
An Optimal Algorithm for Building

the Majority Rule Consensus Tree

Jesper Jansson1,�, Chuanqi Shen2, and Wing-Kin Sung3,4

1 Laboratory of Mathematical Bioinformatics (Akutsu Laboratory),
Institute for Chemical Research,

Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
jj@kuicr.kyoto-u.ac.jp

2 Stanford University, 450 Serra Mall, Stanford, CA 94305-2004, U.S.A.
shencq@stanford.edu

3 School of Computing, National University of Singapore, 13 Computing Drive,
Singapore 117417

ksung@comp.nus.edu.sg
4 Genome Institute of Singapore, 60 Biopolis Street, Genome, Singapore 138672

Abstract. A deterministic algorithm for building the majority rule con-
sensus tree of an input collection of conflicting phylogenetic trees with
identical leaf labels is presented. Its worst-case running time is O(nk),
where n is the size of the leaf label set and k is the number of input phylo-
genetic trees. This is optimal since the input size is Ω(nk). Experimental
results show that the algorithm is fast in practice.

1 Introduction

In the last 150 years, a vast number of phylogenetic trees [8,10,14,17,19] have
been constructed and published in the literature. Existing phylogenetic trees
may be based on different data sets or obtained by different methods, and do
not always agree with each other; two trees can contain contradicting branching
patterns even though their leaf label sets are identical. Also, when trying to
infer a new, reliable phylogenetic tree from real data, heuristics for maximizing
parsimony or resampling techniques such as bootstrapping may produce large
collections of identically leaf-labeled phylogenetic trees having slightly different
branching structures [2,3,7,8,19]. To deal with conflicts that arise between two
or more such trees in a systematic manner, the concept of a consensus tree was
invented [1,5]. Informally, a consensus tree is a phylogenetic tree which summa-
rizes a given collection of phylogenetic trees. In addition to resolving conflicts,
consensus trees may be employed to locate strongly supported groupings within
a collection of trees [8] or as a basis for similarity measures between two given
phylogenetic trees (measuring the similarity between phylogenetic trees is use-
ful, e.g., when querying phylogenetic databases [3] or evaluating methods for
phylogenetic reconstruction [12]).

� Funded by The Hakubi Project and KAKENHI grant number 23700011.

M. Deng et al. (Eds.): RECOMB 2013, LNBI 7821, pp. 88–99, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

An Optimal Algorithm for Building the Majority Rule Consensus Tree 89

There are many ways to reconcile structural differences and remove incon-
sistencies in a collection of trees. Consequently, several alternative definitions
of a “consensus tree” have been proposed since the 1970’s.1 In this paper, we
concentrate on one particular type of consensus tree called the majority rule
consensus tree [13], which is one of the most widely used consensus tree among
practitioners, and present a new algorithm for constructing it. Our algorithm
is fast in theory (it achieves optimal worst-case time complexity) and in prac-
tice. Furthermore, it is conceptually simple, relatively easy to implement, and
deterministic, i.e., it does not use randomization or hash tables to keep track of
clusters.

1.1 Definitions and Notation

We first give some basic definitions that will be used throughout the paper. A
phylogenetic tree is a rooted, unordered, leaf-labeled tree in which every internal
node has at least two children and all leaves have different labels. For short,
phylogenetic trees will be referred to as “trees” from here on.

For any tree T , the set of all nodes in T is denoted by V (T) and the set of all
leaf labels in T by Λ(T). Any subset of Λ(T) is called a cluster of Λ(T). For any
u ∈ V (T), T [u] denotes the subtree of T rooted at the node u, so that Λ(T [u]) is
the set of all leaf labels of leaves that are descendants of u.2 The cluster collection
of T is defined as C(T) =

⋃
u∈V (T){Λ(T [u])}. See Fig. 1 for an example. If a

cluster C ⊆ Λ(T) belongs to C(T), we say that C occurs in T .
The majority rule consensus tree is defined next. Let S = {T1, T2, . . . , Tk}

be a set of trees satisfying Λ(T1) = Λ(T2) = · · · = Λ(Tk) = L for some leaf label
set L. A cluster that occurs in more than k/2 of the trees in S is a majority
cluster of S, and the majority rule consensus tree of S [13] is the unique tree T
such that Λ(T) = L and C(T) consists of all majority clusters of S. The problem
studied in this paper is:

Given an input set S of trees with identical leaf label sets, compute the
majority rule consensus tree of S.

In the rest of the paper, we will use the following notation to refer to any input
set of trees: S = {T1, T2, . . . , Tk}, L = Λ(T1) = Λ(T2) = · · · = Λ(Tk), and
k = |S| and n = |L|. An example with k = 3 and n = 6 is provided in Fig. 1.

Finally, two clusters C1, C2 ⊆ Λ(T) are said to be pairwise compatible if
C1 ⊆ C2, C2 ⊆ C1, or C1∩C2 = ∅. Any cluster C ⊆ Λ(T) is said to be compatible
with T if C and Λ(T [u]) are pairwise compatible for every node u ∈ V (T). For
example, in Fig. 1, the cluster {a, c} is compatible with T1, but not compatible
with any of the other trees. If T1 and T2 are two trees with Λ(T1) = Λ(T2)
such that every cluster in C(T1) is compatible with T2 then it follows that every
cluster in C(T2) is compatible with T1, and we say that T1 and T2 are compatible.

1 See reference [5], Chapter 30 in [8], or Chapter 8.4 in [19] for some surveys on
consensus trees.

2 For convenience, any node is considered to be a descendant of itself. This implies
that if u is a leaf then Λ(T [u]) is a singleton set.

90 J. Jansson, C. Shen, and W.-K. Sung

T :1

f

d e

ca b

ba

c

d f

e

2T :

f

3T :

c

d e

a b

a b

d e fc

Majority rule
consensus tree:

Fig. 1. In this example, S = {T1, T2, T3} and L = Λ(T1) = Λ(T2) = Λ(T3) =
{a, b, c, d, e, f}. The cluster collections of T1, T2, and T3 are:

C(T1) =
{{a}, {b}, {c}, {d}, {e}, {f}, {a, b, c}, {d, e}, {d, e, f}, L},

C(T2) =
{{a}, {b}, {c}, {d}, {e}, {f}, {a, b}, {a, b, c}, {d, e, f}, {d, f}, L},

C(T3) =
{{a}, {b}, {c}, {d}, {e}, {f}, {a, b}, {c, d, e, f}, {d, e, f}, L},

The majority clusters of S are: {a}, {b}, {c}, {d}, {e}, {f}, {a, b}, {a, b, c}, {d, e, f}, L.

1.2 Previous Work

The majority rule consensus tree was introduced by Margush and McMorris [13]
in 1981. In 1985, Wareham [21] published a deterministic algorithm for building
the majority rule consensus tree with a worst-case running time of O(n2 +nk2).
This was the record until very recently; in [11], we developed a faster determin-
istic algorithm with O(nk log k) worst-case running time, based on recursion.

As for randomized methods, Amenta et al. [2] gave an algorithm with ex-
pected running time O(nk) but unbounded worst-case running time. Here, ran-
domization is used to count and store the number of occurrences of clusters
from S in suitably constructed hash tables. We note that the implementations
for computing majority rule consensus trees in existing software packages such
as PHYLIP [9], MrBayes [16], SumTrees in DendroPy [18], COMPONENT [15],
and PAUP* [20] also rely on randomization, and typically have unbounded worst-
case running times as well.

An Optimal Algorithm for Building the Majority Rule Consensus Tree 91

1.3 New Results and Organization of the Paper

This paper presents a deterministic algorithm for computing the majority rule
consensus tree. Its worst-case running time is O(nk), which is optimal because
the size of the input is Ω(nk). We thus resolve a long-standing open problem in
Phylogenetics.

To ensure that our algorithm is practical, we implemented it and performed
a series of experiments to compare its actual running time to that of the major-
ity rule consensus tree method in PHYLIP [9]. (We chose PHYLIP’s majority
rule consensus tree method as a benchmark because it is freely available, fre-
quently used in practice, and faster than many other methods such as SumTrees
in DendroPy [18] and COMPONENT [15].) The experiments showed that our
deterministic method is much faster than PHYLIP for certain types of large
inputs, e.g., when n � k, implying that randomization may not be necessary in
many cases.

The rest of the paper is organized as follows. Section 2 summarizes a few re-
sults from the literature that are needed later. To help us find an efficient solution
to the majority rule consensus tree problem, Section 3 outlines a technique for
identifying all majority elements in a list W of subsets of a fixed set, where a ma-
jority element is defined to be any element that occurs in more than half of the
subsets in W . This technique is subsequently employed in our new majority rule
consensus tree algorithm, named Fast Maj Rule Cons Tree, which is described
and analyzed in Section 4. Next, Section 5 reports the running times of our
prototype implementation of Fast Maj Rule Cons Tree when applied to some
simulated data sets. Finally, the availability of the prototype implementation is
discussed in Section 6.

2 Preliminaries

We shall make use of the following results from the literature. (For further details,
see the respective original references.)

2.1 Day’s Algorithm [6]

Day’s algorithm [6] takes two trees Tref and T with identical leaf label sets as
input. After linear-time preprocessing, the algorithm can check whether or not
any specified cluster that occurs in T also occurs in Tref , and each such check
can be performed in constant time.

Theorem 1. (Day [6]) Let Tref and T be two given trees with Λ(Tref) = Λ(T) =
L and let n = |L|. After O(n) time preprocessing, it is possible to determine, for
any u ∈ V (T), if Λ(T [u]) ∈ C(Tref) in O(1) time.

2.2 Procedure One-Way Compatible [11]

One-Way Compatible is a linear-time procedure defined in Section 4.1 of [11].
Its input is two trees T1 and T2 with identical leaf label sets, and its output

92 J. Jansson, C. Shen, and W.-K. Sung

is a copy of T1 in which every cluster that is not compatible with T2 has been
removed. The procedure is asymmetric; for example, if T1 consists of n leaves
attached to a root node and T2 �= T1 then One-Way Compatible(T1, T2) = T1,
while One-Way Compatible(T2, T1) = T2.

Theorem 2. ([11]) Let T1 and T2 be two given trees with Λ(T1) = Λ(T2) = L
and let n = |L|. Procedure One-Way Compatible(T1, T2) returns a tree T with
Λ(T) = L such that C(T) = {C ∈ C(T1) : C is compatible with T2} in O(n)
time.

2.3 Procedure Merge Trees [11]

The procedure Merge Trees from Section 2.4 in [11] combines all the clusters
from two compatible trees into one tree in linear time.

Theorem 3. ([11]) Let T1 and T2 be two given trees with Λ(T1) = Λ(T2) = L
that are compatible and let n = |L|. Procedure Merge Trees(T1, T2) returns a
tree T with Λ(T) = L and C(T) = C(T1) ∪ C(T2) in O(n) time.

2.4 The delete and insert Operations on a Tree

Let T be a tree and let u be any non-root, internal node in T . Applying the delete
operation on u modifies T as follows: First, all children of u become children of
the parent of u, and then u and the edge between u and its parent are removed.
See Fig. 2 for an illustration. Note that by applying the delete operation on
node u, the cluster Λ(T [u]) is removed from the cluster collection C(T) while all
other clusters are preserved. Also note that the time needed for this operation
is proportional to the number of children of u.

The insert operation is the inverse of the delete operation. It inserts a new
internal node into T , thereby creating an additional cluster in C(T).

f

d e

c

u

a b d ea b c

f

Fig. 2. Figure from [11]. Let T be the tree on the left and let u be the marked node.
Then Λ(T [u]) = {d, e, f} and applying the delete operation on u removes the clus-
ter {d, e, f} from C(T).

An Optimal Algorithm for Building the Majority Rule Consensus Tree 93

3 Finding All Majority Elements

In this section, we describe a technique for solving a problem closely related to
the majority rule consensus tree problem: Given a list W of subsets of a set X ,
output all majority elements in W , where a majority element in W is defined to
be any element of X that occurs in more than half of the subsets in W . It can be
solved easily by using one counter for each element in X , but when |X | is very
large and many elements from X never occur in W at all, we need a method
whose time complexity does not depend on |X |.

Denote k = |W|, and for any j ∈ {1, 2, . . . , k}, let W [j] be the jth subset in
the list W . For our purposes, it is sufficient to focus on the restriction of the
problem in which X is an ordered set and each W [j] is specified as a sorted list.
The following two-phase algorithm solves the restricted problem by maintaining
a set of current candidates, which are certain elements belonging to X , along
with a counter for each current candidate:

• Phase 1: Initialize the set of current candidates as the empty set. Sweep
throughW , i.e., for each j ∈ {1, 2, . . . , k}, considerW [j] and do the following.
Firstly, for every current candidate x, increase x’s counter by 1 if x ∈ W [j],
or decrease it by 1 if x �∈ W [j]; if x’s counter reaches 0 then remove x from
the set of current candidates. Secondly, insert every x ∈ W [j] which is not a
current candidate into the set of current candidates and initialize its counter
to 1.

• Phase 2: Let X ′ be the set of current candidates. Sweep throughW one more
time to count the total number of occurrences in W of every element in X ′.
Output the ones that occur more than k

2 times.

As an example, letX = {a, b, c, d, e} andW = (W [1], W [2], W [3]) = ({a, b, d},
{a, c}, {d, e}). Then the set of current candidates at the end of Phase 1 will be
{a, d, e}. In Phase 2, the algorithm outputs a and d.

To prove the correctness of this method, observe that for any x ∈ X , if x occurs
in more than k

2 subsets in W , then x must be one of the current candidates at
the end of Phase 1 because its counter is > 0. Hence, all majority elements in W
(if any) belong to the set X ′. However, as in the example above, some non-
majority elements might also be included in X ′. For this reason, Phase 2 is used
to identify those elements that indeed occur more than k

2 times. To analyze the
time complexity, since each W [j] is given as a sorted list, it is easy to maintain
the set of current candidates in a sorted list and implement all operations for that
value of j in time proportional to the number of current candidates. This yields:

Lemma 1. Let X be an ordered set and let W be a list of sorted subsets of X.
The above algorithm outputs all majority elements in W in O(k · y) time, where
k = |W| and at most y elements from X belong to the set of current candidates
at any point in time.

Remark: Boyer and Moore’s classical algorithm in [4] solves the special case of
the problem where every subset in the list W has cardinality 1. The algorithm
presented above can be viewed as an extension of [4].

94 J. Jansson, C. Shen, and W.-K. Sung

4 An Optimal Algorithm for the Majority Rule
Consensus Tree

This section presents the new algorithm Fast Maj Rule Cons Tree for building
the majority rule consensus tree of an input collection S = {T1, T2, . . . , Tk} of
identically leaf-labeled trees, where Λ(T1) = Λ(T2) = · · · = Λ(Tk) = L. It uses
the technique from Section 3 to locate all majority clusters in S by interpreting
X as the set of all possible clusters of L (so that every element x ∈ X is a subset
of L) and the list W as the length-k sequence of cluster collections of the trees
in S. In other words, W = (W [1],W [2], . . . ,W [k]) = (C(T1), C(T2), . . . , C(Tk)),
and for every j ∈ {1, 2, . . . , k}, it holds that W [j] ⊆ X .

Algorithm Fast Maj Rule Cons Tree also consists of two phases. In Phase 1,
it finds all clusters that might be majority clusters, and then, in Phase 2,

Algorithm Fast Maj Rule Cons Tree

Input: A collection S = {T1, T2, . . . , Tk} of trees with Λ(T1) = Λ(T2) = · · · =
Λ(Tk).

Output: The majority rule consensus tree of S .
/* Phase 1 */

1 T := T1

2 for each v ∈ V (T) do count(v) := 1

3 for j := 2 to k do

3.1 for each v ∈ V (T) in top-down order do

if Λ(T [v]) occurs in Tj then count(v) := count(v) + 1

else count(v) := count(v)−1; if count(v) reaches 0 then delete node v.

endfor

3.2 for every cluster C in Tj that is compatible with T but does not occur

in T do

Insert C into T .

Initialize count(v) := 1 for the new node v satisfying Λ(T [v]) = C.

endfor

endfor

/* Phase 2 */

4 for each v ∈ V (T) do count(v) := 0

5 for j := 1 to k do

5.1 for each v ∈ V (T) do

if Λ(T [v]) occurs in Tj then count(v) := count(v) + 1

6 for each v ∈ V (T) in top-down order do

if count(v) ≤ k/2 then perform a delete operation on v.

7 return T

End Fast Maj Rule Cons Tree

Fig. 3. The pseudocode for Algorithm Fast Maj Rule Cons Tree

An Optimal Algorithm for Building the Majority Rule Consensus Tree 95

eliminates those candidates that do not occur in more than k
2 of the trees in S.

Whatever clusters that remain must be the majority clusters of S. During the
algorithm’s execution, the current candidates are stored as nodes in a tree T , as
explained below.

The pseudocode is summarized in Fig. 3. Phase 1 and Phase 2 are described
in Sections 4.1 and 4.2, respectively. To achieve a good time complexity, some
steps of the algorithm are implemented by applying Day’s algorithm [6] and the
procedures One-Way Compatible and Merge Trees mentioned in Section 2; the
details are given in Section 4.3.

4.1 Description of Phase 1

Phase 1 of the algorithm examines the trees T1, T2, . . . , Tk in sequential order. As
in Section 3, the algorithm maintains a set of current candidates, each equipped
with its own counter. Every current candidate is some cluster of L and thus an
element from X , like before. However, there are two crucial differences between
Fast Maj Rule Cons Tree and the method in Section 3.

The first difference is that Fast Maj Rule Cons Tree does not store the set
of current candidates in a sorted list as in Section 3, but encodes them as nodes
in a tree T whose leaf label set equals L. (This is the key to getting an efficient
algorithm.) To be precise, every node v in T represents a current candidate
cluster Λ(T [v]) and has a counter count(v). For any j ∈ {1, 2, . . . , k}, when
treating tree Tj, all clusters in C(T) that also belong to C(Tj) get their counters
incremented by 1, while all clusters in C(T) that do not belong to C(Tj) get
their counters decremented by 1. If this leads to some counter reaching 0 then
the internal node in T corresponding to that cluster is deleted. Next, all other
clusters in C(Tj) that are not current candidates but are compatible with T are
upgraded to current candidate-status by inserting them into T and initializing
their corresponding nodes’ counters to 1.

The other important difference between this approach and the one in Section 3
is that for any j ∈ {2, . . . , k}, a cluster C that occurs in Tj but is not a current
candidate does not automatically become a current candidate; C will only be
inserted into T if it is pairwise compatible with all the current candidates. We
therefore need an additional lemma to guarantee the correctness of Phase 1:

Lemma 2. For any C ⊆ L, if C is a majority cluster of S then C ∈ C(T) at
the end of Phase 1.

Proof. Suppose that C is a majority cluster of S. During the execution of
Phase 1, for any j ∈ {1, 2, . . . , k}, say that C is blocked in iteration j if the
following happens: C is not a current candidate, C occurs in tree Tj, and C is
not allowed to become a current candidate because C is not compatible with the
current T .

Let a denote the number of trees in S in which C occurs. By the definition
of a majority cluster, a > k

2 . Hence, there are k − a < k
2 trees in S in which C

does not occur. We claim that each such tree Tx can cancel out the effect on C’s

96 J. Jansson, C. Shen, and W.-K. Sung

counter of at most one of the a occurrences of C in S. To prove the claim, let Tx

be any tree in S in which C does not occur and consider the two possible cases:

• If C is a current candidate when Tx is considered, then C’s counter will be
decremented by 1.

• If C is not a current candidate when Tx is considered, then some clusters
which are not pairwise compatible with C may get their counters incremented
by 1. As a result, C may be blocked in another iteration.

Next, since a − (k − a) > k
2 − k

2 = 0, the counter for C will have a non-zero
value at the end of Phase 1. By the definition of the tree T in the algorithm,
C ∈ C(T) holds. 	

4.2 Description of Phase 2

Phase 2 of the algorithm is straightforward. It checks how many times every
cluster in the tree T occurs among T1, T2, . . . , Tk. Any clusters that do not occur
more than k

2 times are removed from T . It follows immediately from Lemma 2
that the cluster collection of the remaining tree T equals the set of all majority
clusters of S. Hence, the output of the algorithm is the majority rule consensus
tree.

Lemma 3. The tree output by Algorithm Fast Maj Rule Cons Tree at the end
of Phase 2 is the majority rule consensus tree of S.

4.3 Time Complexity Analysis

We now analyze the worst-case time complexity of Fast Maj Rule Cons Tree.

Theorem 4. Algorithm Fast Maj Rule Cons Tree constructs the majority rule
consensus tree of S in O(nk) worst-case time, where n = |L| and k = |S|.
Proof. We first show that in Phase 1, every iteration of the main loop in Step 3
takes O(n) time. To perform Step 3.1 in O(n) time, run Day’s algorithm [6] with
Tref = Tj and then check each Λ(T [v]) to see if it occurs in Tj . By Theorem 1,
this requires O(n) time for preprocessing, and each of the O(n) nodes in V (T)
can be checked in O(1) time. The delete operations take O(n) time in total
since the nodes are handled in top-down order (every node is moved at most
once because if some node is deleted and its children moved then these children
will not need to be moved again in the same iteration). Next, Step 3.2 can
be implemented in O(n) time by letting P := One-Way Compatible(Tj , T) and
Q := Merge Trees(P, T), and then updating the structure of T to make T
isomorphic to the obtained Q (and setting the counters of all new nodes to 1).
This works because according to Theorem 2, P is a tree consisting of the clusters
occurring in Tj that are compatible with the set of current candidates, and by
Theorem 3, Q is the result of inserting each such cluster into T , if it did not
already occur in T . There are O(k) iterations in the main loop, so Phase 1 takes
O(nk) time.

An Optimal Algorithm for Building the Majority Rule Consensus Tree 97

In Phase 2, Step 5.1 is executed in O(n) time, again by applying Day’s al-
gorithm [6] with Tref = Tj so that each Λ(T [v]) can be checked in O(1) time.3

Thus, the loop in Step 5 takes O(nk) time. Step 6 can be carried out in O(n)
time by treating the nodes in top-down order as above. In total, Phase 2 also
takes O(nk) time. 	

5 Experimental Results

We implemented Fast Maj Rule Cons Tree in C++ and compared its worst-
case and average running times to those of PHYLIP [9] and the previously fastest
(O(nk log k) time) deterministic algorithm from [11] for some simulated data
sets. The experiments were run on Ubuntu Nutty Narwhal, a 64-bit operating
system with 8.00 GB RAM, and a 2.20 GHz CPU. Below, we refer to the majority
rule consensus tree method in PHYLIP as “M-PHYLIP”, the implementation
of the algorithm in [11] as “M-Fast-v1”, and the implementation of the new
algorithm Fast Maj Rule Cons Tree presented in this paper as “M-Fast-v2”.

We generated 10 data sets for various specified values of the parameters n
and k with the method described in Section 6.2 of [11], applied the three majority
consensus tree methods to each data set, and measured the running times. First,
the following values of n and k were evaluated:

• (a) n = 500, k = 1000

• (b) n = 1000, k = 500

• (c) n = 2000, k = 1000

• (d) n = 5000, k = 100

The worst-case and average running times (in seconds) are reported below.

(a) n = 500, k = 1000:

Worst-case Average

M-PHYLIP 1.94 1.88
M-Fast-v1 8.10 8.00
M-Fast-v2 3.72 3.69

(b) n = 1000, k = 500:

Worst-case Average

M-PHYLIP 3.50 3.19
M-Fast-v1 7.54 7.38
M-Fast-v2 3.80 3.67

(c) n = 2000, k = 1000:

Worst-case Average

M-PHYLIP 34.07 30.03
M-Fast-v1 32.24 31.96
M-Fast-v2 16.09 14.86

(d) n = 5000, k = 100:

Worst-case Average

M-PHYLIP 93.25 90.04
M-Fast-v1 6.41 6.27
M-Fast-v2 4.40 4.28

3 This way of counting occurrences of clusters has been used elsewhere in the literature,
e.g., in [21] and on p. 217 of [19].

98 J. Jansson, C. Shen, and W.-K. Sung

The experimental results indicate that Fast Maj Rule Cons Tree is exception-
ally useful when n is large. For example, when n = 5000 and k = 100, it is about
20 times faster than M-PHYLIP. On the other hand, M-PHYLIP is faster in
practice for inputs with n � k.

Next, we tried the methods on some even bigger inputs. M-PHYLIP returned
“Error allocating memory” for n = 2000, k ≥ 2000, whereas M-Fast-v2 worked
fine and obtained the following worst-case and average running times.

(e) n = 2000, k = {2000, 3000, 4000, 5000}:
k Worst-case Average

2000 31.22 30.86
3000 47.42 46.23
4000 62.54 61.88
5000 78.96 77.78

This shows that Fast Maj Rule Cons Tree may come in handy when analyzing
large phylogenetic data sets.

6 Concluding Remarks

We have proved that the majority rule consensus tree can be built in (opti-
mal) O(nk) time in the worst case, without using randomization. Although this
might at first appear to be a purely theoretical result, it has practical implica-
tions as well. The experiments demonstrated that our deterministic algorithm
Fast Maj Rule Cons Tree is much faster than randomized methods such as the
one found in PHYLIP [9] when the input trees are very large, i.e., when n � k.
In contrast to current practice, this suggests that it might not always be a good
idea to use randomization and hashing when computing majority rule consensus
trees.

We hope that the new algorithm will be a helpful tool for bioinformaticians
working with huge phylogenetic trees in the future. We have included it in the
FACT (Fast Algorithms for Consensus Trees) package [11] at:

http://compbio.ddns.comp.nus.edu.sg/~consensus.tree/

The C++ source code of our prototype implementation used in Section 5 can
also be downloaded from the same webpage.

References

1. Adams III., E.N.: Consensus techniques and the comparison of taxonomic trees.
Systematic Zoology 21(4), 390–397 (1972)

2. Amenta, N., Clarke, F., St. John, K.: A Linear-Time Majority Tree Algorithm.
In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp.
216–227. Springer, Heidelberg (2003)

An Optimal Algorithm for Building the Majority Rule Consensus Tree 99

3. Bansal, M.S., Dong, J., Fernández-Baca, D.: Comparing and aggregating partially
resolved trees. Theoretical Computer Science 412(48), 6634–6652 (2011)

4. Boyer, R.S., Moore, J.S.: MJRTY – A Fast Majority Vote Algorithm. In: Boyer,
R.S. (ed.) Automated Reasoning: Essays in Honor of Woody Bledsoe. Automated
Reasoning Series, pp. 105–117. Kluwer Academic Publishers (1991)

5. Bryant, D.: A classification of consensus methods for phylogenetics. In: Janowitz,
M.F., Lapointe, F.-J., McMorris, F.R., Mirkin, B., Roberts, F.S. (eds.) Bioconsen-
sus. DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
vol. 61, pp. 163–184. American Mathematical Society (2003)

6. Day, W.H.E.: Optimal algorithms for comparing trees with labeled leaves. Journal
of Classification 2(1), 7–28 (1985)

7. Degnan, J.H., DeGiorgio, M., Bryant, D., Rosenberg, N.A.: Properties of consensus
methods for inferring species trees from gene trees. Systematic Biology 58(1), 35–54
(2009)

8. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Inc., Sunderland (2004)
9. Felsenstein, J.: PHYLIP, version 3.6. Software package, Department of Genome

Sciences, University of Washington, Seattle, U.S.A. (2005)
10. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University

Press, New York (1997)
11. Jansson, J., Shen, C., Sung, W.-K.: Improved algorithms for constructing consensus

trees. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2013, pp. 1800–1813. SIAM (2013)

12. Kuhner, M.K., Felsenstein, J.: A simulation comparison of phylogeny algo-
rithms under equal and unequal evolutionary rates. Molecular Biology and Evolu-
tion 11(3), 459–468 (1994)

13. Margush, T., McMorris, F.R.: Consensus n-Trees. Bulletin of Mathematical Biol-
ogy 43(2), 239–244 (1981)

14. Nakhleh, L., Warnow, T., Ringe, D., Evans, S.N.: A comparison of phylogenetic
reconstruction methods on an Indo-European dataset. Transactions of the Philo-
logical Society 103(2), 171–192 (2005)

15. Page, R.: COMPONENT, version 2.0. Software package. University of Glasgow,
U.K. (1993)

16. Ronquist, F., Huelsenbeck, J.P.: MrBayes 3: Bayesian phylogenetic inference under
mixed models. Bioinformatics 19(12), 1572–1574 (2003)

17. Semple, C., Steel, M.: Phylogenetics. Oxford Lecture Series in Mathematics and
its Applications, vol. 24. Oxford University Press (2003)

18. Sukumaran, J., Holder, M.T.: DendroPy: a Python library for phylogenetic com-
puting. Bioinformatics 26(12), 1569–1571 (2010)

19. Sung, W.-K.: Algorithms in Bioinformatics: A Practical Introduction. Chapman &
Hall/CRC (2010)

20. Swofford, D.L.: PAUP*, version 4.0. Software package. Sinauer Associates, Inc.,
Sunderland (2003)

21. Wareham, H.T.: An efficient algorithm for computing Ml consensus trees. B.Sc.
Honours thesis, Memorial University of Newfoundland, Canada (1985)

	An Optimal Algorithm for Building the Majority Rule Consensus Tree
	Introduction
	Definitions and Notation
	Previous Work
	New Results and Organization of the Paper

	Preliminaries
	Day's Algorithm D85
	Procedure One-Way_Compatible JSS13
	Procedure Merge_Trees JSS13
	The delete and insert Operations on a Tree

	Finding All Majority Elements
	An Optimal Algorithm for the Majority Rule Consensus Tree
	Description of Phase 1
	Description of Phase 2
	Time Complexity Analysis

	Experimental Results
	Concluding Remarks
	References

