
Discrete Comput Geom 19:175–195 (1998) Discrete & Computational

Geometry
© 1998 Springer-Verlag New York Inc.

An Optimal Algorithm for Closest-Pair Maintenance

S. N. Bespamyatnikh

Department of Mathematics and Mechanics, Ural State University,
51 Lenin Street, Ekaterinburg 620083, Russia
Sergei.Bespamyatnikh@usu.ru.

Abstract. Given a setSof n points ink-dimensional space, and anLt metric, the dynamic
closest-pair problem is defined as follows: find a closest pair ofSafter each update ofS(the
insertion or the deletion of a point). For fixed dimensionk and fixed metricLt , we give a
data structure of sizeO(n) that maintains a closest pair ofS in O(logn) time per insertion
and deletion. The running time of the algorithm is optimal up to a constant factor because
Ä(logn) is a lower bound, in an algebraic decision-tree model of computation, on the time
complexity of any algorithm that maintains the closest pair (fork = 1). The algorithm
is based on the fair-split tree. The constant factor in the update time is exponential in the
dimension. We modify the fair-split tree to reduce it.

1. Introduction

The dynamic closest-pair problem is one of the very well-studied proximity problems
in computational geometry [6], [17]–[20], [22]–[25], [28]–[31]. We are given a setSof
n points ink-dimensional space,k ≥ 1, and a distance metricLt , for 1 ≤ t ≤ ∞. The
point set is modified by insertions and deletions of points. Each pointp is given as a
k-tuple of real numbers(p1, . . . , pk).

The closest pair ofS is a pair(p,q) of distinct pointsp,q ∈ Ssuch that the distance
betweenp andq is minimal. The dynamic closest-pair problem is defined as follows:
find a closest pair (any) ofSafter each update ofS.

We assume that the dimensionk and the distance metricLt are fixed. We used(p,q)
to denote the distance betweenp andq.

A survey can be found in Schwarz’s Ph.D. Thesis [23]. For the static closest-pair
problem and dimensionk = 2, Shamos and Hoey [26] gave an algorithm with a running

176 S. N. Bespamyatnikh

time of O(n logn). Shortly after that, Bentley and Shamos [5] obtained this result for
general dimensionk ≥ 2. In theon-lineclosest-pair problem only insertions are allowed.
For this problem Smid [28] obtained a data structure of sizeO(n) that supports insertions
in O(logk−1 n)amortized time. Schwarzet al. [25] presented a data structure of sizeO(n)
that maintains the closest pair inO(logn) amortized time per insertion.

Several algorithms are obtained for the dynamic closest pair problem [19], [20], [22],
[23], [29]–[31]. In [20], [22], and [29] the problem is solved withO(

√
n logn) update

time usingO(n) space. In [19] Kapoor and Smid gave data structures of sizeS(n)
that maintain the closest pair inU (n) amortized time per update, where, fork ≥ 3,
size S(n) = O(n) and timeU (n) = O(logk−1 n log logn); for k = 2, sizeS(n) =
O(n logn/(log logn)m) and timeU (n) = O(logn log logn); for k = 2, sizeS(n) =
O(n) and timeU (n) = O(log2 n/(log logn)m) (m is an arbitrary nonnegative integer
constant). In [6] the author obtained an algorithm withO(logk+1 n log logn) update
time andO(n logk−2 n) space. Callahan and Kosaraju [13] developed a tree-maintenance
technique to solve a general class of dynamic problems. This technique can be used to
maintain the closest pair inO(log2 n) time andO(n) space.

We give a linear-size data structure that maintains the closest pair inO(logn) time per
update. The algorithm is deterministic and the update time is worst-case. The algorithm
fits in the algebraic computation tree model. In the algebraic computation tree model,
there is a lower bound ofÄ(n logn) on the time complexity of any algorithm that solves
the static closest-pair problem for dimensionk = 1 [3], [21]. So the running time of our
algorithm is optimal up to a constant factor.

Our algorithm is based on the following idea. We use a hierarchical subdivision of
space into boxes. Several proximity algorithms build hierarchical subdivisions of space
[33], [15], [14], [28], [24], [23], [2], [12], [13]. These subdivisions differ by the shape of
boxes, the overlap allowance, the manner of box splitting, and the number of points in a
box stored at a leaf. Our algorithm maintains almost cubical boxes. The boxes are split by
almost middle cutting [7] which is similar to fair split [12], [13], [11]. Any smallest box
contains exactly one of the given points. For each point we store some neighbor points.
The closest pair is one of these pairs. To maintain these pairs efficiently we apply the
dynamic trees of Sleator and Tarjan [27]. To insert a point we implement point location.
Point location also uses dynamic trees. The idea of using dynamic trees for point location
in hierarchical subdivisions is due to Cohen and Tamassia [15] and Chianget al. [14].
Schwarz [23] applied dynamic trees for the on-line closest-pair problem and obtained an
algorithm with worst-caseO(logn) time per insertion andO(n) space. Our hierarchical
subdivision is similar to thebox decompositionof [1] and thefair-split treeof [13]. In
[13] and [1] point location uses thetopology treeof Frederickson [16]. The topology
tree is based on the dynamic trees of Sleator and Tarjan [27].

In Section 2 we describe the fair-split tree. In Section 3 we show how to maintain
the fair-split tree (without point location). Section 4 explains how to maintain neighbor
information of points and the closest pair. In Section 5 we briefly recall dynamic trees.
In Section 6 we show how to implement the search on dynamic trees. In Section 7 we
discuss how to reduce the constant factors in the update time. Finally, in Section 8 we
give some concluding remarks.

An Optimal Algorithm for Closest-Pair Maintenance 177

2. The Fair-Split Tree

The fair-split tree is a hierarchical subdivision of space into boxes. We define a box
to be the product [a1,a1

′) × · · · × [ak,ak
′) of k semiclosed intervals. Thei th side of

this box is the interval [ai ,ai
′). If all the sides have the same length, we say that the

box is ak-cube. The cubes are useful in some proximity algorithms (for example, the
all-nearest-neighbors algorithm of Vaidya [32], [33]). Unfortunately we cannot directly
use cubes in a subdivision of space for the dynamic problem, because splitting a cube by
a hyperplanexi = constdoes not give cubes. Another way is using the almost cubical
boxes [7] and a fair split [12], [13], [11], [10] or an almost middle cut [7]. The almost
middle cut is similar to the fair split (but there is a difference in the definitions). In this
paper, for the split of boxes, we use the definition of [7] but we call it thefair split. The
fair-split tree is also applied to other dynamic problems [10], [8], [9].

The constant factors in the update and query time are exponential in the dimension.
To decrease the constant factors we generalize the fair split by introducing aseparator
s > 1. In fact, both the fair split [12], [13], [11] and the almost middle cut [7] use the
separator that is equal to 2. We establish geometric criteria for the fair split with the
separator to be suitable for maintenance of the fair-split tree. The separator must be at
least the Golden Ratio(

√
5+ 1)/2≈ 1.61803.

Definition 2.1. Let [a,a′) be an interval inR and letb be a point in this interval. The
split of the interval into the intervals [a, b) and [b,a′) is a fair split if the length of the
larger interval is at mosts times the length of the smaller interval, i.e.,

b− a

a′ − b
∈
[

1

s
, s

]
.

Definition 2.2. Let B = [a1,a1
′) × · · · × [ak,ak

′) be a box and letci ∈ (ai ,ai
′) be

a real number for somei . The split of B by the hyperplanexi = ci into the boxes
B∩ {x|xi < ci } andB∩ {x|xi ≥ ci } is afair split of B if the split of the interval [ai ,ai

′)
by ci is fair split (see Fig. 1).

Fig. 1. The hyperplanex1 = c1 determines a fair split of the box [a1,a′1)× [a2,a′2) if and only if c1 ∈ [l , r]
wherel = (sa1 + a′1)/(s+ 1) andr = (a1 + sa′1)/(1+ s).

178 S. N. Bespamyatnikh

The fair-split operation generates a relation on the set of boxes.

Definition 2.3. Let A andB bek-dimensional boxes. BoxA is said to be ans-subbox
of B if A can be constructed fromB by applying a (possibly empty) sequence of fair
splits. We writeB ; A. Fork = 1, we say thatA is ans-subintervalof B.

In fact the relation of ans-subbox is the product of ans-subinterval relation.

Proposition 2.4. Let A= [a1,a1
′)×· · ·× [ak,ak

′) and B= [b1, b1
′)×· · ·× [bk, bk

′)
be k-dimensional boxes. Box A is an s-subbox of B if and only if, for i = 1, . . . , k, the
interval [ai ,ai

′) is an s-subinterval of[bi , bi
′).

We now give another definition of ans-subinterval, and show that it is equivalent to
that of Definition 2.3.

Definition 2.5. Let [a,a′) and [b, b′) be intervals inR. Let [a,a′) be the subinterval
of [b, b′), i.e., b ≤ a < a′ ≤ b′. The interval [a,a′) is called ans-subintervalof the
interval [b, b′) if one of the following conditions holds:

1. [a,a′) = [b, b′), or
2. a = b and|a′ − a| ≤ (s/(s+ 1))|b′ − b|, or
3. a′ = b′ and|a′ − a| ≤ (s/(s+ 1))|b′ − b|, or
4. |a′ − b| ≤ (s/(s+ 1))|b′ − b| and|a′ − a| ≤ (s/(s+ 1))|a′ − b|, or
5. |b′ − a| ≤ (s/(s+ 1))|b′ − b| and|a′ − a| ≤ (s/(s+ 1))|b′ − a|.

This definition allows us to retrieve a sequence of fair cuts for two boxesA and
B if B ; A. The following theorem gives the condition for the separators when
Definitions 2.3 and 2.5 are equivalent.

Theorem 2.6. Definitions2.3 and2.5 define the same relation of an s-subinterval if
and only if the separator is at least the Golden Ratio, i.e., s ≥ (√5+ 1)/2> 1.61803.

Proof. For convenience we define the intermediate notion of aone-sided s-subinterval.
The interval [a,a′) is called aone-sided s-subintervalof the interval [b, b′) if either the
second or third condition of Definition 2.5 holds. Note that conditions 4 and 5 are the
combinations of two one-sideds-subintervals (for different sides).

Suppose that Definitions 2.3 and 2.5 define the same relation of ans-subinterval.
Consider two intervals [a,a′) and [b, b′) such that [a,a′) is ans-subinterval of [b, b′)
anda = b. The interval [a,a′) can be constructed by applying a sequence ofN fair
splits of [b, b′). It is clear that

|a′ − a|
|b′ − b| ∈

[
1

(s+ 1)N
,

(
s

s+ 1

)N]
.

The maximal value ofa′ −a after one fair split is at least the minimal value ofa′ −a

An Optimal Algorithm for Closest-Pair Maintenance 179

after two fair splits (by condition 2 of Definition 2.5), i.e.,(
s

s+ 1

)2

≥ 1

s+ 1
.

Usings> 1 we gets ≥ (√5+ 1)/2.
Let s ≥ (

√
5 + 1)/2. Similarly we can show that any one-sideds-subinterval is

an s-subinterval (in terms of Definition 2.3). Hence any pair of intervals satisfying
Definition 2.5 satisfy Definition 2.3. To prove the inverse statement we show that the
combination of three one-sideds-subintervals can be represented as a combination of
two one-sideds-subintervals.

Let [b, c′)be a one-sideds-subinterval of [b, b′), let [c, c′)be a one-sideds-subinterval
of [b, c′), and let [c, d′) be a one-sideds-subinterval of [c, c′):

|d′ − b| ≤ |c′ − b| ≤ s

s+ 1
|b′ − b|,

|d′ − c|
|d′ − b| =

|c′ − c| − |c′ − d′|
|c′ − b| − |c′ − d′|

≤ (s/(s+ 1))|c′ − b| − (s/(s+ 1))|c′ − d′| − (1/(s+ 1))|c′ − d′|
|c′ − b| − |c′ − d′|

= s

s+ 1
− |c′ − d′|
(s+ 1)|d′ − b| <

s

s+ 1

Hence [c, d′) is ans-subinterval of [b, b′).

The constant factors in the update time depend on the separation as((s+2)(s+1))k.
Decreasing the separator reduces these factors.

We do not include the condition of the almost cubical boxes into the definition of the
fair split of boxes although we apply fair split only for such boxes. The almost cubical
boxes can be obtained from cubes by repeatedly applying a fair split by a hyperplane
perpendicular to one of the longest sides of the box.

Definition 2.7. Let B be a box with sidess1, . . . , sk. Box B is said to be ans-boxif,
for any i, j ∈ {1, . . . , k},

si

sj
∈
[

1

1+ s
, 1+ s

]
.

The fair-split tree is a binary treeT . With each nodev of the treeT , we store a box
B(v) and a shrunken boxSB(v). The boxes satisfy the following conditions:

1. For any nodev, boxesB(v) andSB(v) ares-boxes.
2. For any nodev, boxSB(v) is ans-subbox ofB(v).
3. For any nodev, SB(v) ∩ S= B(v) ∩ S.
4. If v has two childrenu andw, then boxesB(u) andB(w) are the results of a fair

split of boxSB(v).
5. If v is a leaf, then|S∩ B(v)| = 1 andSB(v) = B(v).

180 S. N. Bespamyatnikh

For a pointp ∈ Scorresponding to the leafv, let B(p) denote boxB(v).
Let parent(v), lson(v), andrson(v) denote parent, left son, and right son of the node

v of T .
We usedmin(X,Y) to denote the distance between two setsX,Y ⊂ Rk, i.e., distance

dmin(X,Y) = inf{dist(x, y)|x ∈ X, y ∈ Y}. dmax(X,Y) denotes the maximal distance
between two setsX,Y ⊂ Rk, i.e., distancedmax(X,Y) = sup{dist(x, y)|x ∈ X, y ∈ Y}.
d(X) denotes the diameter of a setX, i.e., distanced(X) = dmax(X, X).

3. Maintenance of the Fair-Split Tree

In this section we show how to maintain fair-split treeT under insertions and deletions
of points. Deletion is simpler than insertion and we consider deletion first.

Let p be a point to be deleted. Letw be a leaf corresponding top, i.e., pointp ∈ B(w),
let v be the parent ofw, and letu 6= w be the sibling ofv. We consider two cases:

(1) u is a leaf (see Fig. 2(a)). Then setSB(v) = B(v) and delete the leavesu andw.
(2) u is an internal node (see Fig. 2(b)). Then delete the nodew, setB(u) = B(v),

and collapse the edge(u, v), i.e., setparent(u) = parent(v), delete the nodev,
and rename the nodeu asv.

Now consider insertion. Letp be a point to be inserted. The insertion algorithm has
two steps. First we find the smallest box containing pointp. Then we update a finite
set of nodes and boxes of treeT . The first step uses the point-location algorithm that is
described in Section 5. After point location there are three cases.

1. Pointp does not belong toB(vroot), wherevroot is the root ofT .
2. Pointp belongs to boxB(v), wherev is a leaf (see Fig. 2(a)).
3. Pointp belongs to the setB(v)\SB(v) for some nodev (see Fig. 2(b)).

Cases 1 and 2 can be handled similarly to case 3. Consider case 3. We want to construct
an s-box D and a fair split ofD into the boxesD1 and D2 that satisfy the following
conditions:

• box D is ans-subbox ofB(v),

Fig. 2. Updating the fair-split tree. (a) The inserted pointp belongs toB(v). The deleted pointp belongs
to B(u) whereu is a son ofv. (b) The inserted pointp belongs toB(v)\SB(v). The deleted pointp belongs
to B(w).

An Optimal Algorithm for Closest-Pair Maintenance 181

• box SB(v) is ans-subbox ofD1, and
• point p ∈ D2.

After finding D, we remove the edges fromv to childrenv′ andv′′, create two nodes
u andw belowv, add edges joiningu to v′ andv′′, and setSB(u) = SB(v), B(u) = D1,
SB(v) = D, B(w) = D2, andSB(w) = D2 (see Fig. 2(b)).

DenoteSB(v) = [a1, b1)×· · ·× [ak, bk). The algorithm uses a boxD and repeatedly
shrinks boxD until a fair split ofD is found. InitiallyD = B(v). DenoteD = [d1, e1)×
· · · × [dk, ek). After each iteration of the algorithm:

(1) box D is ans-box and ans-subbox ofB(v),
(2) boxSB(v) is ans-subbox ofD, and
(3) box D contains pointp.

The algorithm hasO(1) iterations because after each iteration the number of coordi-
natesai , bi coinciding with endpoints of [di , ei) is increased, i.e., the sum

∑k
i=1 |{ai , bi }∩

{di , ei }| is increased. We call this the number of connected endpoints. The basic proce-
dure is thefair-split procedure.

procedure fair-split (D) (∗ fair split of box D = [d1, e1)× · · · × [dk, ek) ∗)
(1) Findi such thatei −di is maximal. In Step 2 we chooseconst∈ [di , ei) to

partitionD by the hyperplanexi = const. Compute the interval [d′i , e
′
i] =

[di + (ei −di)/(s+1), ei − (ei −di)/(s+1)] which contains all possible
values ofconst.

(2) If ai or bi lies in the interval [d′i , e
′
i], then const= ai or const= bi ,

respectively. Otherwise the interval [ai , bi] does not intersect the interval
[d′i , e

′
i]. There are two possible cases.

(2.1) bi < d′i (in other words, [ai , bi) ⊆ [di , d′i)). Letd′′i = bi+(bi−di)/s
(d′′i is a minimal real number such that the split of [di , d′′i] by bi is
fair). Thenconst= max(d′i , d

′′
i).

(2.2) ai > e′i (in other words, [ai , bi) ⊆ [e′i , ei)). Lete′′i = ai−(ei−ai)/s
(e′′i is a maximal real number such that the split of [e′′i , ei] by ai is
fair). Thenconst= min(e′i , e

′′
i).

(3) Partition boxD by the hyperplanexi = const. If this hyperplane separates
box SB(v) and pointp, the cut ofD into the boxesD ∩ {x, xi < const}
andD ∩ {x, xi ≥ const} is a fair split which satisfies conditions (1)–(3)
above. In this case we stop the iteration. Otherwise one of these boxes
contains both the boxSB(v) and pointp. Choose this box asD.

(4) End of procedure.

Now we describe the iteration of the algorithm. If, for somej , the interval [min(aj , pj),

max(bj , pj)] intersects the interval [d′j , e
′
j), then call the fair-split procedure until the

number of connected endpoints increases (const= aj or const= bj in Step 2) or the
iteration finishes (in Step 3). The procedurefair-split splits thei th side ofD at most
O(1) times (more precisely, three times fors = 2 and twice for= (√5+ 1)/2). The
number of calls is at mostO(k).

For any j , the interval [min(aj , pj),max(bj , pj)] does not intersect the interval

182 S. N. Bespamyatnikh

[d′j , e
′
j]. Without loss of generality,bj < d′j for all j . Choosej such thatcj = (max(bj , pj)

− dj)/(ej − dj) is maximal. The box [d1, d1+ ((s+ 1)/s)cj (e1− d1))× · · · × [dk, dk+
((s+ 1)/s)cj (ek − dk)) is ans-box ands-subbox ofB(v). Shrink D to this box. Then
[min(aj , pj),max(bj , pj)] intersects the middle interval of [dj , ej] and we obtain the
preceding case.

Hence we have proved the following result.

Theorem 3.1. Let the dimension k be fixed and let point location take COST time. A
fair-split tree T can be maintained in O(1) + COST time per insertion and O(1) time
per deletion.

4. Maintenance of the Closest Pair

To maintain the closest pair we store the setE of some pairs of points ofS.

Definition 4.1. A point p ∈ S is a nearest neighbor of qif, for any r ∈ S\{q},
d(p,q) ≤ d(q, r). For pointsp,q ∈ S, we call the pair(p,q) a neighbor pairif p is
the nearest neighbor ofq and vice versa.

The setE contains the neighbor pairs. It is clear that the closest pair ofS is a neighbor
pair of Sand the closest pair belongs toE.

Let a heapH store the distances of the pairs ofE. The heap item is the pair of points.
The key of the item(p,q) is theLt -distanced(p,q). The pair of points with the minimal
key is a closest pair ofS.

With each pointp ∈ S, we store a listEp = {q | (p,q) ∈ E}. With each pointq in
Ep, we store a pointer to item(p,q) of the heapH .

Definition 4.2. An ordered pair1 (a, b) of points fromS is anordered rejected pairif
there exists a nodev in the fair-split tree satisfying the following:

1. a /∈ B(v).
2. d(B(v)) ≤ sd(B(a)).
3. dmin(a, B(v)) ≤ (1+ s)d(B(v)).
4. dmax(a, B(v)) < d(a, b).

An unordered pair(a, b) of points fromS is a rejected pairif ordered pair(a, b) or
(b,a) is an ordered rejected pair.

The setE satisfies the following property.

Invariant. For any distinct pointsa, b ∈ S, the unordered pair(a, b) belongs to the
setE unless(a, b) is a rejected pair.

1 We define by(a, b) either an unordered pair{a, b} or an ordered pair [a, b], using the context to resolve
the ambiguity.

An Optimal Algorithm for Closest-Pair Maintenance 183

Lemma 4.3. Let the invariant hold for the set E. Then the set E contains the neighbor
pairs of S.

Proof. By condition 4 of Definition 4.2.

It is easy to see that the set of all pairs satisfies the invariant. We maintain the additional
invariant that, for anyp ∈ S, the number of incident pairs inE is at most constant, i.e.,
|Ep| = O(1). This gives us a linear bound on|E|. We can bound|Ep| by the following
statement.

Statement 4.4. For any point p∈ S, the number of nonrejected pairs(p,q) ∈ S is at
most O(1).

Let Nk = (24k+ 1)k. We prove that the number of nonrejected pairs incident to
a point p is at mostNk (for the separations = 2). It is important that this bound is
independent ofn.

Statement 4.4 follows from Theorem 4.6. We precede Theorem 4.6 with a useful
lemma.

Lemma 4.5. Let p and q be points of S. If d(p,q) > (1+ s)d(B(p)), then the pair
(p,q) is rejected.

Proof. Consider leafu corresponding to pointp. Let v be the sibling ofu anda = p.
Pointa and nodev satisfy conditions 1–3 of Definition 4.2. The pair(p,q) is rejected if
d(p,q) > dmax(p, B(v)). The lemma follows fromdmax(p, B(v)) ≤ dmax(B(u), B(v)) ≤
d(B(u))+ d(B(v)) ≤ (1+ s)d(B(u)) (Fig. 3).

Theorem 4.6 is useful in the insertion algorithm. To find a setEp, for an inserted point
p, we use a search on the dynamic tree. We need to limit the number of nodes that are
used in the search at the same time. LetV = {v1, . . . , vN} be a set of these nodes. We
associate the setSi = B(vi)\

⋃
B(vj)⊂B(vi)

B(vj) with every nodevi ∈ V .

Theorem 4.6. Let p be a point of S and let V= {v1, . . . , vN} be a set of nodes of a
fair-split tree T. If N > Nk, there exists i such that, for any q∈ Si ∩S, the pair(p,q) is

Fig. 3. The distance between pointsp andq is greater than the diameter of boxB(u) timess+ 1. The pair
(p,q) is rejected.

184 S. N. Bespamyatnikh

Fig. 4. Three cases of Theorem 4.6: (1)p ∈ B(vi), (2) d(B(p)) < δ/s, and (3)dmin(p, B(vi)) > (1+ s)δ.

rejected. (Choosing i does not depend on the layout of the points of S in the associated
sets).

Proof. We can assume that, for anyi , the intersectionSi ∩ S 6= ∅ and there exists
a pointq ∈ Si ∩ S such that the pair(p,q) is nonrejected. (In fact we can recognize
whether an empty setSi ∩ Sexists inO(N) time. For an indexj , the setSi ∩ S is empty
if and only if any leaf below the nodevj has an ancestor which is a descendant ofvj .)

Choose a boxB(vi) of minimum diameter. Letδ = d(B(vi)). First we prove that,
for any pointq at distance greater than(2+ s)δ from p, the pair(p,q) is rejected. We
consider three cases (Fig. 4).

Case1: Point p belongs to box B(vi). ThenB(p) ⊆ B(vi) andδ ≥ d(B(p)). For any
pointq with d(p,q) > (1+ s)δ the pair(p,q) is rejected by Lemma 4.5. Hence we can
assume

p /∈ B(vi). (1)

Case2: The diameter of B(p) is less thanδ/s. Recall that the separators is greater
than 1. Letq be any point at a distance greater than(2+ s)δ from p. Then, sinces> 1,
d(p,q) > (1+ s)δ/s > (1+ s)d(B(p)) and the pair(p,q) is rejected by Lemma 4.5.
Hence we can assume

δ ≤ sd(B(p)). (2)

Case3: The distance from point p to box B(vi) is greater than(1+ s)δ. Choose any
point q from S∩ B(vi). It is clear thatB(q) ⊆ B(vi) andd(p,q) > (1+ s)d(B(q)).
The pair(p,q) is rejected by Lemma 4.5 and nodevi can be removed fromV . This
contradicts our assumptions. Hence we can assume

dmin(p, B(vi)) ≤ (1+ s)δ. (3)

Let a = p andv = vi . Choose any pointb ∈ S such thatd(a, b) > (2 + s)δ.
Conditions 1–3 of Definition 4.2 are the assumptions (1)–(3). Note thatd(a, b) > δ +
dmin(p, B(vi)) ≥ dmax(a, B(v)). Hence the pair(a, b) can be removed fromE.

Thus, we can remove a nodevj from V if dmin(p, Sj) > (2+ s)δ. The number of

An Optimal Algorithm for Closest-Pair Maintenance 185

nodesvj such thatdmin(p, Sj) ≤ (2+ s)δ is at mostNk = (24k+ 1)k by Lemma 4.7.
The result follows.

Lemma 4.7. Let p be a point of S, and let V = {v1, . . . , vN} be a set of nodes
of a fair-split tree T such that, for any j, the set Sj = B(vj)\

⋃
B(vi)⊂B(vj)

B(vi) is
nonempty. Let δ be a minimum diameter d(B(vi)), vi ∈ V . If, for any j, the distance
dmin(p, Sj) ≤ (2+ s)δ, then the number N≤ Nk = (24k+ 1)k.

Proof. Fix any j ∈ {1, . . . , N}. Choose the pointq ∈ Sj such thatd(p,q) ≤ (2+ s)δ.
Note that boxB(vroot) corresponding to the root ofT contains pointq and any box
B(v), v ∈ V . We show thatq is included inSj together with somes-boxC, any side of
C is at leastδ/((1+s)k). If Sj = B(vj), thenC = B(vj). Otherwise choose the minimal
box B(u), u ∈ T , that contains pointq and at least one boxB(v) for somev ∈ V .

We distinguish two cases. In the first case pointq belongs to boxSB(u). Note that
B(v) ⊆ SB(u). Then the fair split of boxSB(u) separates pointq and boxB(v), i.e.,
pointq ∈ B(u1), box B(v) ⊆ B(u2) whereu1, u2 are the sons ofu. Note that

• d(B(u2)) ≥ δ,
• the length of the longest side ofB(u2) is at leastδ/k, and
• the length of the shortest side ofB(u2) is at leastδ/((1+ s)k).

The sides of boxB(u1) are equal to the sides of boxB(u2) except for those that are
a part of the partitioned side of boxB(u). Now consider the second part of this side. If
it is the longest side ofB(u2), then the corresponding side ofB(u1) has length at least
δ/((1+ s)k). Otherwise one of the sides ofB(u1) has length at leastδ/k. Hence any
side ofB(u1) has length at leastδ/((1+ s)k). In the first case pointq is included inSj

together with boxB(u1) and any side ofB(u1) is at leastδ/((1+ s)k).
In the second case pointq does not belong to boxSB(u), i.e., pointq ∈ B(u)\SB(u).

Note thatB(v) ⊆ SB(u). This situation is similar to case 3 of the insertion algorithm
(Section 3). We proved that there exists ans-box D and a fair split ofD into boxesD1

andD2 such that

• box D is ans-subbox ofB(u),
• box SB(u) is ans-subbox ofD1, and
• pointq ∈ D2.

The diameter of boxD1 is at leastδ. The situation is similar to the first case and we
can show that any side ofD2 is at leastδ/((1+ s)k).

Thus, in both cases, there exists ans-boxC ⊆ Sj that contains pointq, and any side
of C is at leastδ/((1+ s)k). Box C contains at least one point of the lattice

L =
{

x | xi − pi

σ
∈ Z, whereσ = δ

(1+ s)k
, andi = 1, . . . , k

}
.

Let r be a point ofC ∩ L closest top. Then, for anyi ,

|ri − pi | ≤
⌈
(2+ s)δ

σ

⌉
σ = d(2+ s)(1+ s)keσ.

186 S. N. Bespamyatnikh

Therefore the setSj contains at least one point among the points in the set

L ′ =
{

x | xi − pi

σ
∈ {−lk, . . . ,0, . . . , lk}, wherelk = d(2+ s)(1+ s)ke

for i = 1, . . . , k

}
.

For the separations = 2, the cardinality of this set isNk = (24k+ 1)k. This implies
that N = |V | ≤ Nk.

The insertion algorithm uses Theorem 4.6 if the setV contains more thanNk nodes.
We describe the algorithm to refine the setV (in Section 7 we give effective algorithms
to refine node sets in searchingEp andA(v)).

Algorithm REFINE(V) (∗ this algorithm is used in searching forEp ∗)
1. Remove the nodesvj ∈ V such that

dmin(p, B(vj)) > (1+ s)d(B(vj)) or dmin(p, Sj) > (1+ s)d(B(p)).

2. Computeδ = minvj∈V {d(B(vj))}.
3. Remove the nodesvj ∈ V such that

dmin(p, Sj) > (2+ s)δ.

The insertion of pointp causes the insertion of some pairs intoE and the deletion of
some pairs fromE. We look at the updates of boxes. Note that the boxes, corresponding
to the nodes, are only inserted and, in the caseB(vroot), are enlarged. Hence to prove
that the invariant holds forE we need not insert pairs that are not incident to an inserted
point. Using the dynamic tree we find at mostNk pairs that are adjacent top. Add
these pairs intoE. Now in fact the invariant holds forE. However, for some points,
the number of incident pairs may exceedNk. These points are adjacent top and can be
determined when adding pairs intoE. For these points, we remove some pairs fromE
using Theorem 4.6.

Now we consider the deletion of pointp. The deletion causes the insertion of some
pairs intoE and the deletion of some pairs fromE. Delete the pairs adjacent top, i.e.,
the set{(p,q) | q ∈ S, (p,q) ∈ E}. Note that two boxes are always deleted. These boxes
are the results of a fair split of boxSB(parent(w)) where nodew corresponds top.

We consider the deletion of boxB(v). Suppose that the pair(a, b) was rejected (and
was not included inE) by the conditions of Definition 4.2 for nodev. Thend(B(a)) ≥
d(B(v))/sanddmin(a, B(v)) ≤ (1+s)d(B(v)). We show that the number of such points
is at mostO(1). The argument is similar to the proof of Theorem 4.6. LetA(v) denote
this set, i.e.,

A(v) = {a ∈ S | d(B(a)) ≥ d(B(v))/s anddmin(a, B(v)) ≤ (1+ s)d(B(v))}.

For eacha ∈ A(v), we renew the setEa. This gives the setE, for which the invariant is
fulfilled (if we renew the sets for both deleted boxes). For the pointsq ∈ S, |Eq| > Nk,

An Optimal Algorithm for Closest-Pair Maintenance 187

remove some points fromEq using Theorem 4.6. Now the second invariant (|Eq| ≤ Nk,
for anyq ∈ S) holds.

In the rest of this section we prove the analog of Theorem 4.6 forA(v). Denote
Mk = (36k+ 19)k. To find a setA(v)we use a search on the dynamic tree. As in finding
Ep we bound the number of nodes that are used in the search at the same time. We prove
that this number is at mostMk (for the separations = 2). Let V = {v1, . . . , vN} be a
set of these nodes. We associate the setSi = B(vi)\

⋃
B(vj)⊆B(vi)

B(vj) with every node
vi ∈ V .

Theorem 4.8. Letv be a node of a fair-split tree T, and let V= {v1, . . . , vN} be a set
of nodes of T. If N > Mk, there exists i such that A(v) ∩ Si = ∅ (choosing i does not
depend on the layout of the points of S in the associated sets).

Proof. We can assume that, for anyi , Si ∩ S 6= ∅. Let δ be a minimum diameter
d(B(vi)), for vi ∈ V . Note thatδ ≥ d(B(v))/s. By the definition ofA(v) we can
assume that, for anyj ,

dmin(Sj , B(v)) ≤ (1+ s)d(B(v)).

Fix any j ∈ {1, . . . , N}. Choose the pointq ∈ Sj such thatdmin(q, B(v)) ≤ (1 +
s)d(B(v)). As in the proof of Theorem 4.6 we can show that there existss-box C
satisfying the following:

• q ∈ C,
• any side ofC has length at leastδ/((1+ s)k).

Box C contains at least one point of the lattice

L =
{

x | xi − pi

σ
∈ Z, whereσ = δ

(1+ s)k
, andi = 1, . . . , k

}
.

Let p be the center of boxB(v). The shortest side ofB(v) has length at leastd(B(v))/k.
The longest side ofB(v) has length at least(1+ s)d(B(v))/k. Hence

|qj − pj | ≤ (1+ s)d(B(v))

2k
+ (1+ s)d(B(v)) ≤ s(1+ s)

(
1+ 1

2k

)
δ.

Let r be a point ofC ∩ L closest top. Then, for anyi ,

|ri − pi |
σ

≤
⌈

s(1+ s)(1+ 1/2k)δ

σ

⌉
= ds(1+ s)2(k+ 1

2)e.

Therefore the setSj contains at least one point among the points in the set

L ′ =
{

x | xi − pi

σ
∈ {−lk, . . . ,0, . . . , lk}, wherelk = ds(1+ s)2(k+ 1

2)e

for i = 1, . . . , k

}
.

For the separations = 2 the cardinality of this set isMk = (36k+ 19)k. This implies
that N = |V | ≤ Mk.

188 S. N. Bespamyatnikh

5. Dynamic Tree

In this section we briefly describe the dynamic tree. We use the dynamic tree to implement
point location and other searches on the fair-split tree.

A dynamic tree1(T), based on the binary treeT , has the same nodes and the same
edges asT . The dynamic tree is a partition of edges into two kinds,solid anddashed,
with the property that each node has at most one child linked to it by a solid edge. Thus
the solid edges define a collection ofsolid pathsthat partition the vertices. (A vertex with
no incident solid edges is a one-vertex solid path). The head of the path is its bottommost
node; the tail is its topmost node.

For a nodev of T , letsize(v) be the number of nodes in the subtree ofT rooted atv. Let
(v,w) be an edge ofT from v to its parentw. The edge isheavyif size(v) > size(w)/2
and light otherwise. A nodev of 1(T) fulfills the size invariantif, for each edgee to
one of its children,e is solid if it is heavy and light if it is dashed. We say that the size
invariant holds for the dynamic tree1(T) if it holds for each node ofT .

A solid path is represented by apath tree. We useglobally biased binary trees[4] to
implement path trees. A biased binary tree stores an ordered sequence ofweighteditems
in its leaves. The weight of a nodev of T (and of the corresponding leaf of the biased
binary tree) is defined as

weight(v) =
{

size(v) if no solid edge entersv,
size(v)− size(w) if the solid edge(w, v) entersv.

The weight of an internal node of a biased binary tree is inductively defined as the sum
of the weight of its children.

Each nodev of a biased binary tree has an integer rank denotedrank(v) that satisfies
the following properties:

(i) If v is a leaf,rank(v) = blogweight(v)c. If v is an internal node,rank(v) ≤
1+ blogweight(v)c.

(ii) If node w has parentv, rank(w) ≤ rank(v), with the inequality strict ifw is
external. Ifw has grandparentu, rank(w) < rank(u).

Each internal nodev of a biased binary tree contains four pointers [27]:bleft(v) and
bright(v), which point to the left and right child ofv, andbhead(v) andbtail(v), which
point to the head and tail of the subpath corresponding tov (the leftmost and rightmost
external descendants ofv). For a topmost nodev of a solid pathP, there is the pointer
pt root(v) to the root of the path tree forP.

Lemma 5.1[27]. If v is a leaf of a biased binary tree with root u, the depth ofv is at
most2(rank(u)− rank(v)) ≤ 2 log(weight(u)/weight(v))+ 4.

The updates ofT can be performed using the following operations [4] on rooted trees.

link(v,w): If v is the root of one tree andw is a node in another tree, combine the
trees containingv andw by adding an edge joiningv andw.

cut(v,w): If there is an edge joiningv andw, delete it, thereby breaking the tree
containingv andw into two trees, one containingv and one containingw.

An Optimal Algorithm for Closest-Pair Maintenance 189

The time bound of these operations isO(logn). This gives the following result.

Lemma 5.2. The dynamic tree can be maintained under insertions and deletions of
points in O(logn) time per update.

6. Searching

In this section we discuss the search algorithms. We have to implement point location
and the search for the setsEp andA(v).

6.1. Point Location

Let p be a point ink-dimensional space. The nodes ofT whose boxes containp form the
path (if p ∈ B(vroot)). We have to compute the bottommost node of this path. Our point-
location algorithm is similar to the algorithm of Schwarz [23]. The algorithm processes
a sequence of solid paths of the dynamic tree. For any solid pathP of this sequence, the
box of the topmost node ofP containsp.

We start the algorithm with the solid path containing the root. If boxB(vroot) does
not containp, then the algorithm returnsnull .

Now assume that the algorithm has reached the topmost node of the solid pathP,
and p is contained in the box of that node. We find the lowest nodev on P whose box
still contains the query pointp. At this point we continue the search with a dashed edge
(v, u) such thatp ∈ B(u). It is clear that nodeu is the topmost node of the next solid
path.

Now we describe the search on the solid pathP. The algorithm starts with rootu of
the path tree. We execute the following step untilu is a leaf of the path tree. Follow the
pointer fromu to the rightmost leaf inu’s left subtree. This node isbtail(bleft(u)). If
box B(btail(bleft(u))) contains the query point, then we proceed withu’s left child in
the path tree, otherwise with the right child.

function point location(p)
v := root(T)
if p /∈ B(v) then return null
while v is an internal node ofT do

(∗ Note thatp ∈ B(v) andv is the topmost node of some pathP ∗)
u := pt root(v) (∗ u is the root of the path tree forP ∗)
while u is an internal node of the path treedo

if p ∈ B(btail(bleft(u))) then
u := bleft(u)

elseu := bright(u)
fi

od
(∗ u is the bottommost node of the pathP such thatp ∈ B(u) ∗)
v := u

190 S. N. Bespamyatnikh

if the edge(v, rson(v)) is dashed andp ∈ B(rson(v)) then
v := rson(v)

else ifthe edge(v, lson(v)) is dashed andp ∈ B(lson(v)) then
v := lson(v)

else returnv
fi

fi
od
return v

end (∗ of the function∗)

It is clear that the point-location algorithm is correct. We analyze the running time of
the algorithm. LetP1, . . . , Pl be the solid paths that are searched during the algorithm.
Let u1, . . . ,ul be the roots of path trees and letv1, . . . , vl be the bottommost nodes on
path trees that are searched. Note thatvi is the parent ofui+1 in T for i = 1, . . . , l − 1.
The numberl of paths is at most logn by the size invariant. The depth ofvi in the
path tree forPi is at most 2(rank(ui) − rank(vi)) by Lemma 5.1. Fori = 1, . . . , l − 1,
rank(vi) ≥ rank(ui+1) by the definition ofrank. The total running time of the point-
location algorithm is

O

(
logn+

l∑
i=1

2(rank(ui)− rank(vi))

)
= O(logn+ rank(u1)− rank(vl)) = O(logn).

6.2. Searching for Ep and A(v)

Now we describe the search for the setsEp andA(v). Recall thatEp = {q | (p,q) ∈ E}
and

A(v) = {a ∈ S | d(B(a)) ≥ d(B(v))/s anddmin(a, B(v)) ≤ (1+ s)d(B(v))}.

We consider the search forEp and A(v) as a point-location problem for at mostO(1)
points (Nk points forEp andMk points forA(v)). In fact we can build a search tree such
that

• the external nodes correspond to the pointsS, and
• the path from the root of the search tree to an external nodev corresponds to the

nodes of the path trees searched during the location of the point corresponding tov.

The search for the setsEp and A(v) appliesbreadth-first searchon the search tree.
nodeset denotes a set of nodes that is stored in the breadth-first search. We use the
pointerdepth(v) that is a depth of the nodev in the search tree. For simplicity, we extend
the pointersbtail to the external nodes of any path trees. (It is not necessary to store
these pointers). Using Theorem 4.6 (resp. 4.8), the procedurerefine() finds at mostNk

An Optimal Algorithm for Closest-Pair Maintenance 191

(resp.Mk) nodes among the nodes{btail(v) | v ∈ nodeset} and removes other nodes
from nodeset.

function search() (∗ the search forEp or A(v) ∗)
w := pt root(root(T))
nodeset:= {w}
depth(w) := 0
while there is a nodew in nodesetsuch thatbtail(w) is an internal node ofT do
w is a node innodesetwith minimal depth such thatbtail(w) is an internal node
of T
if w is an internal node of some path treethen

nodeset:= nodeset∪ {bleft(w), bright(w)}
depth(bleft(w)) := depth(w)+ 1
depth(bright(w)) := depth(w)+ 1

else(∗ w is an external node of some path tree∗)
u := btail(w)(∗ u is the corresponding node ofw in T ∗)
if the edge(u, rson(u)) is dashedthen
w := pt root(rson(u))
nodeset:= nodeset∪ {w}
depth(w) := depth(w)+ 1

fi
if the edge(u, lson(u)) is dashedthen
w := pt root(lson(u))
nodeset:= nodeset∪ {w}
depth(w) := depth(w)+ 1

fi
fi
nodeset:= nodeset\{w}
if |nodeset| > Nk then (∗ |nodeset| > Mk for A(v) ∗)

refine({btail(w) | w ∈ nodeset})
(∗ by Theorem 4.6 forEp and Theorem 4.8 forA(v) ∗)

fi
od
return the points corresponding the nodesbtail(w) for w ∈ nodeset

end (∗ of the function∗)

Lemma 6.1. The function search() takes O(logn) time.

Proof. The function search() visits at mostNk (resp.Mk) nodes of the same depth. The
depth of the search tree isO(logn). This completes the proof.

Finally, we formulate the main result.

Theorem 6.2. There is a data structure of size O(n) that maintains the closest pair of
S in O(logn) time per update.

192 S. N. Bespamyatnikh

7. The Reduction of the Constant Factors

In this section we discuss the dependence of the update time and space on dimension. The
complexity of the algorithm is exponential in the dimension. Straightforward implemen-
tation of the searching givesO(kN2

k logn) time to insert andO(kMk(Mk + N2
k) logn)

time to delete a point. This is because the procedurerefine() takesO(kNk) time in
searching forEp andO(kMk) time in searching forA(v).

Now we reduce the time complexity ofrefine() to O(k+ log Nk) andO(k+ log Mk),
respectively. Instead of computing the minimum diameter boxB(vi) (in O(Nk) time), we
maintain it. Note that nodevi is never deleted. In the loop ofsearch()we have to choose a
nodev such thatbtail(v) is an internal node ofT . To do this we storenodesetin two lists:
{v | btail(v) is an internal node of T} and{v | btail(v) is an external node of T}. Using
the queue for the first list allows us to find a node with minimal depth inO(1) time.

Consider the search forEp. We can formulate the conditions to remove nodevj :

dmin(p, B(vj)) > (1+ s)d(B(vj)), (4)

dmin(p, Sj) > (1+ s)d(B(p)), (5)

dmin(p, Sj) > dmax(p, B(vi)). (6)

In fact we check these conditions when we add a node tonodeset.
Consider the search forA(v). The following conditions allows us to discard inserted

nodevj :

d(B(vj)) > d(B(v))/s, (7)

dmin(Sj , B(v)) > (1+ s)d(B(v)). (8)

Conditions (4), (5), and (7) can be computed inO(k) time. We can achieve the same
time bound for conditions (6) and (8). The main problem is how to computeSj . Recall
thatSj = B(vj)\

⋃
B(vi)⊂B(vj)

B(vi) for a nodevj ∈ nodeset. Instead of computing this
set, we compute its subset such that Theorems 4.6 and 4.8 still hold.

Let w be a node of some path tree andw is added tonodeset(vj = btail(w)). Let
q ∈ Rk be a point such that the point location ofp visitsw. It is clear thatq ∈ Sj . In
fact we can take the set of such points to beSj . In other words, we can define

Sj =
{

B(btail(w))\B(btail(lson(u)) if w is the right son ofu,
B(btail(w)) otherwise.

The setSj is either a box or the set theoretical difference between two boxes. This
definition of setSj is similar to the definition ofcells[1] (box cellsanddoughnut cells).
Conditions (6) and (8) can be computed inO(k) time.

In practice, we do not need to store the at most|Nk| (|Mk| for A(v)) nodes innodeset.
We can prunenodesetat the moment we add a node tonodeset. To do this we store
dmin(p, Sj) (dmin(Sj , B(v)) for A(v)) in a heap corresponding tonodeset. Then the
cost of inserting a node tonodeset is O(k + log Nk) = O(k logk) (O(k + log Mk) =
O(k logk) for A(v)). The deletion of a node fromnodeset take O(k + log Nk) =
O(k logk) (O(k+ log Mk) = O(k logk) for A(v)) time. Hence the search forEp (resp.
for A(v)) takesO(kNk logk logn) (resp.O(kMk logk logn)) time.

An Optimal Algorithm for Closest-Pair Maintenance 193

Now consider the insertion of pointp. Recall that after findingEp we have to prune the
setsEq,q ∈ Ep containing greater thanNk points. We can prune a setEq in O(k+log Nk)

time. We store two heaps to nodeq. The keys are the distancesd(B(r))anddmin(q, B(r)),
r ∈ Eq (for these pointsSj = B(r)). The total time of the insertion of pointp is
O(kNk logk logn+ Nk(k+ log Nk)) = O(kNk logk logn).

We now consider the deletion of nodev. Recall that after findingA(v), for each
a ∈ A(v), we

• delete the setEa,
• find the setEa, using the search forEp, and
• pruneEb, b ∈ Ea, if |Eb| > Nk.

The corresponding costs areO(Mk Nk log Nk), O(kMk Nk log Nk logn), andO(Mk Nk

log Nk). The total running time of the deletion algorithm isO(kMk Nk logk logn).

Theorem 7.1. There is a data structure of size O(kn) that maintains the closest pair of
S in O(kNk logk logn) time per insertion and O(kMk Nk logk logn) time per deletion.

Finally, we compare constantsN2 andM2 for the separationss = 2 ands = (√5+
1)/2. Recall thatNk = (2d(s+2)(s+1)ke+1)k andMk = (ds(s+1)2(k+ 1

2)e+1)k.For
separations= 2 we getN2 = 2401 andM2 = 8281. For separations= (√5+1)/2 we
getNk = (2d9.4721ke+1)k, N2 = 1521 andMk = (2d11.0901k+5.5450e+1)k, M2 =
3249. In practice, we do not expect the constant factors to be so big.

8. Conclusion

We have presented an algorithm for maintaining the closest pair inO(logn) time per
update, usingO(n) space. The running time of the algorithm is optimal up to a constant
factor in the algebraic decision-tree model of computation. The algorithm can be adapted
(by changing some constants, includingNk) for another metric such thatd(p,q) =
O(d∞(p,q)). In fact, the algorithm can give the list of the closest pairs (if any) in the
time proportional to its number.

The algorithm maintains a setE of point pairs that contains the neighbor pairs.
Unfortunately the fair-split tree does not allow efficient maintenance of the (exact)

set of the neighbor pairs. It would be interesting to solve the problem of the maintenance
of neighbor pairs withO(logn) update time andO(n) space.

Acknowledgment

The author thanks anonymous referees for many useful comments.

References

1. S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An Optimal Algorithm for Approximate
Nearest-Neighbor Searching.Proc. 5th Annual Symp. Discrete Algorithms, 1994, pp. 573–582.

194 S. N. Bespamyatnikh

2. S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu.An Optimal Algorithm for Approximate
Nearest-Neighbor Searching(revised version), 1994.

3. M. Ben-Or. Lower Bounds for Algebraic Computation Trees.Proc. 15th Annual ACM Symp. Theory
Comput., 1983, pp. 80–86.

4. S. W. Bent, D. D. Sleator and R. E. Tarjan. Biased Search Trees.SIAM J. Comput., 14 (1985), 545–568.
5. J. L. Bentley and M. I. Shamos. Divide-and-Conquer in Multidimensional Space.Proc. 8th Annual ACM

Symp. Theory Comput., 1976, pp. 220–230.
6. S. N. Bespamyatnikh. The Region Approach for Some Dynamic Closest-Point Problems.Proc. 6th Cana-

dian Conf. Comput. Geom., 1994, pp. 75–80.
7. S. N. Bespamyatnikh. An Optimal Algorithm for Closest Pair Maintenance.Proc. 11th Annual ACM Symp.

Comput. Geom., 1995, pp. 152–161.
8. S. N. Bespamyatnikh. An Optimal Algorithm for the Dynamic Post-Office Problem inR2

1 and Related
Problems.Proc. 8th Canadian Conf. Comput. Geom., 1996, pp. 101–106.

9. S. N. Bespamyatnikh. Dynamic Algorithms for Approximate Neighbor Searching.Proc. 8th Canadian
Conf. Comput. Geom., 1996, pp. 252–257.

10. P. B. Callahan. Dealing with Higher Dimensions: the Well-Separated Pair Decomposition and Its Appli-
cations. Ph.D. Thesis, The Johns Hopkins University, 1995.

11. P. B. Callahan, M. T. Goodrich, and K. Ramaiyer. Topology B-Trees and Their Applications.Proc. 4th
Workshop Algorithms Data Struct., 1995, pp. 381–392.

12. P. B. Callahan and S. R. Kosaraju. A Decomposition of Multi-Dimensional Point-Sets with Applications
to k-Nearest-Neighbors andn-Body Potential Fields.Proc. 24th Annual ACM Symp. Theory Comput.,
1992, pp. 546–556.

13. P. B. Callahan and S. R. Kosaraju. Algorithms for Dynamic Closest Pair andn-Body Potential Fields.
Proc. 6th Annual ACM–SIAM Symp. Discrete Algorithms, 1995, pp. 263–272.

14. Y.-J. Chiang, F. T. Preparata, and R. Tamassia. A Unified Approach to Dynamic Point Location, Ray
Shooting, and Shortest Paths in Planar Maps.Proc. 4th ACM–SIAM Symp. on Discrete Algorithms, 1993,
pp. 44–53.

15. R. F. Cohen and R. Tamassia. Combine and Conquer: a General Technique for Dynamic Algorithms.
Proc. First European Symp. Algorithms. Lecture Notes in Computer Science. Springer-Verlag, Berlin,
1993, pp. 97–108.

16. G. N. Frederickson. A Data Structure for Dynamically Maintaining Rooted Trees.Proc. 4th Annual
ACM–SIAM Symp. Discrete Algorithms, 1993, pp. 175–194.

17. M. J. Golin, R. Raman, C. Schwarz, and M. Smid. Randomized Data Structures for the Dynamic Closest-
Pair Problem.Proc. 4th Annual ACM–SIAM Symp. Discrete Algorithms, 1993, pp. 301–310.

18. M. J. Golin, R. Raman, C. Schwarz, and M. Smid. Simple Randomized Algorithms for Closest Pair
Problems.Proc. 5th Canadian Conf. Comput. Geom., 1993, pp. 246–251.

19. S. Kapoor and M. Smid. New Techniques for Exact and Approximate Dynamic Closest-Point Problems.
Proc. 10th Annual ACM Symp. Comput. Geom., 1994, pp. 165–174.

20. H.-P. Lenhof and M. Smid. Enumerating thek Closest Pair Optimally.Proc. 33rd Annual IEEE Symp.
Found. Comput. Sci., 1992, pp. 380–386.

21. F. P. Preparata and M. I. Shamos.Computational Geometry: An Introduction, 2nd edn. Springer-Verlag,
New York, 1988.

22. J. S. Salowe. Shallow Interdistance Selection and Interdistance Enumeration.Internat. J. Comput. Geom.
Appl., 2 (1992), 49–59.

23. C. Schwarz. Data Structures and Algorithms for the Dynamic Closest Pair Problem. Ph.D. Thesis, Uni-
versität des Saarbr¨ucken, 1993.

24. C. Schwarz and M. Smid. AnO(n logn log logn) Algorithm for the On-Line Closest Pair Problem.Proc.
3th ACM–SIAM Symp. Discrete Algorithms, 1992, pp. 280–285.

25. C. Schwarz, M. Smid, and J. Snoeyink. An Optimal Algorithm for the On-Line Closest-Pair Problem.
Proc. 8th Annual ACM Symp. Comput. Geom., 1992, pp. 330–336.

26. M. I. Shamos and D. Hoey. Closest-Point Problem.Proc. 16th Annual IEEE Symp. Found. Comput. Sci.,
1975, pp. 151–162.

27. D. D. Sleator and R. E. Tarjan. A Data Structure for Dynamic Trees.J. Comput. System Sci., 26 (1983),
362–391.

An Optimal Algorithm for Closest-Pair Maintenance 195

28. M. Smid. Dynamic Rectangular Point Location, with an Application to the Closest Pair Problem. Technical
Report MPI-I-91-101, Max-Plank-Institut f¨ur Informatik, Saarbr¨ucken, 1991.

29. M. Smid. Maintaining the Minimal Distance of a Point Set in Less Than Linear Time.Algorithms Rev., 2
(1991), 33–44.

30. M. Smid. Maintaining the Minimal Distance of a Point Set in Polylogarithmic Time.Discrete Comput.
Geom., 7 (1992), 415–431.

31. K. L. Supowit. New Techniques for Some Dynamic Closest-Point and Farthest-Point Problems.Proc. 1st
Annual ACM–SIAM Symp. Discrete Algorithms, 1990, pp. 84–90.

32. P. M. Vaidya. An Optimal Algorithm for All-Nearest-Neighbors Problem.Proc. 27th Annual Symp. Found.
Comput. Sci., 1986, pp. 117–122.

33. P. M. Vaidya. AnO(n logn) Algorithm for All-Nearest-Neighbors Problem.Discrete Comput. Geom., 4
(1989), 101–115

Received November1, 1995,and in revised form August8, 1996,and March31, 1997.

