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Abstract. Given a seSof n points ink-dimensional space, and apmetric, the dynamic
closest-pair problem is defined as follows: find a closest p&rafter each update @&(the
insertion or the deletion of a point). For fixed dimensioand fixed metrid_,, we give a

data structure of siz® (n) that maintains a closest pair 8fin O(logn) time per insertion

and deletion. The running time of the algorithm is optimal up to a constant factor because
Q(logn) is a lower bound, in an algebraic decision-tree model of computation, on the time
complexity of any algorithm that maintains the closest pair Koe 1). The algorithm

is based on the fair-split tree. The constant factor in the update time is exponential in the
dimension. We modify the fair-split tree to reduce it.

1. Introduction

The dynamic closest-pair problem is one of the very well-studied proximity problems
in computational geometry [6], [17]-[20], [22]-[25], [28]-[31]. We are given aZet

n points ink-dimensional spacé, > 1, and a distance metric;, for 1 <t < oo. The
point set is modified by insertions and deletions of points. Each pwistgiven as a
k-tuple of real numbersép, ..., py).

The closest pair 0§is a pair(p, q) of distinct pointsp, g € Ssuch that the distance
betweenp andq is minimal. The dynamic closest-pair problem is defined as follows:
find a closest pair (any) @& after each update @&.

We assume that the dimensikand the distance metrlc are fixed. We usd(p, Q)
to denote the distance betweprandg.

A survey can be found in Schwarz's Ph.D. Thesis [23]. For the static closest-pair
problem and dimensidk= 2, Shamos and Hoey [26] gave an algorithm with a running
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time of O(nlogn). Shortly after that, Bentley and Shamos [5] obtained this result for
general dimensiok > 2. In theon-lineclosest-pair problem only insertions are allowed.
For this problem Smid [28] obtained a data structure of §ize) that supports insertions

in O(log*~* n) amortized time. Schwaget al. [25] presented a data structure of szé)

that maintains the closest pair @(logn) amortized time per insertion.

Several algorithms are obtained for the dynamic closest pair problem [19], [20], [22],
[23], [29]-[31]. In [20], [22], and [29] the problem is solved witb(,/n logn) update
time usingO(n) space. In [19] Kapoor and Smid gave data structures of Sin¢
that maintain the closest pair lo(n) amortized time per update, where, for> 3,
size S(n) = O(n) and timeU (n) = O(Iog"*lnlog logn); for k = 2, sizeS(n) =
O(nlogn/(loglogn)™ and timeU (n) = O(lognloglogn); for k = 2, sizeS(n) =
O(n) and timeU (n) = O(log?n/(loglogn)™) (m is an arbitrary nonnegative integer
constant). In [6] the author obtained an algorithm w@ilog“** nloglogn) update
time andO(n log“=2 n) space. Callahan and Kosaraju [13] developed a tree-maintenance
technique to solve a general class of dynamic problems. This technique can be used to
maintain the closest pair i@ (log? n) time andO(n) space.

We give a linear-size data structure that maintains the closest aitag n) time per
update. The algorithm is deterministic and the update time is worst-case. The algorithm
fits in the algebraic computation tree model. In the algebraic computation tree model,
there is a lower bound &® (nlogn) on the time complexity of any algorithm that solves
the static closest-pair problem for dimensloe: 1 [3], [21]. So the running time of our
algorithm is optimal up to a constant factor.

Our algorithm is based on the following idea. We use a hierarchical subdivision of
space into boxes. Several proximity algorithms build hierarchical subdivisions of space
[33], [15], [14], [28], [24], [23], [2], [12], [13]. These subdivisions differ by the shape of
boxes, the overlap allowance, the manner of box splitting, and the number of points in a
box stored at a leaf. Our algorithm maintains almost cubical boxes. The boxes are split by
almost middle cutting [7] which is similar to fair split [12], [13], [11]. Any smallest box
contains exactly one of the given points. For each point we store some neighbor points.
The closest pair is one of these pairs. To maintain these pairs efficiently we apply the
dynamic trees of Sleator and Tarjan [27]. To insert a point we implement point location.
Point location also uses dynamic trees. The idea of using dynamic trees for point location
in hierarchical subdivisions is due to Cohen and Tamassia [15] and Céiaig14].
Schwarz [23] applied dynamic trees for the on-line closest-pair problem and obtained an
algorithm with worst-cas®© (logn) time per insertion an@®(n) space. Our hierarchical
subdivision is similar to th&ox decompositioof [1] and thefair-split tree of [13]. In
[13] and [1] point location uses thepology treeof Frederickson [16]. The topology
tree is based on the dynamic trees of Sleator and Tarjan [27].

In Section 2 we describe the fair-split tree. In Section 3 we show how to maintain
the fair-split tree (without point location). Section 4 explains how to maintain neighbor
information of points and the closest pair. In Section 5 we briefly recall dynamic trees.
In Section 6 we show how to implement the search on dynamic trees. In Section 7 we
discuss how to reduce the constant factors in the update time. Finally, in Section 8 we
give some concluding remarks.
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2. The Fair-Split Tree

The fair-split tree is a hierarchical subdivision of space into boxes. We define a box
to be the productdy, a;") x --- x [ak, a’) of k semiclosed intervals. Thigh side of
this box is the intervald;, a’). If all the sides have the same length, we say that the
box is ak-cube The cubes are useful in some proximity algorithms (for example, the
all-nearest-neighbors algorithm of Vaidya [32], [33]). Unfortunately we cannot directly
use cubes in a subdivision of space for the dynamic problem, because splitting a cube by
a hyperplane; = constdoes not give cubes. Another way is using the almost cubical
boxes [7] and a fair split [12], [13], [11], [10] or an almost middle cut [7]. The almost
middle cut is similar to the fair split (but there is a difference in the definitions). In this
paper, for the split of boxes, we use the definition of [7] but we call ifdiresplit. The
fair-split tree is also applied to other dynamic problems [10], [8], [9].

The constant factors in the update and query time are exponential in the dimension.
To decrease the constant factors we generalize the fair split by introdusegpeator
s > 1. In fact, both the fair split [12], [13], [11] and the almost middle cut [7] use the
separator that is equal to 2. We establish geometric criteria for the fair split with the
separator to be suitable for maintenance of the fair-split tree. The separator must be at
least the Golden Rati6y/5 + 1)/2 ~ 1.61803.

Definition 2.1. Let [a, @) be an interval irR and letb be a point in this interval. The
split of the interval into the interval@[ b) and b, &) is afair split if the length of the
larger interval is at most times the length of the smaller interval, i.e.,

b-a 11

a—b s |
Definition 2.2. Let B = [a;, a1’) x --- x [ak, a’) be a box and let; € (g, &’) be
a real number for some The split of B by the hyperplane; = ¢ into the boxes

BN{x|xi <¢}andBnN{x|x; > ¢} is afair split of B if the split of the interval &, a")
by ¢ is fair split (see Fig. 1).

ay F------

)
)
)
’
ay I a r 1 )

Fig. 1. The hyperplaney = c; determines a fair split of the boz{, a)) x [a, &) ifand only ifc; € [I,r]
wherel = (sa + a))/(s+ 1) andr = (a; +58)/(1 +9).
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The fair-split operation generates a relation on the set of boxes.

Definition 2.3. Let A andB bek-dimensional boxes. BoR is said to be as-subbox
of B if A can be constructed fro® by applying a (possibly empty) sequence of fair
splits. We writeB ~» A. Fork = 1, we say that\ is ans-subintervabf B.

In fact the relation of ais-subbox is the product of assubinterval relation.

Proposition 2.4. Let A=[a;, a;’) x --- x [ax, a’) and B= [by, by’) x - - - x [by, by)
be k-dimensional boxeBox A is an s-subbox of B if and onlyfiéri = 1, ..., Kk, the
interval[a;, &) is an s-subinterval dit;, b;").

We now give another definition of aasubinterval, and show that it is equivalent to
that of Definition 2.3.

Definition 2.5. Let[a, &) and p, b") be intervals inR. Let [a, a") be the subinterval
of [b,b),i.e.,b < a < a < b. The interval f, &) is called ans-subintervalbf the
interval [b, b’) if one of the following conditions holds:

1. [a,@) =[b,b), or

2. a=bandla —al < (s/(s+ 1)|b" —b|, or

3.a =bandja —al] < (s/(s+ 1)|b' —bj, or

4. 18 —b| < (s/(s+ 1)|b —bjand|a’ —a| < (s/(s+ 1))|a’ — b|, or
5. |b'—a] < (s/(s+1)|b' —bland|a’ —a] < (s/(s+1))|b —al.

This definition allows us to retrieve a sequence of fair cuts for two bakesd
B if B ~ A. The following theorem gives the condition for the separaavhen
Definitions 2.3 and 2.5 are equivalent.

Theorem 2.6. Definitions2.3 and 2.5 define the same relation of an s-subinterval if
and only if the separator is at least the Golden Ratie, s > (+/5+ 1)/2 > 1.61803.

Proof. For convenience we define the intermediate notionarfexsided s-subinterval
The interval p, @) is called aone-sided s-subintervaf the interval p, b) if either the
second or third condition of Definition 2.5 holds. Note that conditions 4 and 5 are the
combinations of two one-sidedsubintervals (for different sides).

Suppose that Definitions 2.3 and 2.5 define the same relation sfsabinterval.
Consider two intervalsg, a’) and |, b’) such that §, a") is ans-subinterval of b, b’)
anda = b. The interval §, @) can be constructed by applying a sequenc& dair
splits of [b, b). Itis clear that

|a/—a|e 1 s \N
b — b s+DN’\s+1 '

The maximal value o&’ — a after one fair split is at least the minimal valueadt- a




An Optimal Algorithm for Closest-Pair Maintenance 179

after two fair splits (by condition 2 of Definition 2.5), i.e.,

s \2 1
- >
(51) = o
Usings > 1 we gets > (+/5+ 1)/2.
Lets > (+/5+ 1)/2. Similarly we can show that any one-sidsdubinterval is
an s-subinterval (in terms of Definition 2.3). Hence any pair of intervals satisfying
Definition 2.5 satisfy Definition 2.3. To prove the inverse statement we show that the
combination of three one-sidesdsubintervals can be represented as a combination of
two one-sided-subintervals.
Let[b, ¢’) be aone-sidestsubinterval of b, b), let[c, ¢’) be a one-sidestsubinterval
of [b, ¢), and let E, d’) be a one-sided-subinterval of §, ¢'):

/ J S /
|d"—b| <|c —b|§m|b — b,
d"—c| |¢'—c|—|c—d|
|d—b|] | —b|—|c —d]
_ /+D)c’ = bl —(s/(+ DI’ —d'| = A/(s+D)[c’ —d
- ¢’ —b| — | —d]
S | —d'| s
s+1 G+D|d—b “s+1

Hence E, d’) is ans-subinterval of b, b). O

The constant factors in the update time depend on the separati@wa®) (s + 1)) .
Decreasing the separator reduces these factors.

We do not include the condition of the almost cubical boxes into the definition of the
fair split of boxes although we apply fair split only for such boxes. The almost cubical
boxes can be obtained from cubes by repeatedly applying a fair split by a hyperplane
perpendicular to one of the longest sides of the box.

Definition 2.7. Let B be a box with sides,, ..., sc. Box B is said to be as-boxif,
foranyi, j € {1,...,k},

- 1
N
S 1+s

The fair-split tree is a binary treg. With each node of the treeT, we store a box
B(v) and a shrunken bo2B(v). The boxes satisfy the following conditions:

1. For any node, boxesB(v) andSB(v) ares-boxes.

2. For any node, box SB(v) is ans-subbox ofB(v).

3. Forany node, SBv) N S= B(v) NS

4. If v has two childreru andw, then boxe€B(u) and B(w) are the results of a fair
split of boxSBv).

5. Ifvis aleaf, thenSN B(v)| = 1 andSB(v) = B(v).



180 S. N. Bespamyatnikh

For a pointp € Scorresponding to the leaf let B(p) denote boxB(v).

Let parentv), Ison(v), andrson(v) denote parent, left son, and right son of the node
vofT.

We usedmin(X, Y) to denote the distance between two 61 ¢ Rk, i.e., distance
dmin(X, Y) = inf{dist(x, y)|x € X,y € Y}. dnax(X, Y) denotes the maximal distance
between two setX, Y c RX, i.e., distanc@ma(X, Y) = sugdist(x, y)|x € X,y € Y}.
d(X) denotes the diameter of a s€ti.e., distancal (X) = dmnax(X, X).

3. Maintenance of the Fair-Split Tree

In this section we show how to maintain fair-split trféainder insertions and deletions
of points. Deletion is simpler than insertion and we consider deletion first.

Let pbe a pointto be deleted. Letbe a leaf correspondingmi.e., pointp € B(w),
let v be the parent ofv, and letu # w be the sibling ofu. We consider two cases:

(1) uis aleaf (see Fig. 2(a)). Then s&Bv) = B(v) and delete the leavesandw.

(2) uis an internal node (see Fig. 2(b)). Then delete the nodsetB(u) = B(v),
and collapse the edg@, v), i.e., setpareniu) = pareniv), delete the node,
and rename the nodeasv.

Now consider insertion. Lep be a point to be inserted. The insertion algorithm has
two steps. First we find the smallest box containing p@infThen we update a finite
set of nodes and boxes of trée The first step uses the point-location algorithm that is
described in Section 5. After point location there are three cases.

1. Pointp does not belong t&(vrgor), Wherevyet is the root ofT .
2. Pointp belongs to boxXB(v), wherev is a leaf (see Fig. 2(a)).
3. Pointp belongs to the seB(v)\SB(v) for some node (see Fig. 2(b)).

Cases 1 and 2 can be handled similarly to case 3. Consider case 3. We want to construct
ans-box D and a fair split ofD into the boxesD; and D, that satisfy the following
conditions:

e box D is ans-subbox ofB(v),

msertlon
msertlon

v ./ deletlon w

deleuon

(@) )

Fig. 2. Updating the fair-split tree. (a) The inserted pombelongs toB(v). The deleted poinp belongs
to B(u) whereu is a son ofv. (b) The inserted poinp belongs toB(v)\SBv). The deleted poinp belongs
to B(w).
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e box SB(v) is ans-subbox ofD,, and
e point p € Da.

After finding D, we remove the edges fromto childrenv’ andv”, create two nodes
u andw belowwv, add edges joining to v’ andv”, and seSBu) = SBv), B(u) = Dy,
SB(v) = D, B(w) = D, andSBw) = D, (see Fig. 2(b)).

DenoteSBv) = [a, b1) x - - - x [ak, bk). The algorithm uses a bdX and repeatedly
shrinks boxD until a fair split of D is found. Initially D = B(v). DenoteD = [dy, &) x
.-+ x [dk, &). After each iteration of the algorithm:

(1) boxD is ans-box and ars-subbox ofB(v),
(2) boxSB(v) is ans-subbox ofD, and
(3) box D contains pointp.

The algorithm ha®© (1) iterations because after each iteration the number of coordi-
natesy;, by coinciding with endpoints off, g ) isincreased, i.e., the suﬁji“:l {a, bi}N
{di, }| is increased. We call this the number of connected endpoints. The basic proce-
dure is thefair-split procedure.

procedurefair-split (D)  (x fair split of boxD = [d1, €;1) X - -+ X [dk, &) *)

(1) Findi suchthag —d; is maximal. In Step 2 we choosenste [d;, ) to
partition D by the hyperplang = const Compute the intervatf, €] =
[di+ (g —di)/(s+1),e — (6 —di)/(s+ 1)] which contains all possible
values ofconst

(2) If & or by lies in the interval ¢, €], thenconst= & or const= by,
respectively. Otherwise the interval [ bj] does not intersect the interval
[d/, &]. There are two possible cases.

(2.1) by < d/(inotherwords,§, b)) < [d;, d))). Letd” = b+ —d;) /s
(d” is a minimal real number such that the split df,[d/'] by by is
fair). Thenconst= max(d;, d").

(2.2) & > € (inotherwords, &, b)) C [€, &)). Lete = a — (e —&)/s
(& is a maximal real number such that the splitgf,[g] by & is
fair). Thenconst= min(e/, ).

(3) Partition boxD by the hyperplang = const If this hyperplane separates
box SB(v) and pointp, the cut ofD into the boxed N {x, x; < cons}
andD N {x, x; > const is a fair split which satisfies conditions (1)—(3)
above. In this case we stop the iteration. Otherwise one of these boxes
contains both the bo®B(v) and pointp. Choose this box ab.

(4) End of procedure.

Now we describe the iteration of the algorithm. If, for sojnthe interval [mirga;, p;).,
max(bj, p;)] intersects the intervald[, e]f), then call the fair-split procedure until the
number of connected endpoints increasEnét= & or const= b; in Step 2) or the
iteration finishes (in Step 3). The proceddaé-split splits theith side of D at most
O(1) times (more precisely, three times for= 2 and twice for= (v/5 + 1)/2). The
number of calls is at mo<D (k).

For any j, the interval [mirfa;, p;), max(b;, p;)] does not intersect the interval
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[d], ]. Withoutloss of generalityy; < d; forall j. Choosg suchthat; = (max(by, pj)
—d;)/(g —dj) is maximal. The boxd:, di + ((s+1)/s)¢j (61 — d1)) x - - - x [d, dx +
((s+ 1)/s)¢j (& — dy)) is ans-box ands-subbox ofB(v). Shrink D to this box. Then
[min(a;, p;), max(b;, pj)] intersects the middle interval ofl], ] and we obtain the
preceding case.

Hence we have proved the following result.

Theorem 3.1. Let the dimension k be fixed and let point location take COST. #Aime
fair-split tree T can be maintained in @) + COST time per insertion and @) time
per deletion

4. Maintenance of the Closest Pair

To maintain the closest pair we store the Baif some pairs of points db.

Definition 4.1. A point p € Sis anearest neighbor of df, for anyr € S\{q},
d(p,q) < d(q,r). For pointsp, g € S, we call the pair(p, g) aneighbor pairif p is
the nearest neighbor gfand vice versa.

The setE contains the neighbor pairs. Itis clear that the closest p&i®a neighbor
pair of Sand the closest pair belongsio

Let a heaH store the distances of the pairstof The heap item is the pair of points.
The key of the itenip, q) is theL-distanced(p, q). The pair of points with the minimal
key is a closest pair d.

With each pointp € S, we store alisE, = {q | (p, ) € E}. With each poing in
Ep, we store a pointer to iterfp, q) of the heapH.

Definition 4.2. An ordered pait (a, b) of points fromS s anordered rejected paiif
there exists a nodein the fair-split tree satisfying the following:

1. a ¢ B(v).

2. d(B(v)) < sd(B(a)).

3. dmin(@, B(v)) < (1+s)d(B(v)).
4. dmax(a, B(v)) < d(a, b).

An unordered paita, b) of points fromSis arejected pairif ordered pair(a, b) or
(b, a) is an ordered rejected pair.

The setE satisfies the following property.

Invariant.  For any distinct points, b € S, the unordered paif, b) belongs to the
setE unless(a, b) is a rejected pair.

1 We define by(a, b) either an unordered pafia, b} or an ordered paird, b], using the context to resolve
the ambiguity.
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Lemma 4.3. Lettheinvariant hold for the set.Hhen the set E contains the neighbor
pairs of S

Proof. By condition 4 of Definition 4.2. O

Itis easyto see thatthe set of all pairs satisfies the invariant. We maintain the additional
invariant that, for anyp € S, the number of incident pairs i is at most constant, i.e.,
|Epl = O(1). This gives us a linear bound ¢&|. We can boundE,| by the following
statement.

Statement 4.4. For any point pe S, the number of nonrejected pai¢p, q) € S is at
most 1).

Let Ny = (24k + 1)X. We prove that the number of nonrejected pairs incident to
a point p is at mostN (for the separatios = 2). It is important that this bound is
independent of.

Statement 4.4 follows from Theorem 4.6. We precede Theorem 4.6 with a useful
lemma.

Lemma4.5. Let p and g be points of. & d(p, q) > (1 + s)d(B(p)), then the pair
(p, q) is rejected

Proof. Consider leafi corresponding to poinp. Let v be the sibling olu anda = p.
Pointa and node satisfy conditions 1-3 of Definition 4.2. The p&p, q) is rejected if
d(p, q) > dmax(p, B(v)). Thelemmafollows frondmax(p, B(v)) < dmax(B(U), B(v)) <
d(B(u)) + d(B(v)) < (1 + s)d(B(u)) (Fig. 3). O

Theorem 4.6 is useful in the insertion algorithm. To find asgtfor an inserted point
p, we use a search on the dynamic tree. We need to limit the number of nodes that are
used in the search at the same time. \let {vy, ..., vn} be a set of these nodes. We
associate the s& = B(vi)\ Ug,)ca(,) B(vj) With every nodey; € V.

Theorem 4.6. Let p be a point of S and let = {vy, ..., vy} be a set of nodes of a
fair-splittree T. If N > N, there existsi such thaor any qe § N S, the pair(p, q) is

B(v) B(u)

Fig. 3. The distance between poingsandq is greater than the diameter of b&u) timess + 1. The pair
(p, q) is rejected.
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§ B(v;)

B(p) dwmin(p; B(vi))
(1) @) (3)

Fig. 4. Three cases of Theorem 4.6: (1) B(vi), (2) d(B(p)) < §/s, and (3)dmin(p, B(vi)) > (1 + s)é.

rejected (Choosing i does not depend on the layout of the points of S in the associated
sets.

Proof. We can assume that, for anythe intersectior§ N S # @ and there exists

a pointqg € § N Ssuch that the paitp, q) is nonrejected. (In fact we can recognize

whether an empty s& N Sexists inO(N) time. For an indeX, the set§ N Sis empty

if and only if any leaf below the nodg has an ancestor which is a descendan; 9f
Choose a boxB(v;) of minimum diameter. Les = d(B(v;)). First we prove that,

for any pointq at distance greater thg@ + s)§ from p, the pair(p, q) is rejected. We

consider three cases (Fig. 4).

Casel: Point p belongs to box @;). ThenB(p) € B(v;) ands > d(B(p)). For any
pointg with d(p, q) > (1+ )8 the pair(p, q) is rejected by Lemma 4.5. Hence we can
assume

p ¢ B(u). D

Case2: The diameter of Bp) is less thans/s. Recall that the separatsris greater
than 1. Letg be any point at a distance greater thiaa- s)é from p. Then, sinces > 1,
d(p,q) > (1+9s)§/s > (1 + s)d(B(p)) and the pailp, q) is rejected by Lemma 4.5.
Hence we can assume

8 < sd(B(p)). 2

Case3: The distance from point p to box(8) is greater than(1 + s)§. Choose any
pointg from SN B(v;). Itis clear thatB(q) € B(v;) andd(p, q) > (1 + s)d(B(q)).
The pair(p, q) is rejected by Lemma 4.5 and nodecan be removed fronv. This
contradicts our assumptions. Hence we can assume

Amin(P, B(vi)) = (1+s)8. 3

Leta = p andv = v;. Choose any poinb € S such thatd(a,b) > (2 + s)3.
Conditions 1-3 of Definition 4.2 are the assumptions (1)—(3). Noteditaatb) > § +
dmin(p, B(vi)) > dmax(@, B(v)). Hence the paifa, b) can be removed frork.

Thus, we can remove a noag from V if dnin(p, §) > (24 s)8. The number of
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nodesy; such thatmin(p, §) < (24 s)é is at mostNy, = (24k + 1)k by Lemma 4.7.
The result follows. O

Lemma4.7. Let p be a point of Sand let V = {vy,..., vy} be a set of nodes
of a fair-split tree T such thatfor any |, the set § = B(v))\ Ug,)ceq,) B is
nonemptyLet§ be a minimum diameter(@(vi)), vi € V. If, for any j, the distance
dmin(P, §) < (2+ )8, then the number N¢ Ng = (24K + 1)k,

Proof. Fixanyj € {1,..., N}. Choose the poirg € § such thatl(p, q) < (2+5s)3.
Note that boxB(vreor) corresponding to the root of contains pointg and any box
B(v), v € V. We show thay is included in§ together with some-box C, any side of
Cisatleast/((1+s)k).If § = B(vj), thenC = B(v;). Otherwise choose the minimal
box B(u), u € T, that contains poing and at least one boR(v) for somev € V.

We distinguish two cases. In the first case pajriielongs to boXSB(u). Note that
B(v) € SBu). Then the fair split of boXSBu) separates poirg and boxB(v), i.e.,
pointg € B(uy), box B(v) € B(uy) whereuy, u, are the sons af. Note that

e d(B(up)) = 4,
o the length of the longest side 8fu,) is at least/k, and
o the length of the shortest side Bfu,) is at least/((1 + s)k).

The sides of boxB(u;) are equal to the sides of bd(u,) except for those that are
a part of the partitioned side of bdx(u). Now consider the second part of this side. If
it is the longest side oB(uy), then the corresponding side Bfu;) has length at least
8/((1 + s)k). Otherwise one of the sides &(u;) has length at least/ k. Hence any
side ofB(uy) has length at leasy/ ((1 + s)k). In the first case poirg is included in§
together with boxB(u;) and any side oB(u,) is at least/((1 + s)k).

In the second case poigtdoes not belong to ba8B(u), i.e., pointq € B(u)\SBU).
Note thatB(v) € SB(u). This situation is similar to case 3 of the insertion algorithm
(Section 3). We proved that there existssapox D and a fair split ofD into boxesD;
and D5 such that

e box D is ans-subbox ofB(u),
e box SB(u) is ans-subbox ofD4, and
e pointq € Da.

The diameter of boXD; is at leas. The situation is similar to the first case and we
can show that any side & is at leas/((1 + s)k).

Thus, in both cases, there existssalbox C C § that contains poind, and any side
of C is atleast/((1 + s)k). Box C contains at least one point of the lattice

L:{x|uez,whereo= andi:l,...,k}.
o

B
1+ 9k’

Letr be a point ofC N L closest top. Then, for anyi,

I —pil = {(2_;3)8—‘ o =[(2+9) 1+ 9s)k]o.
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Therefore the sef contains at least one point among the points in the set

L = {x| X TP 0. 1), wherel, = [(2 4 $)(1+ SK]
o
fori =1,...,k}.

For the separatios = 2, the cardinality of this set idl, = (24k + 1)%. This implies
thatN = |V| < N,. O

The insertion algorithm uses Theorem 4.6 if the\datontains more thahlx nodes.
We describe the algorithm to refine the ¥efin Section 7 we give effective algorithms
to refine node sets in searchig and A(v)).

Algorithm REFINHYV) (x this algorithm is used in searching f&y, *)
1. Remove the nodag € V such that

Amin(P, B(vj)) > (14+9)d(B(vj)) or dmin(p, §) > (14 s)d(B(p)).

2. Computes = min,, ey {d(B(v;))}.
3. Remove the nodag € V such that

Omin( P, S) > (2+9)s.

The insertion of poinp causes the insertion of some pairs iE@nd the deletion of
some pairs fronk. We look at the updates of boxes. Note that the boxes, corresponding
to the nodes, are only inserted and, in the cBé&.ot), are enlarged. Hence to prove
that the invariant holds fdE we need not insert pairs that are not incident to an inserted
point. Using the dynamic tree we find at madst pairs that are adjacent tp. Add
these pairs intdE. Now in fact the invariant holds foE. However, for some points,
the number of incident pairs may excelg These points are adjacentpaand can be
determined when adding pairs ina For these points, we remove some pairs flam
using Theorem 4.6.

Now we consider the deletion of poipt The deletion causes the insertion of some
pairs intoE and the deletion of some pairs frofn Delete the pairs adjacentm i.e.,
thesef(p,q)|q € S, (p,q) € E}. Note that two boxes are always deleted. These boxes
are the results of a fair split of bd&B(pareniw)) where nodev corresponds tg.

We consider the deletion of bd&(v). Suppose that the paja, b) was rejected (and
was not included irE) by the conditions of Definition 4.2 for node Thend(B(a)) >
d(B(v))/sanddmin(a, B(v)) < (1+s)d(B(v)). We show that the number of such points
is at mostO(1). The argument is similar to the proof of Theorem 4.6. A¢ét) denote
this set, i.e.,

A(v) ={a € S| d(B(a)) = d(B(v))/sanddmin(a, B(v)) = (1+ s)d(B(v))}.

For eacha € A(v), we renew the sdE,. This gives the seE, for which the invariant is
fulfilled (if we renew the sets for both deleted boxes). For the pajrdsS, |Eq| > Nk,
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remove some points fro, using Theorem 4.6. Now the second invarigf( < Nk,
for anyqg € S) holds.
In the rest of this section we prove the analog of Theorem 4.6Af@). Denote
M, = (36k 4+ 19)K. To find a setA(v) we use a search on the dynamic tree. As in finding
E, we bound the number of nodes that are used in the search at the same time. We prove
that this number is at mod#li (for the separatios = 2). LetV = {v3,...,vn} be a
set of these nodes. We associate theSset B(vi)\ Upg(,)cp(,) B(vj) With every node
Vv € V.

Theorem 4.8. Letv be a node of a fair-split tree ;Jand let V= {vy, ..., vy} be a set
of nodes of TIf N > My, there exists i such that@®) N § = ¢ (choosing i does not
depend on the layout of the points of S in the associatejl sets

Proof. We can assume that, for anyS N'S # @. Let § be a minimum diameter
d(B(vi)), for v; € V. Note that§ > d(B(v))/s. By the definition of A(v) we can
assume that, for anj,

dnin(§., B(v)) < (14 9)d(B(v)).

Fix any j € {1,..., N}. Choose the point| € § such thatdmin(q, B(v)) < (1 +
s)d(B(v)). As in the proof of Theorem 4.6 we can show that there exdiex C
satisfying the following:

e qeC,
e any side ofC has length at leasy/ ((1 + s)k).

Box C contains at least one point of the lattice

L:{x|xi_piez,whereo= andi=l,...,k}.
o

B
1+ 9k’

Let p be the center of boB(v). The shortest side d@(v) has length at least(B(v))/k.
The longest side oB(v) has length at leagf. + s)d(B(v))/k. Hence

_ _ (14 9)d(B(v))
lgj — pjl = B a—

Letr be a point ofC N L closest top. Then, for anyi,
Iri — pil - F(l+ s)(1+ 1/2k)és

+(1+9d(Bw) <s1+9) (1+ 2—1k) 5.

o

W = [s(L+ 9%k + 1.
o

Therefore the se§ contains at least one point among the points in the set
X — D
L = {x | 5P a0, 1), wherel, = [S(1+ 8)2(k + 1]
o
for i =1,...,k}.

For the separatios = 2 the cardinality of this set iM, = (36k + 19)¥. This implies
thatN = |V| < M. |
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5. Dynamic Tree

Inthis section we briefly describe the dynamic tree. We use the dynamic tree to implement
point location and other searches on the fair-split tree.

A dynamic treeA (T), based on the binary trée, has the same nodes and the same
edges ag . The dynamic tree is a partition of edges into two kinsidljd anddashed
with the property that each node has at most one child linked to it by a solid edge. Thus
the solid edges define a collectionsafid pathghat partition the vertices. (A vertex with
no incident solid edges is a one-vertex solid path). The head of the path is its bottommost
node; the tail is its topmost node.

Foranode of T, letsiz€v) be the number of nodes in the subtre@ aboted ab. Let
(v, w) be an edge of from v to its parentw. The edge ihieavyif sizev) > sizgw)/2
andlight otherwise. A node of A(T) fulfills the size invariantif, for each edgee to
one of its childreng is solid if it is heavy and light if it is dashed. We say that the size
invariant holds for the dynamic tre®(T) if it holds for each node of .

A solid path is represented bypath tree We useglobally biased binary treegl] to
implement path trees. A biased binary tree stores an ordered sequeveigltedtems
in its leaves. The weight of a nodeof T (and of the corresponding leaf of the biased
binary tree) is defined as

siz&v) if no solid edge enters,

weightv) = {size(v) — Sizdw) if the solid edggw, v) entersv.

The weight of an internal node of a biased binary tree is inductively defined as the sum
of the weight of its children.

Each node of a biased binary tree has an integer rank den@eki(v) that satisfies
the following properties:

(i) If vis a leaf,rank(v) = |logweighiv)]. If v is an internal nodesank(v) <
1+ [logweightv)].

(ii) If node w has parenb, rank(w) < rank(v), with the inequality strict ifw is
external. Ifw has grandparent, rank(w) < rank(u).

Each internal node of a biased binary tree contains four pointers [24gft(v) and
bright(v), which point to the left and right child of, andbheadv) andbtail(v), which
point to the head and tail of the subpath corresponding(tbe leftmost and rightmost
external descendants of. For a topmost node of a solid pathP, there is the pointer
pt_root(v) to the root of the path tree fd?.

Lemma5.1[27]. If vis aleaf of a biased binary tree with root the depth ob is at
most2(rank(u) — rank(v)) < 2log(weightu) /weightv)) + 4.

The updates of can be performed using the following operations [4] on rooted trees.

link(v, w): If v is the root of one tree and is a node in another tree, combine the
trees containing andw by adding an edge joining andw.

cut(v, w): If there is an edge joining andw, delete it, thereby breaking the tree
containingv andw into two trees, one containingand one containing.
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The time bound of these operation€glogn). This gives the following result.

Lemma5.2. The dynamic tree can be maintained under insertions and deletions of
points in Ologn) time per update

6. Searching

In this section we discuss the search algorithms. We have to implement point location
and the search for the sdfs and A(v).

6.1. Point Location

Let p be a pointirk-dimensional space. The nodesloivhose boxes contaipform the
path (if p € B(vroor)). We have to compute the bottommost node of this path. Our point-
location algorithm is similar to the algorithm of Schwarz [23]. The algorithm processes
a sequence of solid paths of the dynamic tree. For any solidpattthis sequence, the
box of the topmost node d® containsp.

We start the algorithm with the solid path containing the root. If Bix;.t) does
not containp, then the algorithm returnsull.

Now assume that the algorithm has reached the topmost node of the solig path
and p is contained in the box of that node. We find the lowest noda P whose box
still contains the query poirp. At this point we continue the search with a dashed edge
(v, u) such thatp € B(u). It is clear that noda is the topmost node of the next solid
path.

Now we describe the search on the solid pRthThe algorithm starts with roat of
the path tree. We execute the following step unti$ a leaf of the path tree. Follow the
pointer fromu to the rightmost leaf inu’s left subtree. This node istail(bleft(u)). If
box B(btail(bleft(u))) contains the query point, then we proceed with left child in
the path tree, otherwise with the right child.

function point location(p)
v ;= root(T)
if p ¢ B(v) then return null
while v is an internal node of do
(* Note thatp € B(v) andv is the topmost node of some pafh)
u:= pt_root(v) (x uisthe root of the path tree fd? %)
while u is an internal node of the path trde
if p € B(btail(bleft(u))) then
u ;= bleft(u)
elseu := bright(u)
fi
od
(* u is the bottommaost node of the pathsuch thatp € B(u) %)
vi=u
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if the edggv, rson(v)) is dashed ang € B(rson(v)) then
v = rson(v)
else ifthe edgdv, Ison(v)) is dashed ang € B(Ison(v)) then
v = Ison(v)
else returnv
fi
fi
od
return v
end (x of the functionx)

Itis clear that the point-location algorithm is correct. We analyze the running time of
the algorithm. LetP;, ..., B be the solid paths that are searched during the algorithm.
Letus, ..., u; be the roots of path trees and igt . . ., v be the bottommost nodes on
path trees that are searched. Note thas the parentoflj,; in T fori =1,...,1 — 1.

The numbet of paths is at most log by the size invariant. The depth of in the
path tree forP, is at most 2rank(u;) — rank(v;)) by Lemma 5.1. For = 1,...,1 — 1,
rank(vi) > rank(ui.1) by the definition ofrank. The total running time of the point-
location algorithm is

|
0 (Iog N+ ) 2(rank(u;) — rank(y, )))

i=1
= O(logn + rank(uy) — rank(v;)) = O(logn).

6.2. Searching for i and A(v)

Now we describe the search for the sEtsand A(v). Recall thate, = {q | (p, q) € E}
and

A(v) ={a € S| d(B(a)) = d(B(v))/sanddmin(a, B(v)) = (1+ 9)d(B(v))}.

We consider the search f&, and A(v) as a point-location problem for at moSi(1)
points (Nk points forE, andMy points for A(v)). In fact we can build a search tree such
that

e the external nodes correspond to the poBjtand
o the path from the root of the search tree to an external maceresponds to the
nodes of the path trees searched during the location of the point corresponaling to

The search for the sets, and A(v) appliesbreadth-first searcton the search tree.
nodesetdenotes a set of nodes that is stored in the breadth-first search. We use the
pointerdepthv) that is a depth of the nodein the search tree. For simplicity, we extend
the pointerdbtail to the external nodes of any path trees. (It is not necessary to store
these pointers). Using Theorem 4.6 (resp. 4.8), the procedfing) finds at mostNg
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(resp.My) nodes among the nodéistail(v) | v € nodeset and removes other nodes
from nodeset

function search() £ the search foE, or A(v) *)
w = pt_root(root(T))
nodeset:= {w}
depthiw) :=0
while there is a nodev in nodesetsuch thabtail(w) is an internal node of do
w is a hode imodesetwith minimal depth such thdttail(w) is an internal node
of T
if w is an internal node of some path triben
nodeset:= nodesetU {bleft(w), bright(w)}
depthbleft(w)) := depthiw) + 1
depthbright(w)) := depthiw) + 1
els€x w is an external node of some path tre
u := btail(w)(x u is the corresponding node afin T x)
if the edggu, rson(u)) is dashedhen
w = pt_root(rson(u))
nodeset:= nodesetU {w}
depthiw) := depthiw) + 1
fi
if the edggu, Ison(u)) is dashedhen
w = pt_root(Ison(u))
nodeset:= nodesetU {w}
depthiw) := depthiw) + 1
fi
fi
nodeset:= nodeset {w}
if Inodeset > Nx then (x |[nodesef > M for A(v) %)
refing({btail(w) | w € nodeset)
(* by Theorem 4.6 foE, and Theorem 4.8 foA(v) *)
fi

od
return the points corresponding the nodsasil(w) for w € nodeset

end (x of the functionx)
Lemma 6.1. The function seardqf)takes Qlogn) time

Proof. The function search() visits at mds (respMy) nodes of the same depth. The
depth of the search tree @(logn). This completes the proof. O

Finally, we formulate the main result.

Theorem 6.2. There is a data structure of size(@) that maintains the closest pair of
S in O(logn) time per update
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7. The Reduction of the Constant Factors

In this section we discuss the dependence of the update time and space on dimension. The
complexity of the algorithm is exponential in the dimension. Straightforward implemen-
tation of the searching give®(kN? logn) time to insert andD (kMg (My + N?) logn)

time to delete a point. This is because the procedefiag) takesO(kNy) time in
searching folE, and O (kM) time in searching foA(v).

Now we reduce the time complexity adfing)) to O (k + log Nx) andO(k + log My),
respectively. Instead of computing the minimum diameterBax) (in O(Ny) time), we
maintain it. Note that node is never deleted. In the loop séarck)) we have to choose a
nodev such thabtail(v) is aninternal node of . To do this we storaodesetin two lists:

{v | btail(v) is an internal node of Tand{v | btail(v) is an external node of [T Using
the queue for the first list allows us to find a node with minimal dept@{f) time.

Consider the search fdf,. We can formulate the conditions to remove noge

Amin(P, B(vj)) > (1+ 9)d(B(v))), (4)
Omin(P, §) > (1 +9)d(B(p)), (5)
Amin(P, S) > Omax(P, B(vi)). (6)

In fact we check these conditions when we add a nodmteset
Consider the search fa&k(v). The following conditions allows us to discard inserted
nodev;:

d(B(v))) > d(B(v))/s, )

Umin(§, B(v)) > (1 + 5)d(B(v)). 8

Conditions (4), (5), and (7) can be computeddrk) time. We can achieve the same
time bound for conditions (6) and (8). The main problem is how to com§utRecall
that§ = B(vj)\ UB(vi)CB(vi) B(v;) for a nodev; € nodeset Instead of computing this
set, we compute its subset such that Theorems 4.6 and 4.8 still hold.

Let w be a node of some path tree ands added tcnodeset(v; = btail(w)). Let
q € R¥ be a point such that the point location pivisits w. It is clear thaiy € S.In
fact we can take the set of such points to3peln other words, we can define

__ | B(btail(w))\B(btail(Ison(u)) if w is the right son ofi,
§= B(btail(w)) otherwise.

The set§ is either a box or the set theoretical difference between two boxes. This
definition of set§ is similar to the definition o€ells[1] (box cellsanddoughnut cells
Conditions (6) and (8) can be computeddxk) time.

In practice, we do not need to store the at mbigt (| M| for A(v)) nodes imodeset
We can prunanodesetat the moment we add a nodeniodeset To do this we store
Omin(P, §) (@min(§, B(v)) for A(v)) in a heap corresponding twodeset Then the
cost of inserting a node toodesetis O(k 4 log Ny) = O(klogk) (O(k + log My) =
O(klogk) for A(v)). The deletion of a node fromodesettake O(k + logNx) =
O(klogk) (O(k +log My) = O(klogk) for A(v)) time. Hence the search f&, (resp.
for A(v)) takesO(k Nk logklogn) (resp.O(k Mg logk logn)) time.
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Now consider the insertion of poipt Recall that after finding, we have to prune the
setsEq, g € Ep containing greater thalNy points. We can prune a s in O (k+log Ny)
time. We store two heaps to nogeT he keys are the distana#&(r)) anddmin(q, B(r)),

r € Eq (for these points§ = B(r)). The total time of the insertion of point is
O(kNg logklogn + Nk(k 4 log Nx)) = O(kN¢ logklogn).

We now consider the deletion of node Recall that after findingA(v), for each

ae A(w), we

o delete the sefE,,
o find the setE,, using the search fdg,, and
[ pruneEb, beE,,if |Ep| > Nk.

The corresponding costs &g My Nk log Ny), O (kMg Nk log Nk logn), andO (M Nk
log Nk). The total running time of the deletion algorithm@gk My Nk logk logn).

Theorem 7.1. There is a data structure of size(kh) that maintains the closest pair of
S in O(kNk logk logn) time per insertion and @ Mg N logk logn) time per deletion

Finally, we compare constanhd and M for the separations = 2 ands = (v/5+
1)/2. Recall thaN, = (2[(s+2)(s+DK]+D* andMy = ([s(s+1)?(k+3)1+D¥. For
separatiors = 2 we getN, = 2401 andVl, = 8281. For separationi= (~/5+ 1)/2 we
getNy = (2[9.472XKk]+1)K, N, = 1521 andM = (2[11.0901k+5.5450/+1)%, M, =
3249. In practice, we do not expect the constant factors to be so big.

8. Conclusion

We have presented an algorithm for maintaining the closest p&x(iogn) time per
update, using(n) space. The running time of the algorithm is optimal up to a constant
factor in the algebraic decision-tree model of computation. The algorithm can be adapted
(by changing some constants, includihg) for another metric such that(p, q) =
O(d-(p, 9))- In fact, the algorithm can give the list of the closest pairs (if any) in the
time proportional to its number.

The algorithm maintains a sé&t of point pairs that contains the neighbor pairs.

Unfortunately the fair-split tree does not allow efficient maintenance of the (exact)
set of the neighbor pairs. It would be interesting to solve the problem of the maintenance
of neighbor pairs withO (log n) update time ane (n) space.
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