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AN OPTIMAL ADAPTIVE WAVELET METHOD
WITHOUT COARSENING OF THE ITERANDS

TSOGTGEREL GANTUMUR, HELMUT HARBRECHT, AND ROB STEVENSON

Abstract. In this paper, an adaptive wavelet method for solving linear oper-
ator equations is constructed that is a modification of the method from [Math.
Comp, 70 (2001), pp. 27–75] by Cohen, Dahmen and DeVore, in the sense that
there is no recurrent coarsening of the iterands. Despite this, it will be shown
that the method has optimal computational complexity. Numerical results for
a simple model problem indicate that the new method is more efficient than
an existing alternative adaptive wavelet method.

1. Preliminaries

For some boundedly invertible linear operator A : H → H ′, where H is some
separable Hilbert space with dual H ′, and some f ∈ H ′, we consider the problem
of finding u ∈ H such that

Au = f.

As typical examples, we think of linear differential or integral equations of some
order 2t in variational form. Furthermore, although systems of such equations also
fit into the framework, usually we think of scalar equations. So typically H is
a Sobolev space Ht, possibly incorporating essential boundary conditions, on an
n-dimensional underlying domain or manifold.

We assume that we have a Riesz basis Ψ = {ψλ : λ ∈ ∇} for Ht available,
where ∇ is some infinite countable index set. Formally viewing this basis as a
column vector, by writing u = uT Ψ the above problem is equivalent to finding
u ∈ �2 = �2(∇) satisfying the infinite matrix-vector system

Au = f ,

where the stiffness matrix A := 〈Ψ, AΨ〉 : �2 → �2 is boundedly invertible and
f := 〈Ψ, f〉 ∈ �2. Here 〈·, ·〉 denotes the duality product on (Ht, H−t). In the
following, we will also use 〈·, ·〉 to denote 〈·, ·〉�2 , and use ‖ · ‖ to denote ‖ · ‖�2 as
well as ‖ · ‖�2→�2 . Throughout this paper, u and f will always denote the solution
and right-hand side of this equation, respectively.

Let us denote by uN a best N-term approximation for u, i.e., a vector with at
most N nonzero coefficients that has distance to u not larger than that of any
vector with a support of that size. Note that ‖u − uT

NΨ‖Ht � ‖u − uN‖. We will
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consider bases Ψ of sufficiently smooth wavelet type of order d. Then the theory of
nonlinear approximation ([DeV98, Coh03]) tells us that if both

0 < s < d−t
n ,

and u is in the Besov space Bsn+t
τ (Lτ ), then

(1.1) sup
N∈N

Ns‖u − uN‖ < ∞.

Here, and throughout in this paper, s and τ are related according to

τ = (
1
2

+ s)−1.

The above condition involving Besov regularity is much milder than the condition
u ∈ Hsn+t involving Sobolev regularity which would be needed to guarantee the
same rate of convergence with linear approximation in the span of N wavelets
corresponding to the “coarsest levels”. Indeed, assuming a sufficiently smooth right-
hand side, for several boundary value problems it was proven that the solution has
a much higher Besov than Sobolev regularity [DD97, Dah99]. Note that, regardless
of the smoothness of the solution u, a rate higher than d−t

n can never be expected
with wavelets of order d, except when u happens to be exceptionally close to a finite
linear combination of wavelets. On general domains or manifolds, suitable wavelet
bases for Ht have been constructed in [DS99a, CTU99, CM00, DS99b, Ste06, HS06].

Vectors u ∈ �2 that satisfy (1.1) can be characterized as follows (see [DeV98]):
Let γn(u) denote the nth largest coefficient in modulus of u. For 0 < τ < 2, the
space �w

τ = �w
τ (∇) is defined by

�w
τ =

{
u ∈ �2 : |u|�w

τ
:= sup

n
n1/τ |γn(u)| < ∞

}
.

It is easily verified that �τ ↪→ �w
τ ↪→ �τ+δ for any δ ∈ (0, 2 − τ ], which justifies why

�w
τ is called weak �τ . The expression |u|�w

τ
defines only a quasi-norm since it does

not necessarily satisfy the triangle inequality. With these �w
τ -spaces at hand, it can

be shown that the property (1.1) is equivalent to u ∈ �w
τ . In particular, for each

τ ∈ (0, 2),

(1.2) sup
N

Ns‖u − uN‖ � |u|�w
τ
;

see, e.g., [CDD01, Proposition 3.2]. Here and in the following, in order to avoid
the repeated use of generic but unspecified constants, by C � D we mean that C
can be bounded by a multiple of D, independently of parameters which C and D
may depend on. Obviously, C � D is defined as D � C, and C � D as C � D and
C � D.

The aforementioned convergence rates under the mild Besov regularity assump-
tion concern best N -term approximations, whose computation, however, requires
full knowledge of the solution u, which is only implicitly given. In [CDD01, CDD02],
iterative methods for solving Au = f were developed which produce a sequence of
approximations that converges with the same rate as is guaranteed for best N -term
approximations, whereas their computation requires a number of operations that is
equivalent to their support size. Together, both properties show that these methods
are of optimal computational complexity. As a preparation for the results that will
be derived in this paper, below we discuss both methods in some detail.
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In each iteration of these methods, the matrix A has to be applied to some
(finitely supported) vector. Since, generally, each column of A contains infinitely
many nonzero entries, clearly this matrix-vector product cannot be computed ex-
actly, and has to be approximated. For sufficiently smooth wavelets that have suffi-
ciently many vanishing moments and for both differential operators with piecewise
sufficiently smooth coefficients, or singular integral operators on sufficiently smooth
manifolds, the results from [Ste04, GS06a, GS06b] show that for some s∗ > d−t

n , A
is s∗-computable. This means that for any s < s∗, for all N ∈ N, there is an infi-
nite matrix AN , having in each column O(N) nonzero entries, whose computations
require O(N) operations, such that

(1.3) ‖A − AN‖ � N−s.

Using this result, the adaptive approximate matrix-vector product APPLY from
[CDD02] can be shown to have the following properties.

APPLY[w, ε] → z. Let ε > 0 and w be finitely supported, then the output
satisfies ‖Aw − z‖ ≤ ε. Moreover, for any s < s∗, #supp z � ε−1/s|w|1/s

�w
τ

, where
the number of arithmetic operations and storage locations used by this call is bounded
by some absolute multiple of ε−1/s|w|1/s

�w
τ

+ #suppw + 1.

Remark 1.1. In [DHS05] a somewhat weaker condition than (1.3) is verified, that,
however, is also sufficient to guarantee above properties of APPLY.

The construction of a sequence of approximations for u that converge with a
certain rate requires the availability of a sequence of approximations for f that
converge with at least that rate. It can be shown that for any s < s∗, if u ∈ �w

τ ,
then f ∈ �w

τ , with |f |�w
τ

� |u|�w
τ
, and so supN Ns‖f − fN‖ � |u|�w

τ
. This property,

however, does not tell us how to construct an approximation g that is qualitatively
as good as fN with a comparable support size. When u ∈ �w

τ , we will assume the
availability of the following routine, whose realization depends on the right-hand
side at hand.

RHS[ε] → g. Let ε > 0, then the output satisfies ‖f − g‖ ≤ ε, and #supp g �
ε−1/s|u|1/s

�w
τ

, where moreover the number of arithmetic operations and storage loca-

tions used by the call is bounded by some absolute multiple of ε−1/s|u|1/s
�w

τ
+ 1.

The results concerning optimal computational complexity of the iterative meth-
ods from [CDD01, CDD02] require the properties of APPLY and RHS mentioned
above. Moreover, the methods apply under the condition that A is symmetric, pos-
itive definite (SPD), which, since A = 〈Ψ, AΨ〉, is equivalent to 〈v, Aw〉 = 〈Av, w〉,
v, w ∈ H, and 〈v, Av〉 � ‖v‖2

H , v ∈ H.
For the case that A does not have both properties, the methods can be applied to

the normal equations A∗Au = A∗f . Using APPLY and RHS, in [CDD02, Sect.
7] it was shown how to construct routines to approximate the matrix-vector product
and the right-hand side vector of this system, which routines share the properties
APPLY and RHS have for the original system. In other words, without loss of
generality, in the following it is sufficient to consider the case that A is SPD.

The idea of the iterative method from [CDD02] is to apply Richardson iteration
to Au = f . Of course, this iteration cannot be performed exactly, but by ensuring
that the errors due to the inexact matrix-vector product and the approximation of
f exhibit a proper decay when the iteration proceeds, a linearly convergent method
is obtained.
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The principle behind the method from [CDD01] is to improve a given approx-
imation w for u by realizing the saturation property: Let 〈〈·, ·〉〉 := 〈A·, ·〉 and
||| · ||| := 〈〈·, ·〉〉 1

2 . For any Λ ⊂ ∇, let PΛ denote the �2-orthogonal projector onto
�2(Λ), i.e., PΛ replaces all coefficients outside Λ by zeros. With the notation vΛ,
zΛ, etc., we will mean vectors in �2(Λ), i.e., vectors that are zero outside Λ. Using
that A is SPD, one easily verifies that for any v ∈ �2, Λ ⊂ ∇, and vΛ ∈ �2(Λ),

‖A−1‖− 1
2 ‖v‖ ≤ |||v||| ≤ ‖A‖ 1

2 ‖v‖,

‖Av‖ ≤ ‖A‖ 1
2 |||v|||,

‖A−1‖− 1
2 |||vΛ||| ≤ ‖PΛAvΛ‖,

which properties will be often used in the following. The next lemma is well known.

Lemma 1.2. Let µ ∈ (0, 1], w ∈ �2, ∇ ⊃ Λ ⊃ suppw such that

(1.4) ‖PΛ(f − Aw)‖ ≥ µ‖f − Aw‖.
Then, for uΛ ∈ �2(Λ) being the solution of the Galerkin system PΛAuΛ = PΛf ,
and with κ(A) := ‖A‖‖A−1‖, we have

|||u − uΛ||| ≤ [1 − κ(A)−1µ2
] 1

2 |||u − w|||.

Proof. We have

|||uΛ − w||| ≥ ‖A‖− 1
2 ‖A(uΛ − w)‖ ≥ ‖A‖− 1

2 ‖PΛ(f − Aw)‖

≥ ‖A‖− 1
2 µ‖f − Aw‖ ≥ κ(A)−

1
2 µ|||u − w|||,

that, with κ(A)−
1
2 µ reading as some arbitrary positive constant, is known as the

saturation property of the space �2(Λ) containing w. The proof is completed by
using the Galerkin orthogonality |||u − w|||2 = |||u − uΛ|||2 + |||uΛ − w|||2. �

In this lemma we assumed full knowledge about the exact residual, and further-
more that the arising Galerkin system is solved exactly. As with the Richardson
iteration, however, linear convergence is retained with an inexact evaluation of the
residuals and an inexact solution of the Galerkin systems in case the tolerances
exhibit a proper decay as the iteration proceeds.

We remark that if, instead of being a Riesz basis, Ψ is only a frame for H, then
the inexact Richardson method is still applicable (see [Ste03, DFR04]); whereas,
the other method is not since in that case the Galerkin systems can be arbitrarily
badly conditioned.

Returning to the Riesz basis case, both iterative methods above are linearly
convergent; however, their rates generally are not as good as that of best N -term
approximations. Therefore, in [CDD01, CDD02] these methods were extended with
a so-called coarsening routine. After each K iterations, where K is a sufficiently
large fixed constant, the smallest coefficients from the current iterand are removed,
increasing the upper bound for its error with some factor larger than 2, but with
that restoring the optimal balance between accuracy and vector length. Only after
the extension with the coarsening routine, could the resulting methods be shown
to be of optimal computational complexity.

In this paper, we reconsider the method from [CDD01]. Since for any subset
Λ ⊂ ∇ the best approximation in energy norm from �2(Λ) is the Galerkin solution
that can be accurately approximated at relatively low cost, we expect that this
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method gives the best results quantitatively. The main point of the paper is that we
will show that if µ is less than κ(A)−

1
2 and Λ is the smallest set containing suppw

that satisfies (1.4), then, without coarsening of the iterands, these approximations
converge with a rate that is guaranteed for the best N -term approximations. Both
conditions on the selection of Λ can be qualitatively understood as follows. The
basis of Lemma 1.2 is the use of the coefficients of the residual vector as local error
indicators. In case κ(A) = 1, the residual is just a multiple of the error. But when
κ(A) � 1, only the really largest coefficients can be used as reliable indicators
about where the error is large. Of course, applying a larger set of indicators cannot
reduce the convergence rate, but it may hamper optimal computational complexity.
Notice the similarity with adaptive finite element methods where the largest local
error indicators are used for marking elements for further refinement.

As we will see, the result above holds also true when the residuals and the
Galerkin solutions are determined only inexactly, assuming a proper decay of the
tolerances as the iteration proceeds, and when the cardinality of Λ \ suppw is only
minimal modulo some constant factor. Using both generalizations, again a method
of optimal computational complexity is obtained.

One might argue that picking the largest coefficients of the (approximate) resid-
ual vector is another instance of coarsening, but on a different place in the algorithm.
The principle behind it, however, is very different from that behind coarsening of
the iterands. Furthermore, since with the new method no information is deleted
that has been created by a sequence of computations, we expect that it is more
efficient.

Another modification to the method from [CDD01] we will make is that for each
call of APPLY or RHS, we will use as a tolerance some fixed multiple of the
norm of the current approximate residual, instead of using an a priori prescribed
tolerance. Since it seems hard to avoid that a priori tolerances are increasingly
either unnecessarily small, making the calls costly, or large so that the perturbed
iteration due to the inexact evaluations converges significantly slower than the
unperturbed one, also here we expect to obtain a quantitative improvement.

We tested our adaptive wavelet solver for the Poisson equation on the interval.
The results reported in the last section show that in this simple example the new
method is indeed much more efficient than the inexact Richardson method with
coarsening of the iterands. In [DHS05], co-authored by the second author, numerical
results based on tree approximations are given for singular integral equations on
the boundary of three dimensional domains.

2. The adaptive method without coarsening of the iterands

In the following lemma it is shown that for sufficiently small µ and u ∈ �w
τ , for a

set Λ as in Lemma 1.2 that has minimal cardinality, #(Λ\suppw) can be bounded
in terms of ‖f − Aw‖ and |u|�w

τ
only, i.e., independently of |w|�w

τ
and the value of

s∗ (cf. [CDD01, §4.2-4.3]).

Lemma 2.1. Let µ ∈ (0, κ(A)−
1
2 ) be a constant, w ∈ �2, and for some s > 0,

u ∈ �w
τ . Then the smallest set Λ ⊃ suppw with

‖PΛ(f − Aw)‖ ≥ µ‖f − Aw‖
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satisfies

(2.1) #(Λ\suppw) � ‖f − Aw‖−1/s|u|1/s
�w

τ
.

Proof. Let λ > 0 be a constant with µ ≤ κ(A)−
1
2 (1 − ‖A‖λ2)

1
2 . Let N be

the smallest integer such that a best N -term approximation uN for u satisfies
‖u − uN‖ ≤ λ|||u − w|||. Since |||u − w||| ≥ ‖A‖− 1

2 ‖f − Aw‖, we have

N � ‖f − Aw‖−1/s|u|1/s
�w

τ
.

With Λ̆ := suppw ∪ suppuN , the solution of PΛ̆AuΛ̆ = PΛ̆f satisfies

|||u − uΛ̆||| ≤ |||u − uN ||| ≤ ‖A‖ 1
2 ‖u − uN‖ ≤ ‖A‖ 1

2 λ|||u − w|||,
and so by Galerkin orthogonality, |||uΛ̆ − w||| ≥ (1 − ‖A‖λ2)

1
2 |||u − w|||, giving

‖PΛ̆(f − Aw)‖ = ‖PΛ̆(AuΛ̆ − Aw)‖ ≥ ‖A−1‖− 1
2 |||uΛ̆ − w|||

≥ ‖A−1‖− 1
2 (1 − ‖A‖λ2)

1
2 |||u − w|||

≥ κ(A)−
1
2 (1 − ‖A‖λ2)

1
2 ‖f − Aw‖

≥ µ‖f − Aw‖.

Since Λ̆ ⊃ suppw, by definition of Λ we conclude that

#(Λ\suppw) ≤ #(Λ̆\suppw) ≤ N � ‖f − Aw‖−1/s|u|1/s
�w

τ
. �

Since we do not have access to the exact residual, obviously Lemma 2.1 cannot be
applied directly. The following routine GROW provides a practical algorithm for
extending the support of an approximation w for u to a set Λ, which is sufficiently
large such that �2(Λ) has the saturation property, but whose cardinality can be
bounded as in Lemma 2.1. Firstly, inside a loop, the tolerances for the approximate
matrix-vector product and the approximation of the right-hand side are decreased
until either the computed approximate residual r has a sufficiently small relative
error, or the norm of the residual is below the target tolerance in which case w will
be accepted as a valid approximation for u. In case the norm of the residual is not
below the target tolerance, secondly, a set Λ ⊃ suppw is determined with modulo
some constant factor minimal #(Λ \ suppw) such that ‖PΛr‖ ≥ α‖r‖.

GROW[w, ν̄, ε] → [Λ, ν]:
% Let α, ω be constants with 0 < ω < α, α+ω

1−ω < κ(A)−
1
2 .

ζ := 2 ων̄
1−ω

do ζ := ζ/2, r := RHS[ζ/2] − APPLY[w, ζ/2]
until ν := ‖r‖ + ζ ≤ ε or ζ ≤ ω‖r‖
if ν > ε
then determine a set Λ ⊃ suppw with modulo some absolute constant factor

minimal #(Λ \ suppw) such that ‖PΛr‖ ≥ α‖r‖
else Λ := ∅
endif

Remark 2.2. GROW will be called with a parameter ν̄ that estimates the norm
of the residual of w. If it is outside [1−ω

1+ω ‖f − Aw‖, ‖f − Aw‖], then ζ at the first
evaluation of r is outside [ ω

1+ω‖f −Aw‖, ω
1−ω‖f −Aw‖], and from ω‖f −Aw‖−ζ ≤

ω‖r‖ ≤ ω‖f + Aw‖ + ζ, one infers that in this case either the second test in the
until-clause will fail anyway, meaning that the first iteration of the do-loop is not of
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any use, or that second test in the until-clause is always passed, but possibly with
a tolerance that is unnecessarily small. We conclude that there is not much sense
in calling GROW with a value of ν̄ that is far outside [1−ω

1+ω ‖f −Aw‖, ‖f −Aw‖].

Remark 2.3. Selecting Λ in GROW with truly minimal cardinality would require
the sorting of all coefficients of r|∇\suppw by their modulus, which needs O(N log N)
operations with N := #supp r|∇\suppw. Another O(#supp r) operations for com-
puting ‖r‖ are unavoidable. In the following, we recall a procedure with which the
above log-factor is avoided.

In view of our task to select Λ ⊃ suppw with ‖PΛr‖ ≥ α‖r‖, we may dis-
card all coefficients of r|∇\suppw with modulus not larger than

√
(1 − α2)‖r‖/

√
N .

With M := ‖r|∇\suppw‖∞, and q being the smallest integer with 2−(q+1)/2M ≤√
(1 − α2)‖r‖/

√
N , we store the other coefficients of r|∇\suppw in q + 1 bins corre-

sponding whether they lie in [M, 1√
2
M), [ 1√

2
M, 1

2M), . . . , or [2−q/2M, 2−(q+1)/2M).
Then we build Λ by extracting coefficients from the bins, starting with the first
bin, and when it is empty moving to the second bin and so on until ‖PΛr‖ ≥ α‖r‖
is satisfied. Let the resulting Λ now contain coefficients from the pth bin, but
not from further bins. Then a minimal set Λ̃ that satisfies ‖PΛ̃r‖ ≥ α‖r‖ con-
tains all coefficients from the bins up to the (p − 1)th one. Since any two co-
efficients in the pth bin differ less than a factor

√
2, we infer that the cardi-

nality of the contribution from the pth bin to Λ is at most twice as large as
that to Λ̃, so that #(Λ \ suppw) ≤ 2#(Λ̃ \ suppw). The number of opera-
tions and storage locations required by this procedure is O(#supp r + q), where
q < 2 log2(M

√
N/[

√
1 − α2‖r‖]) ≤ 2 log2(

√
N/

√
1 − α2) � log2(

√
N) < #supp r.

In the next theorem it is shown that if GROW[w, ν̄, ε] does not terminate
because the target tolerance ε is met, then it outputs a set Λ that satisfies both
(1.4) with µ = α−ω

1+ω and (2.1).

Theorem 2.4. [Λ, ν] = GROW[w, ν̄, ε] terminates with ν ≥ ‖f − Aw‖ and ν �
min{ν̄, ε}. If, for some s < s∗, u ∈ �w

τ , then the number of arithmetic operations
and storage locations required by the call is bounded by some absolute multiple of
min{ν̄, ν}−1/s

[
|w|1/s

�w
τ

+ |u|1/s
�w

τ
+ ν̄1/s(#suppw + 1)

]
.

If GROW terminates with ν > ε, then

(2.2) α−ω
1+ω ν ≤ ‖PΛ(f − Aw)‖

and

(2.3) #(Λ\suppw) � ν−1/s|u|1/s
�w

τ
.

Proof. If, at evaluation of the until-clause ζ > ω‖r‖, then ‖r‖ + ζ < (ω−1 + 1)ζ.
Since ζ is halved in each iteration, we infer that, if not by ζ ≤ ω‖r‖, GROW will
terminate by ‖r‖ + ζ ≤ ε.

Since after any evaluation of r inside the algorithm, ‖r − (f − Aw)‖ ≤ ζ, any
value of ν determined inside the algorithm is an upper bound on ‖f −Aw‖. If the
do-loop terminates in the first iteration or the algorithm terminates with ν > ε,
then ν � min{ν̄, ε}. In the other case, let rold := RHS[ζ]−APPLY[w, ζ]. We have
‖rold‖+2ζ > ε and 2ζ > ω‖rold‖, so that ν ≥ ζ > (2ω−1+2)−1(‖rold‖+2ζ) > ωε

2+2ω .
By the geometrical decrease of ζ inside the algorithm, the properties of RHS

and APPLY, and in view Remark 2.3, the total cost of the call of GROW can
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be bounded by some multiple of ζ−1/s(|w|1/s
�w

τ
+ |u|1/s

�w
τ

) + K(#suppw + 1), with
ζ, r and ν having their values at termination and K being the number of calls of
APPLY that were made. Taking into account the initial value of ζ, and again its
geometrical decrease inside the algorithm, we have

K(#suppw + 1) = Kν̄−1/sν̄1/s(#suppw + 1) � ζ−1/sν̄1/s(#suppw + 1).

The proof of the first part of the theorem is completed once we have shown that
ζ � min{ν̄, ν}. When the do-loop terminates in the first iteration, we have ζ � ν̄,
and when the algorithm terminates with ζ ≥ ω‖r‖, we have ζ � ν. In the other
case, we have ω‖rold‖ < 2ζ with rold as above, and so from ‖r− rold‖ ≤ ζ + 2ζ, we
infer ‖r‖ ≤ ‖rold‖ + 3ζ < (2ω−1 + 3)ζ, so that ν < (2ω−1 + 4)ζ.

Now assume that GROW terminates with ν > ε and thus with ζ ≤ ω‖r‖. With
g = RHS[ζ/2] and z = APPLY[w, ζ/2], we have

‖PΛ(f − Aw)‖ ≥ ‖PΛr‖ − ‖PΛ(Aw − z)‖ − ‖PΛ(f − g)‖
≥ α‖r‖ − ζ ≥ α−ω

1+ω ν,(2.4)

where the last inequality is a consequence of ζ ≤ ω‖r‖, ω < α, and ν = ‖r‖ + ζ.
To prove (2.3), with µ = α+ω

1−ω let Λ̂ ⊃ suppw be the smallest set with

‖PΛ̂(f − Aw)‖ ≥ µ‖f − Aw‖.
Then

(2.5) µ‖r‖ ≤ µ‖f − Aw‖ + µζ ≤ ‖PΛ̂(f − Aw)‖ + µζ ≤ ‖PΛ̂r‖ + (1 + µ)ω‖r‖,
or ‖PΛ̂r‖ ≥ α‖r‖. By construction of Λ in GROW, we conclude that #(Λ\suppw)
� #(Λ̂\suppw). Since µ < κ(A)−

1
2 by the condition on ω and α, and ‖f − Aw‖

≤ ν, an application of Lemma 2.1 shows that #(Λ̂\suppw) � ν−1/s|u|1/s
�w

τ
which

completes the proof. �
When having extended suppw to a set Λ such that �2(Λ) has the saturation

property, the second ingredient of the iterative method is the approximate solution
of the Galerkin system on �2(Λ). Given an approximation gΛ for PΛf , there are
various possibilities to iteratively solving the system PΛAuΛ = gΛ starting with
some initial approximation wΛ for uΛ, where obviously we will take wΛ = w. In-
stead of relying on the adaptive routine APPLY throughout the iteration, after
approximately computing the initial residual using the APPLY routine, the fol-
lowing routine GALSOLVE iterates using some fixed, nonadaptive approximation
for

AΛ := PΛA|�2(Λ).

The accuracy of this approximation depends only on the factor with which one
wants to reduce the norm of the residual. This approach can be expected to be
particularly efficient when the approximate computation of the entries of A is rel-
atively expensive, as with singular integral operators. As can be deduced from
[vS04], it is even possible in the course of the iteration to gradually diminish the
accuracy of the approximation for AΛ.

GALSOLVE[Λ,gΛ,wΛ, δ, ε] → w̃Λ:
% The input should satisfy δ ≥ ‖gΛ − AΛwΛ‖.
% With AN from (1.3), let N be such that σ := ‖A − AN‖‖A−1‖ ≤ ε

3ε+3δ .
% Set B := PΛ

1
2 (AN + A∗

N )|�2(Λ), with A∗
N being the adjoint of AN .

r0 := gΛ − PΛ(APPLY[wΛ, ε
3 ])
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To find an x with ‖r0 − Bx‖ ≤ ε
3 , apply a suitable iterative method for solving

Bx = r0, e.g., Conjugate Gradients or Conjugate Residuals
w̃Λ := wΛ + x

Theorem 2.5. w̃Λ := GALSOLVE[Λ,gΛ,wΛ, δ, ε] satisfies ‖gΛ − AΛw̃Λ‖ ≤
ε. For any s < s∗, the number of arithmetic operations and storage locations
required by the call is bounded by some absolute multiple of ε−1/s(|wΛ|1/s

�w
τ

+|uΛ|1/s
�w

τ
)+

c(δ/ε)#Λ, where c : R+ → R+ is some nondecreasing function.

Proof. Using 〈AΛvΛ,vΛ〉≥‖A−1‖−1‖vΛ‖2 and ‖AΛ−B‖≤‖A−AN‖ = σ‖A−1‖−1

< 1
3‖A−1‖−1, we infer that B is SPD with respect to the canonical scalar

product on �2(Λ), and that κ(B) � 1 uniformly in ε and δ. Writing B−1 =

(I − A−1
Λ (AΛ − B))−1A−1

Λ , we find that ‖B−1‖ ≤ ‖A−1
Λ ‖

1−‖A−1
Λ ‖‖AΛ−B‖ and so that

‖AΛ − B‖‖B−1‖ ≤ σ
1−σ .

We have ‖r0‖ ≤ δ + ε
3 . Writing

gΛ − AΛw̃Λ = (gΛ − AΛwΛ − r0) + (r0 − Bx) + (B− AΛ)B−1(r0 + Bx− r0),

we find that
‖AΛw̃Λ − gΛ‖ ≤ ε

3 + ε
3 + σ

1−σ (δ + ε
3 + ε

3 ) ≤ ε.

The properties of APPLY and RHS show that the cost of the computation of r0

is bounded by some multiple of ε−1/s(|wΛ|1/s
�w

τ
+ |uΛ|1/s

�w
τ

) + #Λ. Since by (1.3), B
is sparse and can be constructed in O(#Λ) operations, and the required number
of iterations of the iterative method is bounded, everything only dependent on an
upper bound for δ/ε, the proof is completed. �

We now have the ingredients available to define our adaptive wavelet solver.
SOLVE[ν−1, ε] → wk:

% With α, ω being the parameters inside GROW, let γ be a constant in
%

(
0, 1

6κ(A)−
1
2 α−ω

1+ω

)
.

% Let θ > 0 be a constant.
k := 0; wk := 0
while with [Λk+1, νk] := GROW[wk, θνk−1, ε], νk > ε do

gk+1 := PΛk+1(RHS[γνk])
wk+1 := GALSOLVE[Λk+1,gk+1,wk, (1 + γ)νk, γνk]
k := k + 1

enddo

Remark 2.6. We will see that at the call of GROW[wk, θνk−1, ε], it holds that
‖f − Awk‖ � νk−1. Although for any fixed θ > 0, SOLVE will be shown to be
of optimal computational complexity, in view of Remark 2.2 a suitable tuning of θ
will result in quantitatively better results. Ideally, θ has the largest value for which
the do-loop inside GROW always terminates in one iteration.

Theorem 2.7. w := SOLVE[ν−1, ε] terminates with ‖Aw − f‖ ≤ ε. If ν−1 �

‖f‖ � ε, and for some s < s∗, u ∈ �w
τ , then #suppw � ε−1/s|u|1/s

�w
τ

and the number
of arithmetic operations and storage locations required by the call is bounded by
some absolute multiple of the same expression.

Proof. Before we come to the actual proof, first we indicate the need for the con-
ditions involving ν−1, ‖f‖ and ε. If ν−1 �� ε, then the cost of the first call of RHS
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in the first call of GROW can be arbitrarily large. If ν−1 �� ‖f‖, then we cannot
bound the number of iterations in the loop of the first call of GROW, each of them
requiring some arithmetic operations. Finally, if ‖f‖ �� ε, then ε−1/s|u|1/s

�w
τ

might
be arbitrarily small, whereas SOLVE takes at least some arithmetic operations.

Theorem 2.4 shows that νk ≥ ‖Awk − f‖, and that νk � ‖f − Awk‖ as long
as νk > ε. We have ‖gk+1 − PΛk+1Awk‖ ≤ (1 + γ)νk, so that (1 + γ)νk is a
valid parameter for the (k + 1)th call of GALSOLVE. Below we will prove that a
constant ξ < 1 exists such that

(2.6) |||u − wk+1||| ≤ ξ|||u − wk|||

as long as νk > ε. Because of ‖Awk − f‖ � |||u − wk|||, this result shows that
SOLVE terminates after finitely many iterations, say directly after the (K + 1)th
call of GROW that produces [ΛK+1, νK ], and furthermore that νk � ξk−iνi for all
0 ≤ i ≤ k ≤ K−1. From νK ≤ ε < νK−1 when K > 0, and ν0 ≤ max{ε, 1+ω

α−ω‖f‖} �
ν−1, the last inequality by assumption, we even have

(2.7) νk � ξk−iνi, −1 ≤ i ≤ k ≤ K.

Since with Λ0 := ∅, suppwi ⊂ Λi and Λi ⊂ Λi+1, for 1 ≤ k ≤ K by (2.3) we have

(2.8) #suppwk ≤ #Λk =
k−1∑
i=0

#(Λi+1\Λi) � (
k−1∑
i=0

ν
−1/s
i )|u|1/s

�w
τ

� ν
−1/s
k−1 |u|1/s

�w
τ

.

From |wk|�w
τ

� |u|�w
τ

+ (#suppwk)s‖wk − u‖ ([CDD01, Lemma 4.11]), we infer
that |wk|�w

τ
� |u|�w

τ
.

By Theorem 2.4, the cost of the (k + 1)th call of GROW for k ≤ K is bounded
by an absolute multiple of

min{νk−1, νk}−1/s
[
|u|1/s

�w
τ

+ ν
1/s
k−1(ν

−1/s
k−1 |u|1/s

�w
τ

+ 1)
]

� ν
−1/s
k |u|1/s

�w
τ

,

where we used (2.8), min{νk−1, νk} � νk by (2.7), and 1 � ν
−1/s
k−1 |u|1/s

�w
τ

by νk−1 �
ν−1 � ‖f‖ � |u|�w

τ
. The cost of the (k+1)th call for k < K of RHS or GALSOLVE

is bounded by an absolute multiple of ν
−1/s
k |u|1/s

�w
τ

or ν
−1/s
k (|wk|1/s

�w
τ

+ |u|1/s
�w

τ
) +

#Λk+1 � ν
−1/s
k |u|1/s

�w
τ

, respectively. From (2.7) and νK � min{νK−1, ε} � ε by
Theorem 2.4, where the second inequality follows from νK−1 > ε when K > 0, and
by assumption when K = 0, the proof is completed upon showing (2.6).

Abbreviating PΛk+1 as Pk+1, for 0 ≤ k < K, let uk+1 be the solution of
Pk+1Auk+1 = Pk+1f . Because of ‖f − Awk‖ ≤ νk and (2.2), that can be applied
since νk > ε, we have ‖Pk+1(f − Awk)‖ ≥ α−ω

1+ω ‖f − Awk‖, so that Lemma 1.2

shows that |||u − uk+1||| ≤ [1 − κ(A)−1(α−ω
1+ω )2

] 1
2 |||u − wk|||.

Our (k + 1)th iterand is, however, not uk+1 but wk+1, which contains errors
because of the nonexact right-hand side and the inexact solution of the Galerkin
system. One can simply estimate |||u−wk+1||| ≤ |||u−uk+1|||+ |||uk+1 −wk+1|||, but
a sharper result can be derived by using that u − wk+1 is nearly 〈〈·, ·〉〉-orthogonal
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to �2(Λk+1). With β := γ 2+2ω
α−ω κ(A)

1
2 < 1

3 , we have

|||uk+1 − wk+1||| ≤ ‖A−1‖ 1
2 ‖Pk+1A(uk+1 − wk+1)‖

≤ ‖A−1‖ 1
2
(
‖gk+1 − Pk+1Awk+1‖ + ‖Pk+1f − gk+1‖

)
≤ ‖A−1‖ 1

2 2γνk ≤ ‖A−1‖ 1
2 2γ 1+ω

α−ω‖Pk+1(f − Awk)‖
≤ β|||uk+1 − wk|||.

Using u − uk+1 ⊥〈〈 , 〉〉 �2(Λk+1), we have

|〈〈u − wk+1,wk+1 − wk〉〉| = |〈〈uk+1 − wk+1,wk+1 − wk〉〉|
≤ |||uk+1 − wk+1||||||wk+1 − wk|||
≤ β|||uk+1 − wk||||||wk+1 − wk|||.

Now by writing

|||u − wk|||2 = |||u − wk+1|||2 + |||wk+1 − wk|||2 + 2〈〈u− wk+1,wk+1 − wk〉〉
and, for obtaining the second line in the following multiline formula, two applica-
tions of

|||wk+1 − wk||| ≥ |||uk+1 − wk||| − |||wk+1 − uk+1||| ≥ (1 − β)|||uk+1 − wk|||,
we find that

|||u − wk|||2 ≥ |||u − wk+1|||2 + |||wk+1 − wk|||
(
|||wk+1 − wk||| − 2β|||uk+1 − wk|||

)
≥ |||u − wk+1|||2 + (1 − β)(1 − 3β)|||uk+1 − wk|||2

≥ |||u − wk+1|||2 + (1 − β)(1 − 3β)κ(A)−1(α−ω
1+ω )2|||u − wk|||2,

or
|||u − wk+1||| ≤

[
1 − (1 − β)(1 − 3β)κ(A)−1(α−ω

1+ω )2
] 1

2 |||u − wk|||,
which completes the proof. �
Remark 2.8. Inside the call of [Λk+1, νk] = GROW[wk, θνk−1, ε] made in SOLVE,
we search an approximation rk,ζ := RHS[ζ/2] − APPLY[wk, ζ/2] for r̄k := f −
Awk with a ζ ≤ ω‖rk,ζ‖ that is as large as possible in order to minimize the
support of rk,ζ outside suppwk. When k > 0, because of the preceding calls of
RHS and GALSOLVE, we have a set Λk ⊃ suppwk and a νk−1 with ‖PΛk

r̄k‖ ≤
δk := 2γνk−1. In this remark, we investigate whether it is possible to benefit from
this information to obtain an approximation for the residual with relative error not
exceeding ω whose support extends less outside suppwk.

Let rI
k,ζ := PΛk

rk,ζ and rE
k,ζ := P∇\Λk

rk,ζ , and similarly r̄I
k and r̄E

k . From

ζ2 ≥ ‖r̄ − rk,ζ‖2 = ‖r̄I − rI
k,ζ‖2 + ‖r̄E − rE

k,ζ‖2 ≥ (‖rI
k,ζ‖ − δk)2 + ‖r̄E − rE

k,ζ‖2,

we have

‖r̄ − rE
k,ζ‖ = (‖r̄E − rE

k,ζ‖2 + ‖r̄I‖2)
1
2 ≤ (ζ2 − (‖rI

k,ζ‖ − δk)2 + δ2
k)

1
2 =: ζ̆.

So, alternatively, instead of rk,ζ , we may use rE
k,ζ as an approximation for r̄k, and

thus stop the routine GROW as soon as νk := ‖rE
k,ζ‖ + ζ̆ ≤ ε or ζ̆ ≤ ω‖rE

k,ζ‖, and
use rE

k,ζ also for the determination of Λk+1. Since for any ζ and rk,ζ with rI
k,ζ �= 0

and ζ < ‖rk,ζ‖, it holds that ζ̆‖rk,ζ‖ < ζ‖rE
k,ζ‖ if δk is small enough, under this

condition the alternative test is passed more easily. This may even be a reason to
decrease the parameter γ.
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The approach discussed in this remark has been applied in the experiments
reported in [DHS05].

3. Numerical experiment

We consider the variational formulation of the following problem of order 2t = 2
on the interval [0, 1], i.e., n = 1, with periodic boundary conditions

(3.1) −∆u + u = f on R/Z.

We define the right-hand side f by f(v) = 4v( 1
2 ) +

∫ 1

0
g(x)v(x)dx, with

(3.2) g(x) = (16π2 + 1) cos(4πx) − 4 +
{

2x2, if x ∈ [0, 1/2),
2(1 − x)2, if x ∈ [1/2, 1],

so that the solution u is given by

(3.3) u(x) = cos(4πx) +
{

2x2, if x ∈ [0, 1/2),
2(1 − x)2, if x ∈ [1/2, 1]

(see Figure 1).
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Figure 1. The solution u is the sum of both functions illustrated.

We use the periodized B-spline wavelets of order d = 3 with d̃ = 3 vanishing
moments from [CDF92] normalized in the H1(0, 1)-norm. The solution u is in
Hs+1(R/Z) only for s < 1

2 . On the other hand, since u can be shown to be in
Bs+1

τ (Lτ (R/Z)) for any s > 0, we deduce that the corresponding discrete solution
u is in �w

τ for any s < d−t
n = 2.

Each entry of the infinite stiffness matrix A can be computed in O(1) operations.
By applying the compression rules from [Ste04], we see that A is s∗-computable
with s∗ = t + d̃ = 4.

For developing a routine RHS, we split f =f1+f2, where f1(v)=
∫ 1

0
f1(x)v(x)dx

with f1(x) = (16π2 + 1) cos(4πx) − 4. Correspondingly, we split f = f1 + f2 and,
given a tolerance ε, we approximate both infinite vectors within tolerance ε/2 by,
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for suitable �1(ε), �2(ε), dropping all coefficients with indices λ with |λ| > �1(ε) or
|λ| > �2(ε), respectively.

From
|〈ψλ, f1〉| ≤ ‖ψλ‖L1(0,1) inf

p∈P2
‖f1 − p‖L∞(supp ψλ),

infp∈P2 ‖f1−p‖L∞(supp ψλ) ≤ (π
4 diam(supp ψλ))3‖f ′′′

1 ‖L∞(0,1)/3! (Jackson estimate),
‖ψλ‖L1(0,1) ≤ diam(suppψλ))

1
2 ‖ψλ‖L2(0,1), diam(supp ψλ) = 5 · 2−|λ|, and, with

ψ being the “mother wavelet”, ‖ψλ‖L2(0,1) = [4|λ|‖ψ′‖2
L2(R)/‖ψ‖2

L2(R) + 1]−1, and

#{λ : |λ| = k} = 2k, we find an upper bound for the error
√∑

|λ|>�1(ε)
|〈ψλ, f1〉|2

which is � 2−4�1(ε). Setting this upper bound equal to ε/2 and solving for �1(ε)
gives an approximation for f1 of length � 2�1(ε) � ε−1/4. Note that in view of the
assumption we made on RHS, a vector length � ε−1/2 would have been sufficient.
Such a length would have been found with wavelets that have 1 vanishing moment.

From
|〈ψλ, f2〉| ≤ (4 + ‖g − f1‖L1(supp ψλ))‖ψλ‖L∞(0,1),

‖g−f1‖L1(supp ψλ) ≤ 1
25·2−|λ|, ‖ψλ‖L∞(0,1) = [2|λ|/2‖ψ‖L∞(R)/‖ψ‖L2(R)]‖ψλ‖L2(0,1),

#{|λ| = k : 1
2 is an interior point of supp ψλ} = 9, and the fact that 〈ψλ, f2〉 van-

ishes when λ is not in any of these sets, we find an upper bound for the error√∑
|λ|>�2(ε)

|〈ψλ, f2〉|2 which is � 2−�2(ε)/2. Setting this upper bound equal to

ε/2 and solving for �2(ε) gives an approximation for f2 of length ≤ 9(�2(ε) + 1) =
O(| log(ε)|+1), which is asymptotically even much smaller than the bound we found
in the f1 case.

We will compare the results of our adaptive wavelet algorithm SOLVE with
those obtained with the Richardson iteration based method from [CDD02], which
we refer to as being the CDD2 method, and that reads as follows:

CDD2SOLVE[ν, ε] → w:
% ν ≥ ‖u‖
% Define the parameters ω := 2

‖A‖+‖A−1‖−1 and ρ := 1−κ(A)
1+κ(A) .

% Let θ and K be constants with 2ρK < θ < 1/2.

w := 0
while ν > ε do

for j = 1 to K

w := w + ω
(
RHS[ ρjν

2ωK ] − APPLY[w, ρjν
2ωK ]

)
endfor
ν := 2ρKν/θ
w := COARSE[w, (1 − θ)ν]

enddo

Here the coarsening routine COARSE is defined by
COARSE[w, δ] → wδ with ‖wδ − w‖ ≤ δ, where modulo some absolute factor

#suppwδ is minimal.
We tested our adaptive wavelet algorithm SOLVE or CDD2SOLVE with pa-

rameters α = 0.4, ω = 0.012618, and γ = 0.009581, or K = 5 and θ = 2/7,
respectively. Inside the ranges where the methods are proven to be of optimal
computational complexity, these parameters are close to the values that give quan-
titatively the best results. Actually, since these ranges result from a succession of
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worst case analyses, we may expect that outside them, i.e., concerning SOLVE for
larger α, ω and γ, more efficient algorithms are obtained. The numerical results,
given in Figure 2, illustrate the optimal computational complexity of both SOLVE
and CDD2SOLVE. Note that the time measurements do not start at zero, but
after 100 = 1 second. The results show that in this example the new method needs
less than a factor 10 in computing time to achieve the same accuracy.
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Figure 2. Convergence histories
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