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Abstract. We present a deterministic algorithm A that, in O(m2) time, verifies whether a given
m by m bipartite graph G is regular, in the sense of Szemerédi [E. Szemerédi, Regular partitions

of graphs, Problèmes Combinatoires et Théorie des Graphes (Colloq. Internat. CNRS, Univ. Orsay,
Orsay, 1976) (Paris), Colloques Internationaux CNRS n. 260, 1978, pp. 399–401]. In the case in
which G is not regular enough, our algorithm outputs a witness to this irregularity. Algorithm A

may be used as a subroutine in an algorithm that finds an ε-regular partition of a given n-vertex
graph Γ in time O(n2). This time complexity is optimal, up to a constant factor, and improves
upon the bound O(M(n)), proved by Alon, Duke, Lefmann, Rödl, and Yuster [N. Alon, R. A. Duke,
H. Lefmann, V. Rödl, and R. Yuster, The algorithmic aspects of the regularity lemma, Journal of
Algorithms, 16(1) (1994), pp. 80–109], where M(n) = O(n2.376) is the time required to square a
0–1 matrix over the integers.

Our approach is elementary, except that it makes use of linear-sized expanders to accomplish a
suitable form of deterministic sampling.
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1. Introduction and the main result. Szemerédi’s regularity lemma [31] is
a fundamental result in graph theory (see [25] for an excellent survey). Roughly
speaking, this lemma states that any graph admits a partition of its vertex set so that
most pairs induce ‘pseudorandom’ or regular bipartite graphs. The original proof
of the regularity lemma was non-constructive, but Alon, Duke, Lefmann, Rödl, and
Yuster [1, 2] succeeded in developing a fast deterministic algorithm for finding such a
partition. Many of the existential results based on the regularity lemma could then be
turned into algorithmic results. The algorithm in [1, 2] finds a regular partition of an
n-vertex graph in O(M(n)) deterministic time, where M(n) = O(n2.376) (see [11]) is
the time required to square a 0–1 matrix over the integers. More recently, Frieze and
Kannan [18] (see also [19]) showed that sampling can be used to develop a O(n) time
randomized algorithm that, given an n-vertex graph G, outputs a partition for G that
is regular with high probability.

In both algorithms above (and in all algorithms for variants of the regularity
lemma), the main algorithmic problem is to decide whether a given m by m bipartite
graph G is regular; if G is not regular, we are required to find a ‘witness’ for this
irregularity. In this paper, we present a deterministic algorithm that solves this
problem in O(m2) time. Given our algorithm, one can derive in a standard way
an algorithm for Szemerédi’s regularity lemma that finds a regular partition of an n-
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vertex graph in time O(n2). A key feature of our approach lies in the use of linear-sized
expanders for carrying out a certain procedure that may be thought of as deterministic
sampling.

1.1. The main result. Let G = (A,B;E) be a bipartite graph. If ∅ 6= U ⊂ A,
∅ 6= V ⊂ B, the density of (U, V ) in G is d(U, V ) = e(U, V )/|U ||V |, where we
write e(U, V ) = eG(U, V ) for the number of edges with one endpoint in U and the
other endpoint in V . For ε > 0, we say that G is ε-regular if, for all U ⊂ A, |U | ≥ ε|A|,
and V ⊂ B, |V | ≥ ε|B|, we have

|d(U, V ) − d(A,B)| ≤ ε .(1.1)

In case G is not ε-regular and a certain pair (U, V ) certifies this fact, then we say
that (U, V ) is a witness to the ε-irregularity of G.

Let Γ = (V,E) be a graph. A partition (Vi)
k
i=0 of the vertex set V , V =

⋃k
i=0 Vi,

is said to be an equitable partition (with the exceptional class V0) if |V1| = · · · = |Vk|.
If V =

⋃k
i=0 Vi is an equitable partition of V such that the size of the exceptional class

|V0| ≤ εn and at least (1− ε)
(

k
2

)

pairs (Vi, Vj), where 1 ≤ i < j ≤ k, are ε-regular, we
say that the partition (Vi)

k
i=0 is an ε-regular partition. We say that a pair (U,W ) is

ε-regular if the bipartite graph induced by (U,W ) is ε-regular.
Szemerédi’s remarkable result may be stated as follows.
Theorem 1.1. For any ε > 0 and any k0 ≥ 1, there is K0(ε, k0) such that any

graph Γ admits an ε-regular partition into k parts for some k satisfying k0 ≤ k ≤
K0(ε, k0).

Alon, Duke, Lefmann, Rödl, and Yuster [1, 2] proved the following algorithmic
version of Theorem 1.1.

Theorem 1.2. There is a deterministic algorithm A0 that, given ε > 0, k0 ≥ 1,
and Γ, produces an ε-regular partition for Γ into k parts for some k satisfying k0 ≤
k ≤ K ′

0, where K ′
0 = K ′

0(ε, k0) depends only on ε and k0. Moreover, algorithm A0

runs in time O(M(n)) = O(n2.376) if Γ has n vertices.
Consider now the following closely related decision problem.
Problem 1.3. Given a graph G, a pair (U,W ) of non-empty, pairwise disjoint

sets of vertices of G, and a positive ε, decide whether (U,W ) is ε-regular with respect
to G.

As it turns out, the problem above is coNP-complete [1, 2]. However, as observed
already in [1, 2], to prove Theorem 1.2, it suffices to solve an approximate version of
the decision problem above. For instance, the following result [15] suffices.

Theorem 1.4. There exists an algorithm A1 for which the following holds.
When A1 receives as input an ε > 0 and a bipartite graph G = (A,B;E) with |A| =
|B| = m ≥ (2/ε)5, it either correctly asserts that G is ε-regular, or else it returns a
witness for the ε′-irregularity of G, where ε′ = ε′A1

(ε) = ε5/16. The running time
of A1 is O(M(m)) = O(m2.376).

(See Frieze and Kannan [20] for a somewhat different approach to verifying reg-
ularity, based on singular values of matrices.) Our main result is an improvement of
Theorem 1.4 above, and may be stated as follows.

Theorem 1.5 (The main result). There exists an algorithm A for which
the following holds. When A receives as input an ε > 0 and a bipartite graph G =
(A,B;E) with |A| = |B| = m ≥ m0(ε), it either correctly asserts that G is ε-regular,
or else it returns a witness for the ε′-irregularity of G, where ε′ = ε′A(ε) = ε20/1024.
The running time of A is O(m2).
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We describe our algorithm A in §3.1. Deriving an algorithm for the regularity
lemma from Theorem 1.5 is standard (cf. §3.2).

Corollary 1.6. There is a deterministic algorithm A′
0 that, given ε > 0, k0 ≥ 1,

and a graph Γ, produces an ε-regular partition for Γ into k parts for some k satis-
fying k0 ≤ k ≤ K ′′

0 , where K ′′
0 = K ′′

0 (ε, k0) depends only on ε and k0. Moreover,
algorithm A′

0 runs in time O(n2) if Γ has n vertices.
Clearly, Algorithm A′

0 above has optimal time complexity, up to the constant
implicit in the big-O notation. In [1, 2], several algorithmic consequences are derived
from Theorem 1.2. In the examples presented there, the time complexity of the
algorithms is O(M(n)). Using A′

0 from Corollary 1.6, one obtains algorithms with
optimal time complexity O(n2). We also observe that a similar improvement may
be obtained from Theorem 1.5 for the subgraph counting algorithm given in Duke,
Lefmann, and Rödl [15].

Let us also mention that an important variant of the regularity lemma, suitable
for finding induced subgraphs, was recently discovered by Alon, Fischer, Krivelevich,
and Szegedy [3, 4], in the context of property testing (see, e.g., [21] and [22, 23]). In
the applications of their regularity lemma in [3, 4] the authors do not need algorithms
for finding their regular partitions; however, they observe that an algorithmic version
of their lemma readily follows from results such as Theorem 1.4. Again, an O(n2) time
algorithm follows immediately from Theorem 1.5.

Finally, we mention that one may prove a ‘non-bipartite version’ of Theorem 1.5.
This variant of our result implies that one may check in time O(n2) whether a given
n-vertex graph Γ is quasi-random, in the sense of Chung, Graham, and Wilson [10].
Moreover, if Γ is not quasi-random, then our algorithm will produce a suitable witness
proving this, i.e., an induced subgraph with Ω(n) vertices whose density deviates
substantially from the density of Γ (see Section 1.3.5 for more details).

1.2. Local conditions for regularity. One may prove Theorem 1.4 by consid-
ering a certain ‘local condition’ on G = (A,B;E) that is essentially equivalent to the
regularity of G. For simplicity, let us suppose that G is degree-regular. The condition
is simply that the following inequality should hold:

∑

x, y∈A

∣

∣dG(x, y) − p(G)2m
∣

∣ ≤ δp(G)2m3,(1.2)

where dG(x, y) = |NG(x) ∩ NG(y)| is the so-called codegree of x and y, and p(G) =
|E|/|A||B| = |E|/m2, withm = |A| = |B|, is the density ofG. Clearly, inequality (1.2)
may be checked in O(m3) time, and, in fact, using fast matrix multiplication, one may
verify (1.2) in O(M(m)) = O(m2.376) time. The precise meaning of the equivalence
of the ε-regularity of G and the validity of (1.2) is as follows: for all ε > 0 there
is δ > 0 such that if (1.2) holds, then G is ε-regular. Moreover, for all δ > 0, there
is ε′ > 0 such that if (1.2) fails then G is not ε′-regular, and, in fact, a witness
to this ε′-irregularity may be constructed explicitly in the same deterministic time.
Some of the ideas described in this paragraph have appeared in the literature under
many guises. (For a detailed discussion on the combinatorial aspects, see [24]; for
applications of these ideas in theoretical computer science, see [28] and the references
therein.) Basically, we are obtaining a somewhat surprising amount of information
from ‘pairwise independence’. We do not go into the details here.

The key idea in the proof of Theorem 1.5 is that we may restrict the sum in (1.2)
to a small, randomly selected collection of pairs {x, y} (and, naturally, scale down the
right-hand side). This would not be so satisfactory, as we would have a randomized
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procedure: we in fact show that we may achieve the same effect by ‘deterministic
sampling’, using the edge set of a linear-sized expander J (see the definition of prop-
erty P(J, δ) in §3.1.2).

1.3. Algorithmic applications. As mentioned above, Algorithms A and A′
0

immediately imply improvements on deterministic algorithms that are based on Sze-
merédi’s regularity lemma. Here we present a few typical examples of such algorithms.
For more algorithmic applications of the regularity lemma see [2] and [15].

1.3.1. MAXCUT in dense graphs. There has been considerable interest in the
following computational problem recently.

Problem 1.7 (MAXCUT). Given a graphG, find a partition (U,W ) of the vertex
set of G so that the number of edges e(U,W ) between U and W is maximum.

It follows from the algorithmic version of the regularity lemma that one may
design a polynomial time approximation scheme for MAXCUT if the input graphs G
are restricted to dense graphs. Let us be more precise.

Let α be a fixed positive real. In this section, we only consider graphs G with

edge density e(G)
(

|V (G)|
2

)−1 ≥ α. Theorem 1.2 implies the following result: for any ε
and α > 0, there exist a constant C(ε, α) and a deterministic algorithm AMC so
that, given an n-vertex graph G with edge density ≥ α, algorithm AMC returns a
solution (U ′,W ′) for MAXCUT such that

e(U ′,W ′) ≥ (1 − ε)e(U∗,W ∗),(1.3)

where (U∗,W ∗) is an optimal solution for G. Furthermore, the running time of AMC

is ≤ C(ε, α)M(n).
Algorithm AMC uses Algorithm A0 in Theorem 1.2 as a subroutine; we may use,

instead, Algorithm A′
0 in Corollary 1.6: let A′

MC be the corresponding algorithm.
Theorem 1.8. On input G as above, the deterministic algorithm A′

MC produces
a partition (U,W ) satisfying (1.3) in time ≤ C ′(ε, α)n2, where C ′(ε, α) is a constant
that depends only on ε and α.

We remark that a randomized algorithm with time complexity O(n2) was already
given by de la Vega [14]. For related results concerning randomized algorithms, the
reader is referred to Frieze and Kannan [18, 19].

1.3.2. The quasi-Ramsey number and maximum acyclic subgraphs. Let
f : E(Kn) → {−1, 1} be a function and set f(S) =

∑

e∈(S

2)
f(e) where S ⊆ [n]. Here,

as usual, Kn stands for the complete graph on n vertices and
(

S
2

)

denotes the set of
all pairs on the set S.

The quasi-Ramsey number g(n) is defined as

g(n) = min
f

max
S⊆[n]

|f(S)| .

Erdős and Spencer [17] showed that

c1n
3/2 ≤ g(n) ≤ c2n

3/2,

for some absolute constants c1 and c2 > 0.
Let Tn be a tournament and Pn a transitive tournament both on n vertices. Set

|Tn ∩ Pn| to be the number of common oriented arcs of Tn and Pn. The tournament
ranking function h(n) is defined by

h(n) = min
Tn

max
Pn

|Tn ∩ Pn| ,
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i.e., h(n) is the maximum number of edges one can choose in any tournament of order
n without creating an oriented cycle. Spencer [29, 30] showed that

c1n
3/2 ≤ h(n) − 1

2

(

n

2

)

≤ c2n
3/2,

for some absolute constants c1 and c2 > 0.

A polynomial time approximation scheme (PTAS) for a maximization problem
is a family of algorithms {S̺ : 0 < ̺ < 1} as follows. For any given 0 < ̺ < 1,
algorithm S̺ runs in polynomial time and finds a solution whose value is at least
(1 − ̺)OPT, where OPT in the optimal value. Using a constructive version of the
regularity lemma Czygrinow, Poljak, and Rödl [13, Theorem 3] designed a PTAS for
the ‘dense’ quasi-Ramsey problem and for tournament ranking.

For f : E(Kn) → {−1, 1} set OPT(f) = maxS⊆[n] |f(S)|. Our algorithm for
the regularity lemma implies an improvement on the time complexity of the PTAS
designed in [13].

Theorem 1.9. Let c > 0 be fixed. For every 0 < ̺ < 1, there is a O(n2) time
algorithm that constructs a set S such that

|f(S)| ≥ (1 − ̺)OPT(f),

for any instance f : E(Kn) → {−1, 1} with OPT(f) ≥ cn2.

Now, let OPT(Tn) = maxPn
|Tn ∩ Pn| where Tn is a tournament. Algorithm A′

0

in Corollary 1.6 improves the time complexity of the PTAS designed in [13] to O(n2).

Theorem 1.10. Let 0 < ̺ < 1. Then there is a O(n2) time algorithm that,
given a tournament Tn, constructs an ordering σ of the vertices of Tn so that at least
(1 − ̺)OPT(Tn) arcs agree with σ.

1.3.3. Robustly high-chromatic graphs. Goldreich, Goldwasser, and Ron [22,
23] have recently initiated a systematic study of property testing for combinatorial
structures. Roughly speaking, in property testing, one has a property P of interest,
and one is given an object X and a real number ε > 0. The task is then to decide
whether X has P or it is ε-far from any object Y having P (we suppose our ob-
jects are in some metric space). Furthermore, we wish to perform this test extremely
quickly; typically, the tests examine a small random portion of X and distinguish be-
tween the two cases above with high probability of success. Thus, in an appropriate
computational model, the tests have sublinear complexity (see [22, 23] for details).

A graph property P that has been proved to be testable [22, 23] is the property
of having chromatic number at least k, for any fixed k. This result was in fact
implicit in [16], where the regularity lemma is used to prove that ‘robustly high-
chromatic graphs’ admit witnesses of bounded size. Indeed, the existential result in
Theorem 1.11 below was proved in [16]. The algorithmic result in Theorem 1.11, but
with time complexity O(M(n)), was proved in [1, 2].

Theorem 1.11. Let k ≥ 3 be an integer and let ε > 0 be a real constant. Then
there exist integers n0 = n0(k, ε) and f = f(k, ε) and a constant ν = ν(k, ε) > 0 such
that if G = (V,E) is a graph with n ≥ n0 vertices, then either

(i) there exists a graph H on h ≤ f vertices with chromatic number χ(H) ≥ k
that occurs in G at least νnh times as a subgraph, or else

(ii) there exists a set E′ ⊆ E with |E′| ≤ εn2 such that the subgraph G′ =
(V,E \ E′) satisfies χ(G′) < k.
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Furthermore, there is a deterministic algorithm that receives as input a graph G =
(V,E) as above and, in time O(n2), outputs either a graph H as in (i), or else it
outputs a set of edges E′ as in (ii), together with a proper coloring ∆: V → {1, . . . , k−
1} of the subgraph G′.

The approach in [22, 23] does not use the regularity lemma, and implies the
existential part of Theorem 1.11. Moreover that approach also gives a randomized,
polynomial time algorithm for the constructive part of Theorem 1.11.

Finally, we mention that Czumaj and Sohler [12] have recently proved that the
property of having chromatic number at least k is also testable for hypergraphs.

1.3.4. Counting subgraphs. In this section, we describe an algorithm for ap-
proximately counting small subgraphs in large graphs. This algorithm will also be an
application of Algorithm A′

0 from Corollary 1.6.
We need to introduce some notation. We shall follow [15]. Let G = (V,E) be a

graph on n vertices whose vertex set V = {v1, . . . , vn} is ordered by v1 < · · · < vn.
Let the set W = {w1, . . . , wk} be ordered by w1 < · · · < wk. We say that a graph H
with vertex set W is order isomorphic to an induced subgraph H ′ of G if there exists
an isomorphism φ : H → H ′ with the property that for each i and j, if wi < wj ,

then φ(wi) < φ(wj). Let H1, . . . ,Ht, where t = 2(
k

2), be the list of all graphs on the
set W and let σk(G) = (h1, . . . , ht) be the t-dimensional vector in which each hi is
the number of induced subgraphs of G to which Hi is order isomorphic.

The following proposition asserts the existence of a certain type of approximation
algorithm for the vector σk(G). For more details, see [15].

Theorem 1.12. Let k ≥ 3 be a fixed integer and suppose δ > 0 is a fixed real.
There is an algorithm that, on input G, a labeled, ordered graph on n vertices, produces
an approximation σk(G) = (h1, . . . , ht) to the vector σk(G) = (h1, . . . , ht) with the
property that

|hi − hi| ≤ δ

(

n

k

)

for all 1 ≤ i ≤ t. This algorithm runs in time O(n2).
In [15], the authors consider the problem of approximating σk(G) for k = k(n)

slowly increasing functions of n. Our results may be used to improve on the time
complexity of the algorithms given in [15] for such k = k(n), but we shall not go into
the details.

1.3.5. Checking quasi-randomness. Thomason [32] and Chung, Graham,
and Wilson [10] initiated a systematic study of quasi-random properties of graphs:
these are properties that are shared by almost all graphs, and are in fact determin-
istically asymptotically equivalent, i.e., if a large graph has one of these properties,
then it in fact has all of them.

The investigation of quasi-randomness in combinatorics turned out to be a very
rich line of research, as shows the series of papers by Chung and Graham on the subject
(see [9] for recent developments, and the references therein). Besides graphs, other
combinatorial structures such as tournaments, set-systems, and subsets of Z/nZ, have
been studied from this perspective (see [6, 7, 8].) Finally, we mention that applications
of some of the underlying ideas in this area have occurred in the literature in different
contexts; the interested reader is referred to [5, Chapter 9] and [24].

In this section, we shall consider the computational problem of determining
whether or not a given graph is quasi-random. We are also interested in an ad-
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ditional requirement: in the case in which the input graph is not quasi-random, a
‘witness’ to certify this fact should be efficiently produced.

We shall use the following definition.

Definition 1.13. Let reals 0 < ε ≤ 1 and 0 < δ ≤ 1 be given. We shall say
that a graph G is (1/2, ε, δ)-quasi-random if, for all U , W ⊂ V (G) with U ∩W = ∅
and |U |, |W | ≥ δn, we have

∣

∣

∣

∣

eG(U,W ) − 1

2
|U ||W |

∣

∣

∣

∣

≤ 1

2
ε|U ||W |.

In [24] the authors consider a new quasi-random property to develop an algorithm
for testing quasi-randomness. Let G be a graph on n vertices and let J be a (̺, L)-
uniform graph on the same vertex set (for the definition, see Section 2). To state the
results we need to introduce some notation. For a vertex i of G we set N(i) to be its
neighborhood. Further, we write N(i)△N(j) for the symmetric difference of the sets
N(i) and N(j).

To decide about the quasi-randomness of G we introduce the following couple
of properties. Let 0 < ε, δ ≤ 1 be real numbers. We say that G satisfies property
T△(J, ε) if we have

∑

{i,j}∈E(J)

∣

∣

∣
|N(i)△N(j)| − 1

2
n
∣

∣

∣
≤ 1

2
εne(J) .

Note that this property is closely related to our property P introduced below. Simi-
larly, we say that G satisfies property T ′

△(J, γ, ε) if the inequality

∣

∣

∣
|N(i)△N(j)| − 1

2
n
∣

∣

∣
≤ 1

2
εn

fails for at most γe(J) edges {i, j} ∈ E(J).

The following two characterization theorems are proved in [24, Theorems 56, 57].

Theorem 1.14. For any 0 < ε, δ ≤ 1 and any L, there exist ε0 = ε0(ε, δ, L) > 0
and r0 = r0(ε, δ, L) ≥ 1 for which the following holds. Let G and J be two graphs on
the same vertex set of n vertices. Assume further that J is a (̺, L)-uniform graph
with the average degree r = ̺n ≥ r0. Then, if G satisfies the property T△(J, ε′) for
some 0 < ε′ ≤ ε0, then G is (1/2, ε, δ)-quasi-random.

Theorem 1.15. For any 0 < γ, ε ≤ 1 and any L, there exist ε1 = ε1(γ, ε, L) > 0,
δ1 = δ1(γ, ε, L) > 0, r1 = r1(γ, ε, L) ≥ 1, and N1 = N1(γ, ε, L) ≥ 1, for which the
following holds. Let G and J be two graphs on the same vertex set of n ≥ N1 vertices.
Assume further that J is a (̺, L)-uniform graph with the average degree r = ̺n ≥ r1.
Then, if G is (1/2, ε′, δ′)-quasi-random for some 0 < ε′ ≤ ε1 and 0 < δ′ ≤ δ1, then
property T ′

△(J, γ, ε) holds for G.

It is straightforward to see that the properties T and T ′ can be checked in O(n2)
deterministic time. Moreover, if a graph G does not satisfy property T ′

△(J, γ, ε), then
one can, using the ideas from our present paper, construct a witness for the non-quasi-
randomness of G in O(n2) time.

2. Preliminaries. In this section, we discuss some basic properties and the
algorithmic construction of certain very well known random looking graphs.
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2.1. (̺, L)-uniformity. Let 0 < ̺ ≤ 1 and L > 0 be fixed. We say that a
graph J on m vertices is (̺, L)-uniform if, for any U , W ⊂ V (J) with U ∩W = ∅, we
have

∣

∣eJ(U,W ) − ̺|U ||W |
∣

∣ ≤ L
√

r|U ||W |,(2.1)

where r = ̺m. The following lemma is immediate.

Lemma 2.1. Let R = (V,E) be a (̺, L)-uniform, m-vertex graph and let ∅ 6= A ⊂
V be given. Put J = R[A]. Then J is an (̺, L′)-uniform graph with L′ = L

√

m/|A|.
Notation 2.2. We use the following non-standard notation: we write O1(x) for

any term y such that |y| ≤ x.

We shall need estimates on the number of edges induced on subsets of (̺, L)-
uniform graphs. Below, if Γ is a graph, we write e(Γ) for the number of edges in Γ.

Lemma 2.3. Let J = (V,E) be a (̺, L)-uniform graph and let S ⊆ V be a
nonempty subset of vertices of J . Then

e(J [S]) = ̺

(|S|
2

)

+O1

(

Lr1/2(|S| + 1)
)

= ̺
|S|2
2

+O1

(

2Lr1/2|S|
)

,(2.2)

where r = ̺|V |.
Proof. Put s = |S|. Note that, for any 1 ≤ t < s, we have 2e(S)

(

s−2
t−1

)

=
∑

T e(T, S \ T ), where the sum is extended over all T ⊂ S with |T | = t. Thus

e(S) =
1

2

(

s

t

)(

s− 2

t− 1

)−1
{

̺|T ||S \ T | +O1

(

L{rt(s− t)}1/2
)

}

for any 1 ≤ t < s. We use this relation with t = ⌊s/2⌋. Note that

(

s

⌊s/2⌋

)(

s− 2

⌊s/2⌋ − 1

)−1

=
s(s− 1)

⌊s/2⌋⌈s/2⌉ ≤ 4,

and so

e(S) = ̺

(

s

2

)

+O1

(

2L{r⌊s/2⌋⌈s/2⌉}1/2
)

= ̺

(

s

2

)

+O1

(

Lr1/2(s+ 1)
)

,

and the result follows.

In what follows, the following simple consequences of Lemma 2.3 will be useful.

Lemma 2.4. Let η > 0 and L > 0 be given. Then there is an r = r(η, L) such
that any m-vertex (̺, L)-uniform graph J with ̺m ≥ r has the two properties below.

(a) If S ⊂ V (J) is such that |S| = νm ≥ ηm, then

e(J [S]) = (1 +O1(η))ν
2e(J) .(2.3)

(b) If S ⊂ V (J) is such that |S| < ηm, then

e(J [S]) < 2η2e(J) .(2.4)
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2.2. Auxiliary results on expander graphs. The celebrated Ramanujan
graphs of Lubotzky, Phillips, and Sarnak [26, 27] are explicitly constructible examples
of linear-sized (̺, 2)-uniform graphs. We shall make crucial use of their construction.

The Ramanujan graphs Xp,q constructed in [26, 27] depend on certain primes p
and q, which have to satisfy certain simple arithmetical conditions. The graphs Xp,q

that we shall be interested in are (p+1)-regular and have q(q2−1)/2 vertices. However,
we shall need to construct linear-sized (̺,O(1))-uniform graphs with m vertices and
average degree around r, where m and r are arbitrary integers (which we may assume
to be large). The main result of this section, Lemma 2.5 below, asserts that this can
be done efficiently. As the reader will see, we shall simply check that, given m and r,
we may find suitable primes p and q so that an induced subgraph of Xp,q will do.

Lemma 2.5. There exists an Algorithm E satisfying the following properties.
There is an absolute constant r1 such that for all r0 ≥ r1 there are constants m0 =
m0(r0) and C0 = C0(r0) for which the following holds. Algorithm E receives as input
integers r0 ≥ r1 and m ≥ m0 = m0(r0), and returns an adjacency list representation
of a particular (̺, 3)-uniform graph J on m vertices with r = ̺m satisfying r0 ≤ r ≤
2r0. Furthermore, Algorithm E runs in time ≤ C0m(logm)2.

In the remainder of this section, we prove Lemma 2.5 above for completeness.

2.2.1. Ramanujan graphs. Before we start with the proof of Lemma 2.5, we
recall the construction of Lubotzky, Phillips, and Sarnak [26, 27].

As usual, in what follows, if a is an integer and p is a prime with a not divisible
by p, the Legendre symbol (a

p ) is defined as 1 if a is a quadratic residue modulo p
and as −1 if a is a quadratic non-residue modulo p. To describe the construction
in [26, 27], let p and q be two unequal primes satisfying

p, q ≡ 1 (mod 4),(2.5)

and
(

p

q

)

= 1.(2.6)

We now let S and T be the following sets. Below, i is an arbitrary fixed integer such
that i2 ≡ −1 (mod q). We let

S =
{

(α0, α1, α2, α3) ∈ Z
4 : α2

0 + α2
1 + α2

2 + α2
3 = p

with α0 > 0, odd, and α1, α2, α3 even}

T =

{ (

α0 + iα1 α2 + iα3

−α2 + iα3 α0 − iα1

)

: (α0, α1, α2, α3) ∈ S

}

.(2.7)

We now consider PSL(2,Z/qZ) (the projective special linear group), which consists
of the 2 × 2 matrices over Z/qZ whose determinants are non-zero quadratic residues
mod p, quotiented out by the equivalence relation that makes two such matrices
equivalent if one is a non-zero scalar multiple of the other.

It will be convenient to observe that each element of PSL(2,Z/qZ) (i.e., each
equivalence class) may be represented by a matrix whose second row is either (0, 1),
or else the second row is (1, x), where x is some arbitrary element of Z/qZ. The
existence of this simple ‘canonical representation’ for the elements of PSL(2,Z/qZ)
will be helpful below.

Observe that, if we consider the entries of the matrices in T modulo q, we get
2× 2 matrices over Z/qZ, with determinant p (mod q), which is a non-zero quadratic
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residue modulo q (cf. (2.6)). By a well known result of Jacobi and some simple
arguments, one may check that there are p + 1 elements in T and that they are all
distinct in PSL(2,Z/qZ).

The graph Xp,q constructed in [26, 27] is the Cayley graph of PSL(2,Z/qZ) rela-
tive to the set T . The vertices of Xp,q are the elements of PSL(2,Z/qZ) and the edge
set of Xp,q is so that {x, y} is an edge of Xp,q if and only if there is a t ∈ T such that
x = ty (one may check that this is a symmetric relation). A key result concerning the
graphs Xp,q is the following.

Theorem 2.6. The graph Xp,q is a non-bipartite (p + 1)-regular graph on n =
q(q2 − 1)/2 vertices. Moreover, if the eigenvalues of Xp,q are |λ1| ≥ · · · ≥ |λn|,
then λ1 = p+ 1 and

|λj | ≤ 2
√
p for all j > 1.(2.8)

Because of (2.8), the graphs Xp,q are called Ramanujan graphs. We now state
the following well known pseudorandom property of the graphs Xp,q, which follows
from (2.8) (see, e.g., Corollary 9.2.5 in [5]).

Corollary 2.7. The graph Xp,q is (̺, 2)-uniform, where ̺ = (p+ 1)/n.
Having covered the basics of the Lubotzky, Phillips, and Sarnak construction, we

turn to the proof of Lemma 2.5.

2.2.2. Proof of Lemma 2.5. We start with a simple lemma asserting the ex-
istence of appropriate primes p and q.

Lemma 2.8. There exists an absolute constant r1 such that, for any r0 ≥ r1, there
exists an integer m0 = m0(r0) for which the following holds. There is an Algorithm P
that, on input (r0,m), where r0 ≥ r1 and m ≥ m0 = m0(r0), produces a pair of
primes p and q which satisfy

p 6= q, p, q ≡ 1 (mod 4), and

(

p

q

)

= 1,(2.9)

1.4r0 ≤ p+ 1 ≤ 2r0,(2.10)

and

3
√

2.1m ≤ q ≤ 1.1
3
√

2.1m.(2.11)

Algorithm P runs in time ≤ C1m
1/2(logm)2, where C1 = C1(r0) depends only on r0.

Proof. Let us start recalling Dirichlet’s theorem on primes in arithmetic progres-
sions. In particular, the quantitative version of Dirichlet’s theorem implies that for
integers a and b with (a, b) = 1, there is an integer ta,b such that for all t ≥ ta,b there
is a prime p ≡ a (mod b) in the interval [t, 11t/10] = {x : t ≤ x ≤ 11t/10}.

We let r1 = t1,8 + 1 and proceed to show that this choice of r1 will do. Thus, let
an arbitrary integer r0 ≥ r1 be given, and let us define m0 = m0(r0) as required in
our lemma. To that end, first observe that, by the choice of r1, there is a prime p ≡ 1
(mod 8) satisfying (2.10). We fix such a prime p. Observe that we have p ≡ 1
(mod 4). Moreover, since p ≡ 1 (mod 8), we have that

2 is a quadratic residue modulo p.(2.12)
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Since (4, p) = 1, by the Chinese remainder theorem, there is a unique integer s
with 1 ≤ s ≤ 4p satisfying

s ≡ 2 (mod p) and s ≡ 1 (mod 4).(2.13)

We are finally ready to define m0 = m0(r0). We let

m0 = m0(r0) = max

{

10

21
t3s,4p,

8

2.1
r30

}

.(2.14)

Our aim now is to show that the choice for m0 = m0(r0) in (2.14) will do. Thus,
let m ≥ m0(r0) be given. We shall now describe a procedure P to find the primes p
and q as required. Our description will be quite informal.

The prime p with p ≡ 1 (mod 8) satisfying (2.10) may be found easily. We now
need to determine a suitable value for q. We choose q among the integers in the
arithmetic progression {4pk+ s : k = 0, 1, 2, . . . }, where s is the integer satisfying 1 ≤
s ≤ 4p and (2.13). By Dirichlet’s theorem and our choice of m0 ≥ (10/21)t3s,4p, there
is a prime q ≡ s (mod 4p) satisfying (2.11). We claim that our choice of s implies all
properties promised for q. Indeed, q ≡ s ≡ 1 (mod 4). Furthermore, the quadratic

reciprocity law implies
(

p
q

)

=
(

q
p

)

, since both p, q ≡ 1 (mod 4). Using that q ≡ s ≡ 2

(mod p) and recalling (2.12), we have
(

p

q

)

=

(

q

p

)

=

(

s

p

)

=

(

2

p

)

= 1.

Finally, note that m0 ≥ 8r30/2.1 guarantees q > p and consequently condition (2.9) is
satisfied. Therefore, the primes p and q as required do exist.

Let us now consider the time complexity of our procedure P above. We first ob-
serve that the search for p < 2r0 takes a quantity of steps that depends only on r0. To
find q, we have enough time to check all integers in the interval [ 3

√
2.1m, 1.1 3

√
2.1m].

Since this interval is of length O(m1/3), this will take O(m1/3 · m1/6(logm)2) =
O(m1/2(logm)2) steps. The (logm)2 term accounts for the time complexity of arith-
metic operations with integers having O(logm) digits.

We now describe Algorithm E , the existence of which is asserted in Lemma 2.5.
Consider the integer r1 and the function m0(r0) whose existences are guaranteed by
Lemma 2.8. On input (r0,m), where r0 ≥ r1 and m ≥ m0(r0), Algorithm E performs
the following steps.

1. Run Algorithm P on input (r0, m) to obtain primes p and q as in the statement of
Lemma 2.8.

2. List all elements of PSL(2, Z/qZ), i.e., the vertex set of Xp,q, by enumerating all
the canonical representatives of the elements in PSL(2, Z/qZ).

3. Find all solutions to α2
0 + α2

1 + α2
2 + α2

3 = p that belong to S and construct T
(see (2.7)).

4. For each vertex x of Xp,q, construct its adjacency list.
5. Set J to be any induced subgraph of Xp,q on m vertices.

The following claim will finish the proof of Lemma 2.5.
Claim 2.9. Algorithm E produces a graph J that is (̺, 3)-uniform in time ≤

Cm(logm)2, where r = ̺m satisfies r0 ≤ r ≤ 2r0, and C is a constant that depends
only on r0.

Proof. We start with the correctness of E . We already know that P produces
suitable primes p and q. Hence, we only need to argue that the graph J obtained in
Step 5 has the required properties.
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By Theorem 2.6 and Corollary 2.7, the graph Xp,q constructed in Steps 2–4 has
n = q(q2 − 1)/2 vertices, is (p+ 1)-regular, and is (̺, 2)-uniform with ̺ = (p+ 1)/n.
Furthermore, note that (2.11) implies 1 ≤ n/m ≤ 1.05(1.1)3. Lemma 2.1 implies J
is a (̺, L)-uniform graph with ̺ = (p + 1)/n and L = 2

√

n/m ≤ 2.1
√

231/200 =
2.256 · · · < 3. Thus J is indeed a (̺, 3)-uniform graph.

Since 1 ≤ n/m ≤ 1.05(1.1)3, we deduce that r = ̺m = (p+ 1)m/n is such that

r ≤ 2r0

and

r ≥ 1.4r0 ·
20

21

(

10

11

)3

≥ r0 .

Finally, we argue about the time complexity of each of the steps in Algorithm E .
By Lemma 2.8, we already know that Step 1 takes time ≤ C1(r0)m(logm)2, where
C1(r0) is a constant that depends only on r0.

Recalling the form of the canonical representatives of the elements in PSL(2,Z/qZ),
we see that Step 2 may be performed in time O(m(logm)2). The time complexity of
Step 3 depends only on r0.

In Step 4, we take one by one the vertices ofXp,q, i.e., the elements of PSL(2,Z/qZ),
and generate their adjacency lists. Since |T | = p+1 ≤ 2r0, to generate the adjacency
list of a particular vertex takes only O((log q)2) steps.

Finally, taking m vertices of Xp,q arbitrarily and adjusting their adjacency lists to
create an adjacency list representation for the corresponding induced subgraph takes
O(m logm) time. Therefore, the time complexity of Algorithm E is ≤ C0(r0)m(logm)2,
as promised.

3. Algorithms. Before we describe the algorithm, let us introduce some no-
tation. Let Γ = (V,E) be a graph and v ∈ V a vertex. We write Γ(v) for the
neighborhood of v, i.e., for the set of all vertices adjacent to v in Γ, and d(v) for the
degree of v, i.e. d(v) = |Γ(v)|. To shorten our notation we will use that same letter
to denote a graph and the set of its edges. For example, Γ will also stand for E(Γ)
and, hence, e(Γ) = |Γ|.

3.1. Regularity of bipartite graphs. In this section we describe algorithm A
which takes as an input a bipartite graph G = (A,B;E), |A| = |B| = m, and 0 <
ε < 1. The algorithm in time O(m2) either confirms that G is ε-regular or finds sets
A′ ⊆ A,B′ ⊆ B, |A′| ≥ ε′m, |B′| ≥ ε′m such that

|d(A′, B′) − d(A,B)| ≥ ε′ .

Our algorithm A consists of the preprocessing stage AP and the main procedure AM .

3.1.1. The preprocessing stage. In order to describe the preprocessing stage
we need to define

ε′ =
( ε

10

)20 1

104
.(3.1)

To describe AP we need the constants ε and ε′ only. Note that other constants are
used for describing the other part AM ; these other constants will be defined later
in §3.1.2 and will be related to ε and ε′ above.
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Algorithm AP is based on the following standard observation and Lemma 3.1.
We observe that if the bipartite graph G on vertex set A ∪B, |A| = |B| = m, is such
that p(G) := d(A,B) = |G|/m2 ≤ ε3, then G is ε-regular (we omit the proof of this
standard observation).

Lemma 3.1 quantifies a further observation that we may remove some vertices of
our graph G so that we either obtain a subgraph H ⊆ G that is essentially degree-
regular (all degrees are about the same), or else in the process of removing these
vertices we locate a witness to the ε′-irregularity of G. This is formalized as follows.

Lemma 3.1. Suppose G is a bipartite graph with vertex set A∪B, |A| = |B| = m,
and suppose that p(G) > ε3 holds. There is a procedure that runs in time O(m2) that
either (i) produces a witness to the ε′-irregularity of G or (ii) produces a bipartite
subgraph H ⊆ G, say H = (U, V ;F ), such that

(a)

(1 − 2ε′)m < |U |, |V | ≤ m ,(3.2)

(b)

∣

∣p(H) − p(G)
∣

∣ ≤ 5ε′,(3.3)

where p(H) = |H|/|U ||V |, and
(c) for all u ∈ U and v ∈ V , we have

d(u) = (p(H) +O1(10ε′)) · |V | ,(3.4)

d(v) = (p(H) +O1(10ε′)) · |U | .

Proof. We first omit the vertices v in V for which the condition

d(v) = (p(G) +O1(ε
′))m(3.5)

fails. If the number of such vertices is ≥ 2ε′m, we may easily produce a witness to
the ε′-irregularity of G as in (i) in the statement of our lemma. Suppose therefore
that the number of such vertices is < 2ε′m. Let V ⊆ B be the resulting subset of B.
Hence |V | > (1 − 2ε′)m. We now omit the vertices u ∈ A for which the condition

d(u) = (p(G) +O1(ε
′)) · |V |(3.6)

fails. Again, if the number of such vertices is ≥ 2ε′m, we may easily produce a witness
to the ε′-irregularity of G. If the number of such vertices is < 2ε′m, the resulting
graph H is as in (ii) in the statement of our lemma.

The time complexity assertion will be verified in the proof of Lemma 3.4 (cf.
algorithm AP below).

For convenience, we let Ψ(m, ε′) be the family of subgraphs H of G that sat-
isfy (a)–(c) in (ii) of Lemma 3.1 above.

Now we are ready to describe algorithm AP :

1. Given G and ε, decide if p(G) < ε3.
2. If p(G) ≤ ε3, then G is ε-regular and AP halts.
3. If p(G) > ε3, apply Lemma 3.1 to construct a subgraph H of G which satisfies (a)–

(c). (Algorithm AM will be applied to H. )
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3.1.2. The main procedure. In view of step 3 in algorithm AP (cf. Lemma 3.1)
we will now assume that H ∈ Ψ(m, ε′).

(a) Definition of constants. Before describing algorithm AM we will define constants
needed for it. Recall that algorithm A, and so AM , is given 0 < ε < 1. In §3.1.1 we
already defined ε′ = (ε/10)20/104.

We first let

δ =
1

4

(ε

2

)5

, L = 5, and rA =
106

ε8
.(3.7)

We now let

µ =
( ε

10

)10 1

100
(3.8)

and put

η =
µ

3
.(3.9)

We also let rB = r(η, L) be as given in Lemma 2.4 and let

r0 = max{rA, rB}.(3.10)

Finally, we set

ε1 =
1

4

(ε

2

)16

.(3.11)

This will be used only later in a proof. However, it might be helpful to see the relation
of ε1 to the other constants introduced here.

The reader may find it useful to keep in mind the following hierarchy of the
constants for ε small:

ε′ < ε20 ≪ ε1 < ε16 ≪ η =
µ

3
< ε10 ≪ δ ≪ ε3 ≪ ε, p .(3.12)

(Here inequalities < are used to compare two quantities which differ by an absolute
constant.) Note that for the description of AM we only need to know r0 and δ defined
above. The other constants are needed in the proofs below.

(b) Property P(J, δ). We introduce some notation. Let H be a bipartite graph with
vertex set U ∪ V . Let J be a (̺, L)-uniform graph with vertex set U . We say that H
has property P(J, δ) if

∑

{u,u′}∈J

∣

∣dH(u, u′) − p(H)2 · |V |
∣

∣ ≤ δp(H)2|V | · |J |(3.13)

holds. Recall that due to our notation {u, u′} ∈ J means that {u, u′} is an edge
of J . Moreover, let us write Jv (v ∈ V ) for the graph J [H(v)] induced by the
neighbourhood H(v) of v in H. We define a 0–1 matrix M = (m(e, v))e,v indexed
by J × V as follows:

m(e, v) =

{

1 if e ∈ Jv

0 otherwise.
(3.14)

Therefore, clearly, m(e, v) = 1 if and only if both endpoints of e are adjacent to v.

(c) Description of AM . We assume AM is given a bipartite graph H ∈ Ψ(m, ε′)
having vertex set U ∪ V . Algorithm AM now proceeds as follows:
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1. Apply procedure E to construct a (̺, L)-uniform graph J with vertex set U and
average degree r = ̺ · |U | satisfying

r0 = r0(η) ≤ r ≤ 2r0(3.15)

(cf. Lemma 2.5).
2. Verify whether H has P(J, δ). If it has, then then G is ε-regular (see Lemma 3.2

below) and AM halts.
3. If P(J, δ) fails for H, construct matrix M = (m(e, v))e,v defined above. Find and

fix a vertex v0 ∈ V such that

∑

v∈V

∑

e∈Jv0

m(e, v) ≥

(

1 +
δ2

2

)

p(H)4|V | · |J |.(3.16)

[The existence of such a vertex v0 is proved later, cf. Lemma 3.5.]
4. Set U ′ = H(v0) and

V ′ =

{

v′ ∈ V :
∑

{m(e, v′) : e ∈ Jv0
} ≥

(

1 +
δ2

4

)

p(H)4 · |J |

}

.(3.17)

5. AM outputs (U ′, V ′) and claims that this is a witness to the ε′-irregularity of G.

3.1.3. Correctness and analysis of Algorithm A. The correctness of A
follows from Lemmas 3.2 and 3.3 below. The first lemma says that if Algorithm AM ,
and hence A, claims that G is ε-regular in Step 2, then this is indeed the case.

Lemma 3.2. If H enjoys property P(J, δ), then G is ε-regular.
Lemma 3.3. If property P(J, δ) fails for H, then G is not ε′-regular, and the

pair (U ′, V ′) produced by Algorithm AM is indeed a witness for the ε′-irregularity
of G.

We shall prove the two lemmas above in §4. The next two lemmas immediately
imply that A has time complexity O(m2).

Lemma 3.4. Algorithm AP described in §3.1.1 has time complexity O(m2).
Proof. The steps of AP have the following time complexity. The only computa-

tions are in steps 1 and 3:
Step 1. Since p(G) = |G|/m2, it takes at most O(m2) steps to compute p(G) and

decide whether p(G) < ε3.
Step 3. Based on the proof of Lemma 3.1, a vertex of G is put into H iff it satis-

fies (3.4). Hence, we proceed through all 2m vertices of G each time checking (3.4)
which takes O(m) steps. Thus, this step takes O(m2) steps, too.

The overall time complexity of AP is O(m2).
Lemma 3.5. Algorithm AM described in §3.1.2 runs in time O(m2).
Proof. The steps of AM have the following time complexity:

Step 1. To perform procedure E we need O(m(logm)2) steps, cf. Lemma 2.5.
Step 2. To verify P(J, δ) we need to add |J | = O(m) summands. Computing each of

these summands takes O(m) steps. Consequently, one can decide P(J, δ) in O(m2)
time.

Step 3. Deciding if m(e, v) = 1 or 0 can be performed in constant time. Thus,
constructing M takes O(|J ||V |) = O(m2) time. To check (3.16), we first write it
in the equivalent form

∑

e∈Jv0

∑

v∈V

m(e, v) ≥
(

1 +
δ2

2

)

p(H)4|V | · |J | .(3.18)
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Using matrix M we compute the column sums
∑

v∈V m(e, v) for each e ∈ J . This
takes O(m2) steps.
Now to check (3.18) for a fixed vertex v0 ∈ V , we first find Jv0

, which takes
|Jv0

| = O(m) steps. Then we add together the column sums
∑

v∈V m(e, v) for
all e ∈ Jv0

and decide about the truth of (3.18). This takes another O(m) steps.
In the worst case we need to check all v0 ∈ V . Since |V | = m, to find v0 that
satisfies (3.18) will take at most O(m2) steps.

Step 4. Since for each v′ ∈ V the condition
∑

e∈Jv0

m(e, v′) ≥ (1 + δ2/4)p(H)4|J |
can be verified in O(m) time, the set V ′ can be constructed in O(m2) time.

Step 5. This step takes a constant time.
Therefore, the time complexity of AM is O(m2). Finally let us point out that the fact
that J has O(m) edges was crucial.

3.2. The regularity lemma. For the sake of completeness, we include an al-
gorithm necessary for proving Corollary 1.6. Given Theorem 1.5 we can derive the
necessary algorithm in a standard way.

Let V0, V1, . . . , Vk be an equitable partition P of the set of vertices of a graph.
We define the index of P, cf. [31], by

ind(P ) =
1

k2

∑

1≤r<s≤k

d(Vr, Vs)
2 .

To present a proof of Corollary 1.6 we will use the following lemma, which was
proved in [31]. Note that no comment is made in [31] on the running time. However,
the proof of the lemma implies an algorithm of time complexity O(n).

Lemma 3.6. Fix k and γ and let G = (V,E) be a graph on n vertices. Let
P be an equitable partition of V into classes V0, V1, . . . , Vk. Assume |V1| > 42k and
4k > 600γ−5. Given proofs that more than γk2 pairs (Vr, Vs) are not γ-regular (where
by proofs we mean subsets X = X(r, s) ⊆ Vr, Y = Y (r, s) ⊆ Vs that violate the
condition of γ-regularity of (Vr, Vs)), then one can find in O(n) time an equitable
partition P ′ (which is a refinement of P ) into 1 + k4k classes, with the exceptional
class of cardinality at most |V0| + n/4k and such that

ind(P ′) ≥ ind(P ) +
γ5

20
.

Proof of Corollary 1.6. Theorem 1.5 and Lemma 3.6 already imply Corollary 1.6.
Let ε > 0 and k0 be a positive integer. Let ε′ = ε20/1024. We set N = N(ε, k0) and
T = T (ε, k0) as follows: Let a be the least positive integer such that

4a > 600

(

ε′

4

)−5

, a ≥ k0 .(3.19)

Let ki be a sequence of integers defined inductively as

k0 = a, ki+1 = ki4
ki .

Set T = k⌈10(ε′/4)−5⌉ and N = max{T42T , 2T/ε′
2}. Finally we set K ′′

0 = N ≥ T .
Let Γ = (V,E) be a graph on n vertices, n ≥ N . The following algorithm

constructs an ε-regular partition of Γ into k + 1 classes with k0 ≤ k ≤ T ≤ K ′′
0 .

Algorithm A′
0 proceeds as follows:
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1. Arbitrarily divide the vertices of Γ into an equitable partition P1 with classes V0,
V1, . . . , Va where |V1| = ⌊n/a⌋ and |V0| < a. Set k1 = a.

2. For every pair (Vr, Vs) of Pi, verify if it is ε-regular or find V ′
r ⊆ Vr, V ′

s ⊆ Vs,
|V ′

r | ≥ (ε′/4)|Vr|, |V
′

s | ≥ (ε′/4)|Vs|, such that |d(V ′
r , V ′

s ) − d(Vr, Vs)| ≥ ε′.
3. If there are at most ε

(

ki

2

)

pairs that are not verified as ε-regular, then stop. The
partition Pi is an ε-regular partition.

4. Apply Lemma 3.6 where P = Pi, k = ki, γ = ε′/4 and obtain a partition P ′ with
1 + ki4

ki classes.
5. Let ki+1 = ki4

ki , Pi+1 = P ′, i = i + 1, and go to step 2.

Claim 3.7. Algorithm A′
0 described is correct and runs in O(n2) time.

Proof. To prove correctness of algorithm A′
0 is quite standard. Since the index

of partitions Pi constructed by A′
0 strictly increases and at the same time is bounded

by 1 from above, algorithm A′
0 uses Lemma 3.6, and thus Theorem 1.5, only finitely

many times. Each such use takes O(n2) time.

4. Proofs of the main lemmas. We use the notation introduced in Section 3.1.
Before the proofs let us point out a straightforward estimate on the size of neighbor-
hoods used throughout the proofs.

Remark 4.1. Let H ∈ Ψ(m, ε′) be the graph in the statement of Lemma 3.1, and
let and u ∈ U and v ∈ V be vertices of H. As an immediate consequence of (3.4) and
the definition of ε′ and µ, we get

|H(u)| = (p(H) +O1(10ε′))|V | = (1 +O1(µ))p(H)|V | ,(4.1)

|H(v)| = (p(H) +O1(10ε′))|U | = (1 +O1(µ))p(H)|U | .

4.1. Proof of Lemma 3.2. Let H ∈ Ψ(m, ε′) be the input graph of algo-
rithm AM . Let U ∪ V be the vertex set of H. Set mU = |U |,mV = |V |, and
p := p(H) = |H|/mUmV .

We say that the graph H has property Q(J, δ) if the inequality

∑

{u,u′}∈J

∣

∣dH(u, u′) + p2mV − (dH(u) + dH(u′))p
∣

∣ ≤ δp2mV · |J |(4.2)

holds true.
Claim 4.2. Let δ > 0 be fixed. If a graph H ∈ Ψ(m, ε′) has property P(J, δ),

then it has property Q(J, 2δ).
Proof. Since H enjoys P(J, δ) and H ∈ Ψ(m, ε′), we have

∑

{u,u′}∈J

∣

∣dH(u, u′) + p2mV − (dH(u) + dH(u′))p
∣

∣

≤
∑

{u,u′}∈J

∣

∣dH(u, u′) − p2mV

∣

∣

+2p
∑

u∈U

∣

∣pmV − dH(u)
∣

∣dJ(u)

≤ δp2mV |J | + 20pε′mV

∑

u∈U

dJ(u)

≤ 2δp2mV |J | ,

since ε′ ≤ δε3/40 ≤ δp/40 (see (3.1, 3.7)).
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In view of Claim 4.2, we are going to prove
Claim 4.3. Every H ∈ Ψ(m, ε′) that has property Q(J, 2δ) is (ε/2)-regular.
The proof is presented below. First, let us observe that the ε/2-regularity of H

implies the ε-regularity of G. Indeed, let X ⊆ A, |X| ≥ ε|A|, and Y ⊆ B, |Y | ≥ ε|B|.
Set X ′ = X ∩ U and Y ′ = Y ∩ V . By Lemma 3.1,

|X ′| ≥ ε|A| − 2ε′|A| ≥ (ε− 2ε′)|U | ≥ ε

2
|U |

and, similarly,

|Y ′| ≥ ε

2
|V | .

A standard argument based on the fact that X ′ and Y ′ are almost equal to X and Y
(recall Lemma 3.1) shows that |d(X,Y ) − d(X ′, Y ′)| ≤ ε/4. Thus, using the ε/2-
regularity of H and Lemma 3.1, we get

|d(X,Y ) − d(A,B)| ≤ |d(X,Y ) − d(X ′, Y ′)| + |d(X ′, Y ′) − d(U, V )|
+ |d(U, V ) − d(A,B)| ≤ ε

4
+
ε

2
+ 5ε′ < ε .

Hence, G is ε-regular.

Proof of Claim 4.3. Let A = (au,v)u,v be a matrix indexed by U×V , with entries

au,v =

{

−(1 − p) if {u, v} ∈ H

p otherwise.

Moreover, for u ∈ U , let ξu = (au,1, . . . , au,mV
) be the u-th row of A. The following

claim follows easily from the definition of property Q (see (4.2)).
Claim 4.4. For every H ∈ Ψ(m, ε′) that has property Q(J, 2δ), the row-vectors

of A satisfy the following inequality
∑

{u,u′}∈J

|〈ξu, ξu′〉| ≤ 2δp2mV |J | .(4.3)

Proof. Since

〈ξu, ξu′〉 = dH(u, u′)(1 − p)2 − (dH(u) + dH(u′) − 2dH(u, u′))p(1 − p)

+(mV − (dH(u) + dH(u′) − dH(u, u′))p2

= dH(u, u′)[(1 − p)2 + 2p(1 − p) + p2] +mV p
2 − (dH(u) + dH(u′))p

= dH(u, u′) +mV p
2 − (dH(u) + dH(u′))p

for any pair of vertices u, u′ ∈ U , we have that
∑

{u,u′}∈J |〈ξu, ξu′〉| equals the sum on

the left hand side of (4.2). Thus the claim follows.

Let U ′ ⊆ U and V ′ ⊆ V . To shorten our notation
∑U ′

u,u′∈J will denote summation
over {u, u′} ∈ J such that u, u′ ∈ U ′. Furthermore, for u ∈ U ′ let ψu be the restriction

of the vector ξu to V ′, i.e., ψu = (au,v)v∈V ′ . We clearly have
∑U ′

u,u′∈J |〈ξu, ξu′〉| ≤
∑

{u,u′}∈J |〈ξu, ξu′〉|. We now compare
∑U ′

u,u′∈J〈ξu, ξu′〉 with
∑U ′

u,u′∈J〈ψu, ψu′〉. We
have

∑U ′

u,u′∈J
〈ξu, ξu′〉 =

∑U ′

u,u′∈J
〈ψu, ψu′〉 +

∑

v 6∈V ′

∑U ′

u,u′∈J
au,vau′,v.(4.4)
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For v ∈ V we set SU ′

v =
∑U ′

u,u′∈J au,vau′,v, and proceed to estimate this quantity. Let
S := H(v)∩U ′ ⊆ U ′ be the set of neighbours of the vertex v in U ′ and T := (U ′\S) ⊆
U ′ be the set of non-neighbours of the vertex v in U ′.

Set α = |S|/|U ′| and β = |T |/|U ′|. Note α+ β = 1. Thus we can write

SU ′

v = eJ(S)(1 − p)2 + eJ(T )p2 − eJ(S, T )p(1 − p).(4.5)

The (̺, L)-uniformity of J implies the following claim. Recall that for two numbers
a, b we write a = O1(b) if and only if |a| ≤ b.

Claim 4.5. For all v ∈ V ′ and U ′ ⊆ U , we have

SU ′

v =
̺

2
|U ′|2 ·

[

α(1 − p) − βp
]2

+O1

(

3L
√
r · |U ′|

)

.(4.6)

Proof. Set m′ = |U ′|. Since J is a (̺, L)-uniform graph, Lemma 2.3 implies

eJ(S) =
̺

2
|S|2 +O1

(

2L
√
r · |S|

)

=
̺

2
(αm′)2 +O1

(

2L
√
r · αm′

)

,

eJ(T ) =
̺

2
|T |2 +O1

(

2L
√
r · |T |

)

=
̺

2
(βm′)2 +O1

(

2L
√
r · βm′

)

,

eJ(S, T ) = ̺|S| · |T | +O1

(

L
√

r|S| · |T |
)

= ̺αβ(m′)2 +O1

(

L
√

rαβ ·m′
)

.

Using (4.5) we get

SU ′

v =
[̺

2
(αm′)2 +O1

(

2L
√
r · αm′

)]

(1 − p)2

+
[̺

2
(βm′)2 +O1

(

2L
√
r · βm′

)]

p2

−
[

̺αβ(m′)2 +O1

(

L
√

rαβ ·m′
)]

p(1 − p)(4.7)

=
̺

2
(m′)2

[

α(1 − p) − βp
]2

+ ∆,

where

∆ = O1

(

2L
√
r · αm′(1 − p)2 + 2L

√
r · βm′p2 + L

√

rαβ ·m′p(1 − p)
)

.(4.8)

To bound ∆ we are going to use the inequalities α(1 − p)2 + βp2 ≤ α + β and√
αβ ≤ (α+ β). Thus,

|∆| ≤ 2L
√
r · αm′(1 − p)2 + 2L

√
r · βm′p2 + L

√

rαβ ·m′p(1 − p)

≤ L
√
rm′

(

2α+ 2β +
√

αβ
)

≤ L
√
rm′ · 3(α+ β)(4.9)

= 3L
√
rm′ .

Expressions (4.7) and (4.9) already imply the claim. We only note that we got a
bound on ∆ linear in m′ = |U ′| since L and r are constants.
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Next we proceed with an upper and lower bounds on
∑U ′

u,u′∈J〈ψu, ψu′〉. To derive

an upper bound for this quantity we use (4.4) to relate
∑U ′

u,u′∈J〈ψu, ψu′〉 and SU ′

v as
follows:

∑U ′

u,u′∈J
〈ψu, ψu′〉 =

∑U ′

u,u′∈J
〈ξu, ξu′〉 −

∑

v 6∈V ′

SU ′

v .

Note that (4.6) implies SU ′

v ≥ −3L
√
r|U ′|. This lower bound and Claim 4.4 imply

∑U ′

u,u′∈J
〈ψu, ψu′〉 ≤ 2δp2mV |J | + 3L

√
r|U ′|(mV − |V ′|) .(4.10)

To estimate
∑U ′

u,u′∈J〈ψu, ψu′〉 from below, we first write

∑U ′

u,u′∈J
〈ψu, ψu′〉 =

∑

v∈V ′

∑U ′

u,u′∈J
au,vau′,v =

∑

v∈V ′

SU ′

v .(4.11)

Using (4.6) we get a lower bound on the expression in our last equation

∑U ′

u,u′∈J
〈ψu, ψu′〉 =

∑

v∈V ′

SU ′

v

≥
∑

v∈V ′

(̺

2
|U ′|2

[

α(1 − p) − βp
]2 − 3L

√
r · |U ′|

)

(4.12)

≥ ̺

2
· |U

′|2
|V ′|

[

∑

v∈V ′

(α(1 − p) − βp)
]2 − 3L

√
r|U ′| · |V ′| .

We used the Cauchy–Schwarz inequality to get the last line of our bound. Comparing

the lower and upper bounds on
∑U ′

u,u′∈J〈ψu, ψu′〉, cf. (4.12) and (4.10), we infer

[

∑

v∈V ′

(α(1 − p) − βp)
]2

≤ 2|V ′|
̺|U ′|2 ·

(

2δp2mV |J | + 3L
√
r|U ′|mV

)

.(4.13)

Now we are ready to show that H is ε
2 -regular. Fix U ′ ⊆ U , |U ′| ≥ ε

2 |U | = ε
2mU ,

and V ′ ⊆ V , |V ′| ≥ ε
2 |V | = ε

2mV . Recall that d(U, V ) = p = p(H) in our notation.
First we relate the difference of densities to the left-hand side of (4.13) as follows:

|d(U ′, V ′) − d(U, V )|2 =

∣

∣

∣

∣

e(U ′, V ′)

|U ′||V ′| − p

∣

∣

∣

∣

2

=
1

|U ′|2|V ′|2
[

e(U ′, V ′) − p|U ′| · |V ′|
]2

=
1

|U ′|2|V ′|2
[

∑

v∈V ′

(|H(v) ∩ U ′| − p|U ′|)
]2

=
1

|U ′|2|V ′|2
[

∑

v∈V ′

α|U ′| − p|U ′|
]2

=
1

|V ′|2
[

∑

v∈V ′

(α(1 − p) − βp)
]2

.(4.14)
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Finally, we bound the expression for the difference of densities in (4.14) us-
ing (4.13). We get

∣

∣d(U ′, V ′) − d(U, V )
∣

∣

2 ≤ 2

̺|U ′|2|V ′|
(

2δp2mV |J | + 3L
√
r · |U ′|mV

)

≤ 2

̺|U ′|2|V ′| × 2δp2mV × rmU

2
+

6L
√
r · |U ′|mV

̺|U ′|2|V ′|

≤ 2δp2mU
2mV

|U ′|2|V ′| +
6LmV mU

√
r

r|U ′| · |V ′|

≤ 16δ

ε3
+

24L√
r · ε2

≤ 1

2
·
(ε

2

)2

+
1

2
·
(ε

2

)2

=
(ε

2

)2

.

The last inequality follows because of our choice of δ and r ≥ r0 ≥ rA.

4.2. Proof of Lemma 3.3. For this proof, the reader may find it convenient to
recall the hierarchy of the constants given in (3.12). Recall we have

p = p(H) = p(G) +O1(5ε
′) ≥ 1

2
ε3.(4.15)

Note that (4.15) is guaranteed to hold for the graph H that we obtain after prepro-
cessing H as described in §3.1.1 since p(G) ≥ ε3 in this case. As in §3.1.2 we assume
U ∪ V is the vertex set of H and set mU = |U | and mV = |V |.

Suppose that property P(J, δ) fails for H. Thus

∑

{u,u′}∈J

|dH(u, u′) − p2mV | > δp2mV |J | .(4.16)

Let us first observe that
∑

{u,u′}∈J

(

dH(u, u′) − p2mV

)2

=
∑

{u,u′}∈J

(

dH(u, u′)2 − 2dH(u, u′)p2mV + p4mV
2
)

(4.17)

=
∑

{u,u′}∈J

dH(u, u′)2 − 2p2mV

∑

{u,u′}∈J

dH(u, u′) + p4mV
2|J | .

However,
∑

{u,u′}∈J

dH(u, u′) =
∑

{u,u′}∈J

|H(u) ∩H(u′)|

=
∑

v∈V

|Jv| =
∑

v∈V

(1 +O1(η))(1 +O1(µ))2p2|J | .

In the last inequality we used that due to preprocessing, cf. (4.1), |H(v)| = (1 +
O1(µ))pmU and, hence (a) in Lemma 2.4 gives (note that (1 +O1(µ))p ≥ η)

|Jv| = (1 +O1(η))(1 +O1(µ))2p2|J | = (1 +O1(3µ))p2|J | .
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Therefore
∑

{u,u′}∈J

dH(u, u′) = (1 +O1(3µ))p2mV |J | .(4.18)

From (4.17) and (4.18) we obtain that

∑

{u,u′}∈J

(

dH(u, u′) − p2mV

)2

=
∑

{u,u′}∈J

dH(u, u′)2 − (1 +O1(6µ))p4mV
2|J |(4.19)

≤
∑

{u,u′}∈J

dH(u, u′)2 −
(

1 − δ2

2

)

p4mV
2|J | .

The last inequality holds true due to our choices of δ and µ, cf. (3.7, 3.8). On the
other hand, in view of (4.16), we have by the Cauchy–Schwarz inequality that

∑

{u,u′}∈J

(

dH(u, u′) − p2mV

)2 ≥ 1

|J |
(

∑

{u,u′}∈J

|dH(u, u′) − p2mV |
)2

>
1

|J |
(

δ|J |p2mV

)2
= δ2p4mV

2|J | .(4.20)

Comparing (4.19) and (4.20), we deduce that

∑

{u,u′}∈J

dH(u, u′)2 ≥
(

1 +
δ2

2

)

p4mV
2|J | .(4.21)

We shall now evaluate the sum on the left-hand side of (4.21) in terms of the ma-
trix M = (m(e, v))e,v defined in §3.1.

Clearly, if e = {u, u′} ∈ J , then

dH(u, u′) = |H(u) ∩H(u′)| =
∑

v∈V

m(e, v),

and hence

dH(u, u′)2 =
∑

v∈V

∑

v′∈V

m(e, v)m(e, v′) .

Therefore
∑

{u,u′}∈J

dH(u, u′)2 =
∑

v∈V

∑

e∈J

m(e, v)
∑

v′∈V

m(e, v′)(4.22)

=
∑

v∈V

∑

e∈Jv

∑

v′∈V

m(e, v′) =
∑

v∈V

∑

v′∈V

∑

e∈Jv

m(e, v′) .

Comparing (4.21) and (4.22) we infer that

∑

v∈V

∑

v′∈V

∑

e∈Jv

m(e, v′) ≥
(

1 +
δ2

2

)

p4mV
2|J |
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and, hence, there is a vertex v0 ∈ V for which we have

∑

v′∈V

∑

e∈Jv0

m(e, v′) ≥
(

1 +
δ2

2

)

p4mV |J | .(4.23)

Following the algorithm, we fix such a vertex v0. We now set

V ′ :=

{

v′ ∈ V :
∑

e∈Jv0

m(e, v′) ≥
(

1 +
δ2

4

)

p4|J |
}

.(4.24)

As in the algorithm, we put U ′ = H(v0). One may prove that both U ′ and V ′ are
large sets. The proof is postponed for the next section.

Claim 4.6. |U ′| ≥ ε1mU and |V ′| ≥ ε1mV .

Recall that we defined ε1 = 1
4

(

ε
2

)16
in (3.11) to satisfy ε′ ≪ ε1 ≪ δ2. Before we

proceed, using the definition of matrix M we observe that for all v′ ∈ V we have
∑

e∈Jv0

m(e, v′) = e(J [H(v0) ∩H(v′)]) .(4.25)

Combining (4.25) and the fact that the edges of J are extremely well distributed we
shall now provide a lower bound on dH(v0, v

′) where v0 is the vertex fixed above and
v′ is an arbitrary vertex of V ′.

Claim 4.7. For all v′ ∈ V ′, we have

dH(v0, v
′) ≥

(

1 +
δ2

12

)

p2mU .(4.26)

The proof of Claim 4.7 is given in next section. Since U ′ = H(v0), it follows
immediately from Claim 4.7 that

eH(U ′, V ′) ≥
(

1 +
δ2

12

)

p2mU |V ′|(4.27)

which implies that

dH(U ′, V ′) =
eH(U ′, V ′)

|U ′||V ′| ≥ (1 + δ2/12)p2mU |V ′|
(1 + µ)pmU |V ′|

≥
(

1 +
δ2

14

)

p > p+ ε1 .(4.28)

Since we have already proved that |U ′| ≥ ε1mU and |V ′| ≥ ε1mV (see Claim 4.6),
inequality (4.28) tells us that (U ′, V ′) is a witness to the ε1-irregularity of H.

We shall now prove that (U ′, V ′) is in fact a witness to the ε′-irregularity of G.
We have

|U ′| ≥ ε1mU ≥ ε1(1 − 2ε′)m ≥ ε′m(4.29)

and, similarly,

|V ′| ≥ ε1mV ≥ ε1(1 − 2ε′)m ≥ ε′m .(4.30)

Because of (3.3) and (4.28), we have

d(U ′, V ′) > p+ ε1 ≥ p(G) − 5ε′ + ε1 ≥ p(G) + ε′.(4.31)

In view of (4.29,4.30) inequality (4.31) implies that (U ′, V ′) is indeed a witness to the
ε′-irregularity of G, as required.
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4.2.1. Proofs of Claims 4.6 and 4.7. Here we give proofs of Claims 4.6
and 4.7.

Proof of Claim 4.6. Since U ′ = H(v0), estimates (4.1) and our definition of ε1
imply |U ′| = (1 +O1(µ))pmU ≥ ε1mU .

Now we will give a lower bound on |V ′|. By the definition of V ′, we have

∑

v′∈V

∑

e∈Jv0

m(e, v′) =
∑

v′ 6∈V ′

∑

e∈Jv0

m(e, v′) +
∑

v′∈V ′

∑

e∈Jv0

m(e, v′)

<

(

1 +
δ2

4

)

p4|J |(mV − |V ′|) + |V ′|e(Jv′) .(4.32)

Since |H(v′)| = (1 + O1(µ))pmV , cf. (4.1), (a) in Lemma 2.4 implies (note (1 +
O1(µ))p ≥ η)

e(Jv′) = e(J [H(v′)]) = (1 +O1(η))(1 +O1(µ))2p2|J | = (1 +O1(3µ))p2|J | .

Thus continuing with (4.32) we can write

∑

v′∈V

∑

e∈Jv0

m(e, v′) <

(

1 +
δ2

4

)

p4|J |mV + (1 +O1(3µ))|V ′|p2|J | .(4.33)

Comparing (4.23) and (4.33), we obtain

2|V ′| ≥ (1 +O1(3µ))|V ′| ≥ 1

4
δ2p2mV

and this, using definition of δ and ε1, gives

|V ′| ≥ 1

8
δ2p2mV ≥ 1
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ε6mV ≥ ε1mV ,

as required.

Proof of Claim 4.7. Suppose to the contrary that (4.26) fails, i.e., dH(v0, v
′) <

(1 + δ2/12)p2mU . We distinguish two cases: If dH(v0, v
′) ≥ ηmU , then using (a) in

Lemma 2.4 for H(v0) ∩H(v′) implies

e(J [H(v0) ∩H(v′)]) < (1 +O1(η))

(

1 +
δ2

12

)2

p4|J | .

If, on the other hand, d(v0, v
′) < ηmU we have (cf. (b) in Lemma 2.4)

e(J [H(v0) ∩H(v′)]) < 2η2|J | .

In either case, we have

e(J [H(v0) ∩H(v′)]) <

(

1 +
δ2

4

)

p4|J | .(4.34)

However, in view of the definition of V ′ (see (4.24, 4.25)), inequality (4.34) cannot
hold. This contradiction shows that (4.26) must indeed hold.
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[1] N. Alon, R. A. Duke, H. Lefmann, V. Rödl, and R. Yuster, The algorithmic aspects of the reg-

ularity lemma (extended abstract), 33rd Annual Symposium on Foundations of Computer
Science (Pittsburgh, Pennsylvania), IEEE Comput. Soc. Press, 1992, pp. 473–481.

[2] , The algorithmic aspects of the regularity lemma, Journal of Algorithms, 16(1) (1994),
pp. 80–109.

[3] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy, Efficient testing of large graphs (extended

abstract), 40th Annual Symposium on Foundations of Computer Science (New York City,
NY), IEEE Comput. Soc. Press, 1999, pp. 656–666.

[4] , Efficient testing of large graphs, Combinatorica, 20(1) (2000), pp. 451–476.
[5] N. Alon and J. Spencer, The probabilistic method, Wiley-Interscience Series in Discrete Math-

ematics, John Wiley & Sons, New York, 1992.
[6] F. R. K. Chung and R. L. Graham, Quasi-random set systems, J. Amer. Math. Soc., 4(1)

(1991), pp. 151–196.
[7] , Quasi-random tournaments, J. Graph Theory, 15(2) (1991), pp. 173–198.
[8] , Quasi-random subsets of Zn, J. Combin. Theory Ser. A, 61(1) (1992), pp. 64–86.
[9] , Sparse quasi-random graphs, Combinatorica, 22(2) (2002), pp. 217–244.

[10] F. R. K. Chung, R. L. Graham, and R. M. Wilson, Quasi-random graphs, Combinatorica, 9(4)
(1989), pp. 345–362.

[11] Don Coppersmith and Shmuel Winograd, Matrix multiplication via arithmetic progressions, J.
Symbolic Comput., 9(3) (1990), pp. 251–280.

[12] A. Czumaj and C. Sohler, Testing hypergraph coloring, Proc. of ICALP, 2001, pp. 493–505.
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