (156 meV) was also tested and showed a similar M. Though
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the excess Johnson noise contributed to deterioration of the energy resolution, it was not a

dominant source of the current noise. We found unexplained fluctuations in the measured

energy. The contribution of the unexplained noise to the energy resolution was comparable

with that of the current noise.

For future work, further lowering Tc could pave the road to achieve the energy resolution

below 50 meV. In parallel, we need to understand and mitigate the unexplained noise. One

of possible sources of this noise could be non-linear response of the TESs. In this paper,

we assumed that the small signal limit and that TESs responded linearly. The discrepancy

between the measured values and the theoretical expectations could be explained by non-

linearity. The non-linearity in detector response will become more obvious as Tc is lower and

thus the heat capacity decreases. Understanding non-linearity will become more important in

future research.
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Appendix A. Energy resolution in case of two-block model

We will show that the energy resolution of a TES described by the two-block model is

proportional to C/αI.

Using Eqs. 8, 12 and 17, the energy resolution is

∆EFWHM = 2
√

(2ln2)







∫ ∞

0

4

P1 +
V 2

ω ,tesI
2
0 (1+ω2τ2)

Leff
+ P2

1+ω2τ2
1

d f







−1/2

(A.1)

= 2
√

(2ln2)

[

1

2πτ1|P2|

∫ ∞
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4
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dx

]−1/2

, (A.2)

a =
P1

|P2|
+

V 2
ω,tesI

2
0

|P2|Leff

, (A.3)

b =
V 2

ω,tesI
2
0 τ2

|P2|Leffτ
2
1

, (A.4)

where Vω,tes =
√

4kTTESR0(1+2β ), I0 is the current flowing through the TES, M = 0,

x = ωτ and the strong electrothermal feedback is assumed. With the large loop gain, the

complex impedance Ztes gives the same from the single-block model.

In the strong electrothermal feedback regime (b << 1), Eq.A.4 simplifies to
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∆EFWHM = 2
√

(2ln2)
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τ1|P2|


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b
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a−b
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ab (A.6)

=

√

√

√

√

4kT 2C

αI

P1

PTFN,0

√

n(1+2β )((Tb/T )n+1 +1)/2
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. (A.7)

Therefore, the energy resolution of the two-block model is proportional to C/αI.
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