
An Optimal Algorithm for Minimizing
Run-Time Reconfiguration Delay

SOHEIL GHIASI, ANI NAHAPETIAN, and MAJID SARRAFZADEH

University of California, Los Angeles

Reconfiguration delay is one of the major barriers in the way of dynamically adapting a system to its
application requirements. The run-time reconfiguration delay is quite comparable to the application
latency for many classes of applications and might even dominate the application run-time. In
this paper, we present an efficient optimal algorithm for minimizing the run-time reconfiguration
(context switching) delay of executing an application on a dynamically adaptable system. The
system is composed of a number of cameras with embedded reconfigurable resources collaborating
in order to track an object. The operations required to execute in order to track the object are
revealed to the system at run-time and can change according to a number of parameters, such as
the target shape and proximity. Similarly, we can assume that the applications comprising tasks
are already scheduled and each of them has to be realized on the reconfigurable fabric in order to
be executed.

The modeling and the algorithm are both applicable to partially reconfigurable platforms as well
as multi-FPGA systems. The algorithm can be directly applied to minimize the application run-
time for the typical classes of applications, where the actual execution delay of the basic operations
is negligible compared to the reconfiguration delay. We prove the optimality and the efficiency of
our algorithm. We report the experimental results, which demonstrate a 2.5–40% improvement on
the total run-time reconfiguration delay as compared to other heuristics.

Categories and Subject Descriptors: B.8.2 [Hardware Performance]: Performance Analysis and
Design Aids

General Terms: Performance, Algorithms

Additional Key Words and Phrases: Reconfigurable computing, reconfiguration delay, instantiation
ordering

1. INTRODUCTION

Many applications contain computationally intensive blocks, and hence they
demand hardware implementation to exhibit real-time performance. Dedicated
hardware solutions are capable of running many operations in parallel and thus
can speedup the application run-time significantly. While dedicated hardware
implementations address the application latency problem, they are not flexible.
New version of the application has to go through all of the implementation steps

Authors’ address: S. Ghiasi, A. Nahapetian, and M. Sarrafzadeh, Computer Science Department,
UCLA, Los Angeles, CA, 90095; email: soheil@cs.ucla.edu.
Permission to make digital/hard copy of part of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage,
the copyright notice, the title of the publication, and its date of appear, and notice is given that
copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists requires prior specific permision and/or a fee.
C© 2004 ACM 1539-9087/04/0500-0237 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004, Pages 237–256.

238 • S. Ghiasi et al.

in order to be realized in dedicated hardware [DeHon 1994; Burns et al. 1997;
Adario et al. 1999; Hauser and Wawrzynek 1997].

Reconfigurable systems, however, provide flexibility and the ability to reuse
hardware for multiple applications. Also, reconfigurable hardware resources
can be used to execute applications that are too large to fit on them completely.
In such cases, each part of the large application is executed on the hardware
one at a time. Namely, by reusing the reconfigurable hardware, all of the parts
of the application can be loaded and executed on the hardware at run-time.
This technique, known as run-time reconfiguration, has been used by many
researchers for realizing large designs [Compton and Hauck 2002; Maestre
et al. 2001; Trimberger 1998; Chang and Marek-Sadowska 1997; Liu and Wong
1998].

Run-time reconfiguration, in particular, is suitable for realizing intensive ap-
plications that take different paths at run-time. Consider the target-tracking
application. Based on available information from a scene, such as the number
of targets, their distance from the camera and their resolution, different algo-
rithms should be executed in order to track the targets efficiently in real-time.
Hence, run-time reconfigurable hardware resources are utilized for implement-
ing this application.

A major drawback of using run-time reconfiguration is the significant delay
of reprogramming the hardware. The total run-time of an application includes
the actual computation delay of each task on the hardware along with the
total time spent on hardware reconfiguration between computations. The latter
may dominate the total run-time, especially for classes of applications with a
small amount of computation between two consecutive reconfigurations. Much
of the previous work has tried to tackle the reconfiguration delay problem using
different approaches [Li and Hauck 2001, 2002; Li et al. 2000].

In many applications, only a small portion of the design changes at a time,
and so there is no need to reconfigure the entire hardware for instantiating
a new design. This has led the industry to add the capability for partial re-
configuration to most of its recent products. FPGAs are an example of such
reconfigurable hardware, and most of the recent FPGA devices have the capa-
bility of partial run-time reconfiguration [Xilinx; Altera].

Some earlier work has used partial reconfiguration to realize and execute an
application. For example, Taylor et al. present a partially reconfigurable system
in which there are a limited number of identical locations on the FPGA to plug in
and run a module [Taylor et al. 2002; Horta et al.]. Figure 1 shows the basic idea
of such a reconfigurable platform. Each module (operation) is instantiated on
one of the identical places on the chip through partial reconfiguration, and hence
the instantiation of each operation will not affect the other existing modules.

For example, in Figure 1, operation g can be instantiated by reconfiguring
the physical resources currently executing operation d . This will not affect
the configuration of resources executing operations a, c, and e. Note that multi-
FPGA systems, such as the target-tracking system described above, are another
example of a partially reconfigurable system in which there is more than one
FPGA on the system. Each FPGA realizes a part of the design, which can be
reconfigured independent of the state of the other FPGAs.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

An Optimal Algorithm for Minimizing Run-Time Reconfiguration Delay • 239

Fig. 1. Executing an application on a partially reconfigurable hardware.

Partial reconfiguration allows the user to change only the part of the design
that needs to be updated and hence decrease the reconfiguration delay [Sezer
et al. 1998]. The partial reconfiguration overhead, however, is still significant,
and it dominates the computation delay for many applications. Reconfigura-
tion delay is usually on the order of tens to hundreds of milliseconds for today’s
FPGAs [Xilinx; Altera]. While the partial reconfiguration approach is very ef-
fective and many different applications can be executed using the existing basic
operations, the partial reconfiguration delay is still a barrier. Therefore, mini-
mizing it can lead to faster execution of applications [Li et al. 2000].

In this paper, we formally state the problem of minimizing the run-time re-
configuration delay. We present a provably optimal algorithm to minimize the
total delay incurred by partial reconfiguration. The input to the algorithm is
an application, which is modeled as a set of scheduled high-level operations (or
simply operations). The data dependencies among the operations constitute a
directed acyclic graph (DAG). Our algorithm outputs an execution order for the
operations on the hardware resources such that the total run-time reconfigu-
ration is minimized.

The model and the algorithm developed in this paper are directly applicable
to current FPGA devices, multi-FPGA systems, as well as the aforementioned
partially reconfigurable systems. A special case of our algorithm applies to tra-
ditional nonpartially reconfigurable FPGA platforms also. We have conducted
simulation-based experiments on some real applications. In terms of total run-
time reconfiguration delay, our method outperforms other existing heuristics
with a significant margin, as high as 40%.

The rest of this paper is organized as follows. In Section 2, the problem of par-
tial reconfiguration delay minimization is formally stated. Section 3 describes
our algorithm and proves its correctness and its optimality. Some experimental
results obtained through simulation are presented in Section 4. Section 5 will
conclude the paper along with some future directions and possible extensions.

1.1 Object Tracking System

A system consisting of a number of cameras and a controller is depicted in
Figure 2. The figure demonstrates a collaborative intruder detection and object

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

240 • S. Ghiasi et al.

Fig. 2. The implemented target tracking system.

tracking system that has been implemented as part of this work [Kumar et al.
2003; Nguyen et al. 2002; Ghiasi et al. 2003a, 2003b, 2003c]. The system consists
of multiple IQeye3 cameras [IQinVision]. The cameras communicate with the
control unit in order to collaborate, distribute their information and execute
the controller’s commands.

As shown in Figure 2, each of the cameras has a number of embedded compu-
tational resources. These resources can be utilized to implement any application
that takes the streaming scene data as input. The processing power embedded
in the cameras eliminates the need to transfer the scene data to a remote pro-
cessing station, and hence reduces the load of system communications. For cases
where data communication is slow or expensive, the aforementioned embedded
processing scheme improves system performance. Furthermore, colocating the
processing and the data acquisition improves system scalability. The issue of
partitioning a given application among different available resources has been
studied by many researchers with different objectives. A general technique
which is applicable to many objective functions is called budgeting-based re-

source management [Bozorgzadeh et al. 2003; Ghiasi et al. 2003a, 2003b; Chen
et al. 2002; Sarrafzadeh et al.]. Throughout this paper, we assume that the
application partitioning has already been performed. Thus, the portion of the
application that has to run on the reconfigurable device is known. The task of
partitioning the given application onto system resources shall not be discussed,
since it is out of the scope of this paper.

Figure 3 demonstrates the abstract model of the computational resources ex-
isting in the system. A general-purpose processor (IBM PowerPC) and a Xilinx
Virtex1000E FPGA [Xilinx] are embedded in each of the cameras. The processor

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

An Optimal Algorithm for Minimizing Run-Time Reconfiguration Delay • 241

Fig. 3. The abstract model of the system resources. The controller has to schedule the tasks on
reconfigurable hardware resources. Each camera has an FPGA embedded in it. There are several
of cameras in the system (three in this picture).

communicates with a main controller which sends commands to the cameras
in order to instantiate the proper design on their FPGAs. Then, each camera
reconfigures its FPGA to realize a particular design. Finally, the instantiated
design is executed on the FPGA using the real-time streaming scene data as
input. The computation results are either sent back to the controller or stored
locally in the memory blocks embedded in the camera. Note that the control unit
schedules the application processes on the system resources through run-time
reconfiguration [Nahapetian et al. 2003].

In order to highlight the effect of hardware implementation on system per-
formance, the underlying tracking algorithms were implemented in C. These
algorithms, namely KLT feature selection and feature tracking [Tomasi and
Kanade 1991], perform intensive computations and cannot process the real-
time streaming data when executed on the camera’s processor (PowerPC).

To speedup the algorithms various simplifications have been made, which
have resulted in five different versions of each algorithm [Ghiasi et al. 2003c].
Each version contains a new simplification in addition to all the changes made to
previous version numbers. For example, version 4 of each algorithm contains all
simplifications made to version 3 plus some further adaptation of the algorithm
to the constrained camera platform. Figure 4 demonstrates the latency of each
implementation when executed on camera PowerPC.

Furthermore, a nonembedded computing scheme is considered. In nonem-
bedded processing, each image is first transmitted to a powerful processing
unit where the computation is performed. Since the communication overhead
dominates the computation latency, all the different versions of the algorithms
perform similarly in this scheme. Figure 4 supports the fact that the image-
processing algorithms are computationally intensive and do not show real-time
performance if they are implemented in software.

Fortunately most of the image-processing algorithms, including feature se-
lection and tracking, perform similar computations on all pixels of the im-
age. Therefore, hardware implementations can take advantage of the intrin-
sic parallelism of these algorithms and boost their performance. For instance,
Benedetti et al. report real-time performance for feature selection algorithm
when implemented on a reconfigurable system [Benedetti and Perona 1998].

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

242 • S. Ghiasi et al.

Fig. 4. None of the simplified versions of the algorithms or non-embedded computing scheme
exhibit real-time performance.

Fig. 5. Instantiation order of the blocks on the FPGA affects the number of required reconfigura-
tions.

On the other hand, implementing the tracking application on a reconfig-
urable hardware requires the instantiation of different algorithms at differ-
ent points of the application lifetime. Therefore, it becomes necessary to re-
duce the reconfiguration delay to further improve performance. This problem,
motivated by our reconfigurable object tracking system, is the focus of this
paper.

1.2 Example

Figure 5 is an example where different execution orders of nodes lead to differ-
ent number of hardware reconfigurations. Tasks (nodes) 1 and 3 have the same
type a and Task 2 has another type b. The reconfigurable hardware is capable
of fitting one operation at a time in this example. Executing such an application
in 〈1, 2, 3〉 order, requires loading of a, b and a, into the hardware respectively.
Thus the hardware has to be reconfigured three times, which incurs a cost of
3 units, whereas execution of the same application in 〈2, 1, 3〉 order requires
loading of b and a, respectively, which costs 2 units. Therefore, the execution
order of basic tasks can impact the number of required reconfigurations and
hence the total reconfiguration delay.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

An Optimal Algorithm for Minimizing Run-Time Reconfiguration Delay • 243

2. PROBLEM STATEMENT

In this section, we first present some preliminaries and definitions that will
be used throughout the paper. Then, we formalize the problem of minimizing
the reconfiguration delay when executing a given application on a system with
multiple fully or partially reconfigurable resources.

2.1 Preliminaries and Assumptions

Let G(V , E) be a DAG representing the given application, where V is the set of
vertices that represent operations, and E is the set of directed edges that cor-
respond to the dependencies among the operations (Figure 1). We assume that
at each time step, one task or multiple tasks are revealed to the system for ex-
ecution. The arriving tasks have to be executed before the next set of upcoming
tasks to maintain the precedence constraints among tasks. Equivalently, we can
assume that vertices of G have already been scheduled to execute at the time
step at which they are revealed to the system. Furthermore, we assume that
the entire DAG is known a priori. This assumption holds both for applications
whose structure is fixed and for dynamic applications that have been exten-
sively profiled. As a result, our technique’s applicability is restricted to these
two classes of applications, namely, scheduled fixed structure applications or
applications with known profiling information. Note that profiling information
can serve as a guideline, probably with provable error rates and approximation
bounds, for determining the control-data flow graph (CDFG) structure of the
application.

We assume that a partially reconfigurable hardware (PRH) is selected as the
target platform to execute the application. The functional units corresponding
to each operation should exist on the hardware before its execution. Due to
area constraints, all of the comprising operations of an application might not
fit into the PRH at the same time. In this case, a subset of the operations can
be instantiated in the PRH, and it can be partially reconfigured to realize the
remaining operations when needed. In such cases, partial reconfiguration for
instantiating operations in the PRH, imposes a delay on the total application
run-time. Reconfiguration delay is one of the major barriers when using PRH
for real-time systems, and it is the main focus of this paper.

Reconfiguration delay is roughly proportional to the number of bits that need
to be transmitted to the PRH in order for it to change its state. Partial recon-
figuration bits contain both data and control information for altering the logic
and the interconnect of a particular block on the chip [Xilinx; Altera]. Hence,
the length of the sequence of reconfiguration bits is proportional to the repro-
grammed area on the chip. Therefore, the reconfiguration delay for instanti-
ation of different operations is the same for a number of different platforms.
These platforms include multi-FPGA systems with identical FGPAs and archi-
tectures in which there are a number of identical places on the chip to plug in
an operation (Figure 1) [Taylor et al. 2002; Horta et al.].

Our system presented in Section 1 uses similar FPGAs in all of its cameras.
Hence, the reconfiguration delays for all types of tasks are identical. Therefore,
the number of required partial reconfigurations (RPR) accurately represents

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

244 • S. Ghiasi et al.

the total reconfiguration delay. It follows that our technique’s effectiveness is
limited to multi-FPGA platforms with identical FPGAs and/or architectures
based on dynamic hardware plug-in idea presented in Taylor et al. [2002], and
Horta et al. There are many issues such as connection to chip pins and hetero-
geneous routing and logic resources that do not allow easy relocation of tasks
for other reconfigurable architectures.

Finally, we assume the target reconfigurable hardware can accommodate at
most K different operations at a time. Namely, there are K identical plug-in
locations in the target PRH, or the target reconfigurable hardware is composed
of K identical fully reconfigurable devices. This implies that an upcoming new
operation that does not currently exist in the PRH has to overwrite one of the
K existing operations in PRH. Loading a new operation requires the PRH to be
partially reconfigured. Therefore, it incurs a unit cost and increases the total
number of RPR by 1.

2.2 Problem Formulation

The partial reconfiguration delay minimization problem can be formally stated
as:

—Given are the scheduled task graph G(V , E) representing an application,
and K the number of identical plug-in locations in the PRH (or similarly the
number of fully programmable FPGAs in the system. This is the case for the
system shown in Figure 2).

—The objective is to find the order in which the tasks in V, have to be instan-
tiated in the PRH to execute the entire application, such that the number of
required partial reconfigurations is minimized. Moreover, for instantiating
each task v ∈ V, the existing task in PRH that has to be overwritten has to
be determined.

—The constraints are that the entire application has to be executed using the
K existing plug-in locations in the PRH. This implies that each node has to
be instantiated in the PRH at some point after all of its inputs have been
executed. Furthermore, at most K different type of operations can exist in
the PRH at each time.

The problem, as formulated above, is somewhat similar to the standard pag-
ing problem that has been formulated and extensively studied in the domain of
online algorithms. Specifically, reconfigurable hardware corresponds to a cache
unit with capacity K , and each partial reconfiguration request is similar to a
page fault (miss) that has a unit cost. However, to the best of our knowledge, the
problem presented in this paper has not been studied, and the current formula-
tion is novel for modeling partial reconfiguration cost. Throughout this paper,
we may use terms from our formulation and the standard paging formulation
interchangeably.

3. MINIMIZING THE NUMBER OF REQUIRED PARTIAL RECONFIGURATIONS

In this section, we present an optimal algorithm for solving the problem defined
in Section 2, and we prove the optimality of our solution. First, we define the

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

An Optimal Algorithm for Minimizing Run-Time Reconfiguration Delay • 245

notations. Then, we model the problem using sequences and permutations and
prove some theorems using this model. Finally, we present the algorithm. Its
optimality will follow from the theorems.

3.1 Definitions

Any solution to the problem stated in Section 2 will form a sequence of oper-
ations. Moreover, the solution must specify which operation to evict from the
PRH for loading a new operation. As we will show in the next subsection, there
is a simple optimal algorithm for evicting the existing operations in PRH in
order to minimize RPR for a given sequence of operations. Therefore, we focus
our efforts on finding the optimal sequence.

Let Si be the set of operations in cycle i. Also, we define Pi to be a permu-
tation of the operations in Si. Note that the operations in Si are allowed to
be repeated, because there can exist multiple operations of the same type in a
cycle.

Let Cost(P, K) represent the minimum number of RPR for the execution
(processing) of sequence P with a PRH with capacity K . It follows that the op-
timal solution is equal to the minimum possible value of Cost(P, K) for all P ’s.
We define PRH(i) as the set of operations existing in PRH when the least imme-
diately used (LIU) starts to process cycle i . Since PRH contains no operations
when the application execution starts PRH(0) = ∅.

3.2 Modeling and Theoretical Results

In this section, we present some theoretical results that provide a basis for
deriving the optimal algorithm for solving the problem defined in Section 2.
First, we consider a special case in which a given DAG has only one operation per
cycle. Such a DAG is a path, and there is already an optimal method developed
for this special case. We extend this method for all DAGs.

Consider the case when G is a sequence of operations in which an operation
has to wait for its predecessor to run. Hence, the scheduled version of G has
only one operation in each cycle. Therefore, the algorithm is forced to select the
nodes according to their original order for execution. In other words, there is
only a unique P , and the optimal cost would be equal to Cost(P, K).

The optimal algorithm has to select an operation to overwrite, if there are
K operations existing in PRH at some cycle. This problem, which is known as
the offline paging problem has been optimally solved by Belady [1966]. It has
been proven that the LIU operation existing in the cache is the best candidate
for overwriting. This algorithm (LIU) leads to the minimum number of page
faults.

THEOREM 3.1. Given a sequence of operations and a PRH to run the opera-

tions on, LIU is an optimal method to execute the operations in the given order

and to minimize the number of RPR.

PROOF. There is a one-to-one correspondence between the current problem
and the offline paging problem. The LIU is known to be optimal for the latter
problem. Hence, it is also optimal for the current problem [Belady 1966].

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

246 • S. Ghiasi et al.

Any solution to the general problem (proposed in Section 2) will be a permu-
tation of operations reflecting their execution order. This permutation has to
be in the form of P = 〈P1, P2, . . . , Pn〉 to meet the data dependency constraint
of the problem formulation. According to Theorem 3.1, executing P using LIU
algorithm will lead to the minimum number of RPR. Therefore, the generalized
optimal algorithm only needs to find the optimal sequence of operations among
all possible choices for P .

The following lemmas will aid in generating the optimal sequence.

LEMMA 3.2. Adding an operation to any location in a sequence of operations

P cannot decrease Cost(P, K).

PROOF. Let Q be the new sequence created by adding an operation to P .
We can process P exactly the way LIU processes Q , namely we can load/evict
the same operations the optimal algorithm loads/evicts for processing Q . This
processes P has a cost equal to Cost(Q , K), that is, there is at least one way to
process P with cost equal to Cost(Q , K). Hence Cost(P, K) cannot be greater
than Cost(Q , K).

COROLLARY 3.3. For any sequence of operations Q and any subsequence P

of Q: Cost(Q , K) ≥ Cost(P, K)

LEMMA 3.4. Let P = 〈P1, P2, . . . , Pi, . . . , Pn〉 be an optimal solution for a

given instance of the problem. Let Q i be a subsequence of Pi that contains all

of the operations in Pi that are in PRH(i). Similarly, let Ri be a subsequence

of Pi that is composed of all of the operations in Pi but not in PRH(i). Then,

S = 〈P1, P2, . . . , Pi−1, Q i, Ri, Pi+1, . . . , Pn〉 is also an optimal solution.

PROOF. The cost of T = 〈P1, P2, . . . , Pi−1, Ri, Pi+1, . . . , Pn〉 is equal to S since
operations in Q i are in PRH(i) when LIU starts to process cycle i. Therefore,
they will neither incur any RPR nor alter the PRH configuration. On the other
hand, T is a subsequence of P . Therefore, its cost cannot be greater than
Cost(P, K) according to Lemma 3.2. Therefore, Cost(S, K) ≤ Cost(P, K). On
the other hand, P is an optimal solution. Therefore Cost(S, K) = Cost(P, K)
and S also has the optimal cost.

COROLLARY 3.5. There exists an optimal algorithm, which executes opera-

tions already existing in PRH before other nodes at each cycle.

COROLLARY 3.6. There exists an optimal ordering in which nodes of the same

type appear adjacent to each other in each cycle. Therefore, an optimal algorithm

can merge nodes with the same type in each cycle and assume that nodes occur-

ring in each cycle are distinct, that is, they have different types.

LEMMA 3.7. Let P = 〈A1, A2, . . . , Ai, Ai+1, . . . , A j , . . . , Ak , . . . , Am〉 be a so-

lution for a given instance of the problem in which Ai is the ith operation of P.

Let A j and Ak be the next instances of Ai and Ai+1 respectively (Figure 6). If

Ai and Ai+1 both belong to the same cycle c and neither of them is in PRH(c),
then Q = 〈A1, A2, . . . , Ai+1, Ai, . . . , A j , . . . , Ak , . . . , Am〉 is also a solution and

Cost(P, K) ≥ Cost(Q , K).

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

An Optimal Algorithm for Minimizing Run-Time Reconfiguration Delay • 247

Fig. 6. Converting sequence P to Q will not increase the cost, provided that m and n are not in
PRH(i).

PROOF. We prove that Q is a valid solution and can be processed with cost
equal to Cost(P, K), that is, the optimal cost of processing Q is not greater than
Cost(P, K).

Since Ai and Ai+1 both belong to the same cycle, swapping them will produce
a valid permutation. Note that relative positions of Ai and Ai+1, compared to
other operations in P and Q , do not change. Therefore, optimal processing of
P and Q up to position i, will lead to the same cost and PRH configuration.

Executing Ai and Ai+1 for both P and Q will incur two RPRs, since neither
of them is in PRH(c). Loading the ith node will overwrite the same operation
for both sequences since they both have the same PRH configuration after pro-
cessing the ith node. Loading the (i + 1)th operation, however, might replace
different existing modules, since ith operations in P and Q are different.

Suppose loading Ai+1 overwrites operation x when we are processing P opti-
mally. If x 6= Ai then we can overwrite x with the (i + 1)th operation for Q and
have the exact cost and PRH configuration up to position i + 2. Since the rest
of Q is exactly same as P , its total processing cost will be the same.

However, if x = Ai we replace the ith operation with the (i + 1)th operation
when processing Q . This implies that PRH configuration is identical for P

and Q up to position i + 2, except for one operation. In particular, Q has an
operation of type m instead of n (Figure 6). We continue processing Q exactly
as LIU would process P up to position j . Note that RPRs for this span are the
same, since type of operations between i + 1 and j cannot be either m or n.

If there is an operation overwriting n for P , we overwrite m with the same
operation for Q . This will make both cost and PRH configuration up to that
point equal. Since the rest of P and Q are the same, they will have the same
cost. However, if such a case does not happen until position j , P has to increase
the cost by one to load m and execute A j , while Q has m on its PRH and does

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

248 • S. Ghiasi et al.

Fig. 7. Tie breaking at cycle i.

not issue a RPR. If m overwrites n in PRH of P , both sequences will have the
same PRH configuration while Q has a lower cost up to this point. However, if m

does not overwrite n, we can overwrite the same module with n after executing
A j for Q . Again, we will have the same PRH configuration and processing cost
up to this point while the rest of two sequences are the same. This completes
the proof.

3.3 Optimal Algorithm

The theorems proved in the previous section imply that an optimal algorithm
can order all nodes appearing in a cycle, according to their next occurrence.
According to Corollary 3.5, at each cycle, the optimal algorithm can execute
nodes existing in PRH before others. Furthermore, according to Lemma 3.7, the
remaining nodes can be executed according to such ordering without increasing
the cost, as compared with any other possible ordering.

Note that next instance of each operation happens in some Si, and all oper-
ations in Si will come before all operations in S j provided that i < j . Hence,
comparing the location of the next instance is trivial when two operations do
not have their next occurrence in the same cycle. If an operation does not have
any future occurrence, it will not be needed in the future cycles. Therefore its
next repetition can be thought to happen at infinity, and the same approach can
be applied. For example, in Figure 7, either 〈 y , m, n, x〉 or 〈 y , n, m, x〉 would be
an optimal ordering for cycle i.

If two operations in cycle i have their next instances in cycle j (Figure 7),
their relative ordering in cycle j determines their ordering in cycle i. However,
the same argument applies to cycle j and operations’ relative ordering in cycle
j depends on their next occurrence. To tackle this problem, the ordering can
be done in the reverse order. Starting the ordering process from the last cycle,
all nodes occurring in cycle j , have their future occurrences already ordered.
Therefore, they can be ordered deterministically using their next occurrences.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

An Optimal Algorithm for Minimizing Run-Time Reconfiguration Delay • 249

Fig. 8. Algorithm min–RPR generates the optimal sequence of reconfigurations.

This procedure can be summarized by the min–RPR algorithm shown in
Figure 8. After the initialization step, in which the next occurrence of a node
is determined, nodes are ordered according to their next instance. Cycles are
examined in reverse order in this step. For determining the optimal execution
order of nodes, operations already in the PRH are executed before other oper-
ations in each cycle. The remaining operations are executed according to their
calculated ordering. PRH configuration is then updated for next cycle by pro-
cessing the partial sequence generated in the current cycle. Lemmas 3.4 and 3.7
guarantee that the min–RPR algorithm will find a valid sequence of operations
with the minimum cost.

The time complexity for algorithm min–RPR is O(n.p. log(p)), where n is the
number of operations and p is the number of distinct operation types appear-
ing in the scheduled DAG. Note that at each cycle, it takes O(p. log(p)) to sort
the nodes, and there are O(n) cycles in the scheduled DAG. For practical appli-
cations, p does not grow with n. In realistic scenarios, the number of distinct
operation types occurring in the application DAG are fixed. Hence, the algo-
rithm’s run-time is expected to scale linearly with respect to the application
size.

3.4 Interesting Extensions

The problem presented in this paper can be extended to model other realistic
application problems. One extension of the problem assumes that tasks occupy
different areas on the chip. Hence, when overwriting a task, one has to consider
not only its next occurrence, but also the amount of area that the task will
free-up upon removal from the chip. This problem occurs in web caching, where
pages have different sizes and request frequencies. A complete discussion along
with effective algorithms can be found in Irani [2002].

An assumption of our paper is that complete information about the applica-
tion DFG is known. Many real life applications do not conform to this assump-
tion, instead they are an online version of the problems. For instance, a web
caching policy has almost no information about the next page that a user might

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

250 • S. Ghiasi et al.

request. However, probabilistic and/or statistical information, can be taken ad-
vantage of to predict the tasks coming after a particular node. For example, a
web caching algorithm might realize that in practice a request for a cartoon
website is not likely to follow a request for a news website. In the online algo-
rithm domain, this property is referred to as locality of reference. Borodin et al.
[1995] and Irani et al. [1996] have discussed this problem and presented some
strongly competitive algorithms to tackle it.

In the tracking system (Figure 2) implemented as part of this work, the tasks
are revealed to the system as events happen in a scene. Furthermore, each set
of revealed tasks has to be executed before the next upcoming set. Therefore,
we assume that the application DFG has the scheduling information embedded
in it. However, scheduling information is not available for all applications. Ex-
amples include signal-processing applications whose DFGs are often known a

priori. For such application domains, a scheduling technique has to be utilized
prior to applying our methodology.

An interesting extension of the current work would address the aforemen-
tioned issue, where there is no scheduling information available, and the prece-
dence constraint is the only constraint that has to be met to guarantee a valid
evaluation of the computation. This problem also arises in other application
domains such as compiler optimization. The problem can be formally states as:
Given a DFG with color information for each node, what is the best topological

order that minimizes the number of color changes among consecutive nodes?

This problem assumes a PRH of capacity 1 (a system consisting of only one
fully reconfigurable FPGA), if transferred to reconfigurable computing domain.
Kennedy and McKinley [1993] and Darte [2000] have studied this problem
when applying loop fusion to code generation in the area of compiler optimiza-
tion. By reduction from vertex cover problem, it has been shown that the general
formulation of the problem is NP-hard.

4. EXPERIMENTAL RESULTS

This section describes the experiments carried out to verify our algorithm,
which tackles the reconfiguration sequence problem. Section 4.1 will describe
the experimental setup and the testbenches. Section 4.2 will follow with a de-
tailed discussion of the experimental results and their implications.

4.1 Experimental Setup

Six different signal-processing applications running on a partially recon-
figurable hardware have been used as testbenches. The applications’ DFG
have been manually extracted from their MATLAB implementation, available
through the signal-processing tool box of the software [Mathworks]. The test-
benches are standard functions commonly used in many signal-processing ap-
plications, such as digital filter design. Each DFG has been scheduled using a
path-based scheduler [Memik et al. 2001] with two different sets of resource
constraints. Table I summarizes the application testbenches. It also depicts the
complexity of each DFG using the number of nodes and the number of cycles
in the scheduled version. Note that in Table I, two testbenches with the same

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

An Optimal Algorithm for Minimizing Run-Time Reconfiguration Delay • 251

Table I. List of DFGs Extracted from MATLAB and
Scheduled for Experiments

Scheduled DFG Number of Nodes Number of Cycles

Fircls1 63 24
Fircls2 63 22
Firls1 64 32
Firls2 64 20
Firrcos1 79 42
Firrcos2 79 42
Invfreq1 41 25
Invfreq2 41 23
Maxflat1 115 51
Maxflat2 115 42
Spectrum1 55 28
Spectrum2 55 21

name and different indices refer to the same DFG, which is scheduled using
different resource constraints. The examples are Firls1 and Firls2.

Each node in these DFGs is a complex matrix manipulation operation such as
matrix inversion, matrix multiplication or a sine of matrix elements. Since the
matrix dimensions can be very large, these operations can be complex enough
to be implemented as separate blocks on the PRH for real-time applications.
Therefore, they agree with the assumptions that we have made throughout this
paper.

We have implemented our proposed technique along with three other algo-
rithms using the C language. These other three algorithms are Left First (LF),
Least Recently Used (LRU), and Most Recently Used (MRU) policies for order-
ing nodes at each cycle. The first algorithm, LF, executes the leftmost first at
each cycle. The LRU algorithm gives a higher priority to least-recently-used
nodes at each cycle. The MRU, on the other hand, selects the most recently
used node to execute. The last algorithm is min–RPR, whose optimality we
have proven in Section 3.

It is assumed that all the aforementioned applications are to be executed on
a PRH. Extensive simulations using the four mentioned algorithms have been
performed with three different PRH capacities. Moreover a number of randomly
generated DFGs have been used to perform another set of simulations. The next
subsection will describe our results and explain our observations.

4.2 Simulation Results

Each DFGs was executed using all four different algorithms. These algorithms
differ in the manner in which they order nodes in a cycle. Once the order of
the nodes at each cycle is determined, the generated sequence of nodes was
passed to the LIU algorithm [Belady 1966] to measure the number of RPRs.
The number of RPRs for each algorithm is reported as its cost.

The results for testbench DFGs are shown in Table II. The table contains the
number of RPR for PRHs with 1, 2, and 3 module capacity (K). The experimen-
tal results show that the optimal algorithm outperforms the other algorithms

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

252 • S. Ghiasi et al.

Table II. Number of Required Partial Reconfigurations for Different Algorithms on Real DFGs

K = 1 K = 2 K = 3
LF LRU MRU OPT LF LRU MRU OPT LF LRU MRU OPT

Fircls1 59 60 50 46 36 43 35 32 25 30 24 23
Fircls2 60 57 49 44 38 40 34 33 27 29 25 24
Firls1 53 58 45 39 23 28 26 23 13 14 14 13
Firls2 46 46 34 32 23 27 20 19 13 18 13 13
Firrcos1 56 61 50 45 29 32 28 27 15 15 14 14
Firrcos2 47 47 42 36 27 26 23 22 14 14 12 12
Invfreq1 35 39 30 27 22 23 21 20 14 15 14 14
Invfreq2 32 38 30 27 20 24 21 19 14 15 14 14
Maxflat1 102 109 88 80 53 63 52 46 34 36 32 30
Maxflat2 106 94 69 62 46 49 40 37 27 29 24 24
Spectrum1 42 48 35 34 22 26 19 19 14 16 12 12
Spectrum2 47 44 28 28 21 21 15 15 11 11 9 9

Total 685 701 550 500 360 402 334 312 221 242 207 202

Penalty(%) 37 40.2 10 NA 15.4 28.8 7.1 NA 9.4 19.8 2.5 NA

Fig. 9. Performance comparison of different context switching policies. Testbenches are signal
processing applications.

significantly. For these DFGs, the overhead penalty that the other algorithms
pay ranges from 2.5% to 40%.

Figure 9 summarizes the results from Table II. It compares the average per-
formance of the four context switching policies. As shown in the figure, the
optimal algorithm outperforms the other three policies significantly for the
single FPGA systems (K = 1). However, the performance gap among the differ-
ent algorithms decreases as the capacity of the reconfigurable hardware (K) is
increased. This is due to the fact that the applications used for this set of experi-
ments do not contain many varieties of tasks. They mainly use matrix addition,
matrix subtraction, and matrix multiplication as the basic comprising opera-
tions. Other matrix manipulation operations such as matrix inversion and sine
of matrix elements happen infrequently in the application DFGs. Therefore,
different reconfiguration sequence management techniques perform similarly
for reconfigurable systems with capacity three (Figure 9).

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

An Optimal Algorithm for Minimizing Run-Time Reconfiguration Delay • 253

Table III. Number of Required Partial Reconfigurations for Different Algorithms on Randomly
Generated DFGs

K = 4 K = 8 K = 16
LF LRU MRU OPT LF LRU MRU OPT LF LRU MRU OPT

DFG1 315 320 296 278 209 224 200 192 98 101 91 90
DFG2 305 313 282 273 203 216 192 188 93 100 91 89
DFG3 311 315 285 270 207 219 195 186 89 96 87 86
DFG4 314 319 284 272 207 219 195 189 96 97 89 88
DFG5 330 336 304 290 220 233 205 197 97 103 96 94
DFG6 324 329 295 284 218 232 200 195 95 99 87 86
DFG7 306 311 277 266 202 216 185 181 90 97 85 85
DFG8 306 310 279 267 200 211 184 180 93 96 88 86
DFG9 320 326 291 278 213 222 196 191 92 94 87 85
DGF10 308 316 278 266 208 222 189 184 94 98 90 89
DFG11 312 317 283 271 204 217 189 183 87 94 83 83
DFG12 313 327 285 275 205 227 187 186 87 93 83 83

Average 313.7 319.9 286.6 274.2 208 221.5 193.1 187.7 92.6 97.3 88.1 87

Penalty(%) 14.4 16.7 4.5 NA 10.8 18.0 2.9 NA 6.4 11.9 1.2 NA

Intuitively speaking, increasing the PRH capacity reduces the performance
gap between the different algorithms, because the frequent operations are less
likely to be evicted from the PRH. In the extreme case, if K is equal to the num-
ber of different operation types occurring in DFG, referred to as p in Section 3,
all algorithms would behave in exactly the same manner. In this case, all the
algorithms would have to pay a unit cost for loading the first occurrence of each
operation type. From that point on, future occurrences of the operations of the
DFG will not incur any cost, because all the operations already exist in the
PRH. As mentioned before, the DFGs listed in Table II do not contain many dif-
ferent types of operations. Therefore, a small performance penalty is incurred
with small values of K . For instance in the case where K = 3, the performance
penalty of MRU is 2.5%.

To further investigate this observation, we randomly generated 12 DFGs
with 26 different operation types. Each of the DFGs had 500 ± 10% nodes.
These DFGs were solely used to show that a small performance gap will oc-
cur at greater values of K , when there are many types of operations in DFG.
The output of the four algorithms on this set of testbenches is summarized in
Table III. The table reports the number of required reconfigurations for all of
the generated DFGs.

The average number of RPR of the four algorithms on the testbenches is
summarized in Figure 10. The figure demonstrates that the performance gap
for all of the algorithms is significant when K = 4. This supports the previous
expectation concerning the relation of PRH capacity and the algorithms’ perfor-
mance gap. A significant difference can be observed for LF and LRU algorithms
even when K = 16. MRU, however, performs close to the optimal in this case.

An interesting observation is that MRU uses a policy similar to min–RPR to
order nodes at each cycle. At each cycle, MRU gives higher priority to execut-
ing nodes that have been most recently executed. This utilizes the same idea
in Lemma 3.7 and makes MRU perform more efficiently than the other two

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

254 • S. Ghiasi et al.

Fig. 10. Performance comparison of different context switching policies. Testbenches are generated
randomly.

suboptimal algorithms. Therefore, one would expect MRU to exhibit a perfor-
mance similar to the optimal algorithm. The experimental results reported in
this section support this observation.

In summary, all of the experiments on real applications and randomly gen-
erated DFGs, for different values of K , show that our algorithm outperforms
all the other candidates. The improvement ranges from a few percents to tens
of percents depending on the DFG, the algorithm structure and the capacity of
the PRH.

5. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented an efficient optimal algorithm for minimizing the number
of required partial reconfigurations (context switches) when a partially recon-
figurable or multi-FPGA system is used to run an application. A special case
of the algorithm also solves the problem for single nonpartially reconfigurable
FPGA platforms. Since the total application run-time is dominated by the par-
tial reconfiguration delay for many classes of applications, this algorithm can
directly minimize the total application run-time.

Future research will focus on extensions with operation area and delay con-
siderations. Currently, all of the operations are assumed to occupy the same
area on the chip and are assumed to have delays negligible compared to the
reconfiguration delay. These assumptions, however, might not apply to all ap-
plications. We will work towards extending our results to more complicated
models by incorporating module delay and area.

The current version of the algorithm finds the best instantiation sequence
for a scheduled DAG. However, it does not provide any information about a good
scheduling for the given application. Obviously, different schedules for the same
DAG, incur different reconfiguration costs. Therefore, in the future we would
like to investigate the effect of scheduling on the number of reconfiguration.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

An Optimal Algorithm for Minimizing Run-Time Reconfiguration Delay • 255

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers whose helpful com-
ments improved the quality of this paper.

REFERENCES

ADARIO, A., ROEHE, E., AND BAMPI, S. 1999. Dynamically reconfigurable architecture for image
processor applications. In Design Automation Conference.

ALTERA. Altera Products’ Online Documentation. http://www.altera.com.
BELADY, L. 1966. A study of replacement algorithms for virtual-storage computer. IBM Systems

Journal 5, 2, 78–101.
BENEDETTI, A. AND PERONA, P. 1998. Real-time 2-d feature detection on a reconfigurable computer.

In IEEE Conference on Computer Vision and Pattern Recognition.
BORODIN, A., IRANI, S., RAGHAVAN, P., AND SCHIEBER, B. 1995. Strongly competitive algorithms

for paging with locality of reference. Journal of Computer and System Science 50, 2, 244–
258.

BOZORGZADEH, E., GHIASI, S., TAKAHASHI, A., AND SARRAFZADEH, M. 2003. Optimal integer delay
budgeting on directed acyclic graphs. In Design Automation Conference.

BURNS, J., DONLIN, A., HOGG, J., SINGH, S., AND WIT, M. 1997. A dynamic reconfiguration run-time
system. In IEEE Symposium on Field-Programmable Custom Computing Machines.

CHANG, D. AND MAREK-SADOWSKA, M. 1997. Buffer minimization and time-multiplexed i/o on dy-
namically reconfigurable FPGAs. In ACM 5th International Symposium on Field-Programmable

Gate Arrays. 142–148.
CHEN, C., BOZORGZADEH, E., SRIVASTAVA, A., AND SARRAFZADEH, M. 2002. Budget management with

applications. Algorithmica 34, 3, 261–275.
COMPTON, K. AND HAUCK, S. 2002. Reconfigurable computing: A survey of systems and software.

ACM Computing Surveys 34, 2, 171–210.
DARTE, A. 2000. On the complexity of loop fusion. Parallel Computing 26, 9, 1175–1193.
DEHON, A. 1994. Dpga-coupled microprocessors: Commodity ics for the early 21st century. In

IEEE Workshop on FPGAs for Custom Computing Machines.
GHIASI, S., MOON, H., AND SARRAFZADEH, M. 2003a. Collaborative and reconfigurable object track-

ing. In International Conference on Engineering of Reconfigurable Systems and Algorithms.
GHIASI, S., MOON, H., AND SARRAFZADEH, M. 2003b. Improving performance and quality thru hard-

ware reconfiguration: Potentials and adaptive object tracking case study. In Workshop on Em-

bedded Systems for Real-Time Multimedia (ESTIMedia).
GHIASI, S., MOON, H., AND SARRAFZADEH, M. 2003c. A networked reconfigurable system for collab-

orative unsupervised detection of events. In Tehnical Report, Computer Science Dept, UCLA.
GHIASI, S., NGUYEN, K., BOZORGZADEH, E., AND SARRAFZADEH, M. 2003a. On computation and re-

source management in an FPGA-based computing environment. In International Symposium on

Field-Programmable Gate Arrays (poster).
GHIASI, S., NGUYEN, K., BOZORGZADEH, E., AND SARRAFZADEH, M. 2003b. On computation and re-

source management in networked embedded systems. In International Conference on Parallel

and Distributed Computing and Systems.
GHIASI, S., NGUYEN, K., AND SARRAFZADEH, M. 2003c. Profiling accuracy-latency characteristics

of collaborative object tracking applications. In International Conference on Parallel and Dis-

tributed Computing and Systems.
HAUSER, J. AND WAWRZYNEK, J. 1997. Garp: A mips processor with a reconfigurable coprocessor. In

IEEE Symposium on Field-Programmable Custom Computing Machines.
HORTA, E., LOCKWOOD, J., TAYLOR, D., AND PARLOUR, D. Dynamic hardware plugins in an FPGA with

partial run-time reconfiguration.
IQINVISION. Product manuals and online documentation. http://www.iqinvision.com.
IRANI, S. 2002. Page replacement with multi-size pages and applications to web caching. Algo-

rithmica 33, 3, 384–409.
IRANI, S., KARLIN, A., AND PHILLIPS, S. 1996. Strongly competitive algorithms for paging with lo-

cality of reference. SIAM Journal on Computing 25, 3, 477–497.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

256 • S. Ghiasi et al.

KENNEDY, K. AND MCKINLEY, K. 1993. Typed fusion with applications to parallel and sequential
code generation. In Rice University Dept. of Computer Science Technical Report TR93-208.

KUMAR, R., GHIASI, S., AND SRIVASTAVA, M. 2003. Dynamic adaptation of networked reconfigurable
systems. In Workshop on Software Support for Reconfigurable Systems.

LI, Z., COMPTON, K., AND HAUCK, S. 2000. Configuration caching management techniques for re-
configurable computing. In IEEE Symposium on FPGAs for Custom Computing Machines. 22–36.

LI, Z. AND HAUCK, S. 2001. Configuration compression for virtex FPGAs. In IEEE Symposium on

FPGAs for Custom Computing Machines.
LI, Z. AND HAUCK, S. 2002. Configuration prefetching techniques for partial reconfigurable

coprocessor with relocation and defragmentation. In ACM/SIGDA Symposium on Field-

Programmable Gate Arrays.
LIU, H. AND WONG, D. 1998. Network flow based circuit partitioning for time-multiplexed FPGAs.

In IEEE/ACM International Conference on Computer-Aided Design. 497–504.
MAESTRE, R., KURDAHI, F., FERNANDEZ, M., HERMIDA, R., BAGHERZADEH, N., AND SINGH, H. 2001. A

framework for reconfigurable computing: Task scheduling and context management. IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems 9, 6, 858–873.
MATHWORKS. Matlab product manual and help files. http://www.mathworks.com.
MEMIK, S. O., BOZORGZADEH, E., KASTNER, R., AND SARRAFZADEH, M. 2001. A super-scheduler for

embedded reconfigurable systems. In International Conference on Computer-Aided Design.
SARRAFZADEH, M., KNOL, D., AND G.E. TELLEZ, T.
NAHAPETIAN, A., GHIASI, S., AND SARRAFZADEH, M. 2003. Scheduling on heterogeneous resources

with heterogeneous reconfiguration costs. In International Conference on Parallel and Distributed

Computing and Systems.
NGUYEN, K., YUENG, G., GHIASI, S., AND SARRAFZADEH, M. 2002. A general framework for tracking

objects in a multi-camera environment. In International Workshop on Digital and Computational

Video.
SEZER, S., HERON, J., WOODS, R., TURNER, R., AND MARSHALL, A. 1998. Fast partial reconfiguration

for fccms. In IEEE Symposium on Field-Programmable Custom Computing Machines.
TAYLOR, D., TURNER, J., LOCKWOOD, J., AND HORTA, E. 2002. Dynamic hardware plugins (dhp): Ex-

ploiting reconfigurable hardware for high-performance programmable routers. Computer Net-

works 38, 3, 295–310.
TOMASI, C. AND KANADE, T. 1991. Detection and tracking of point features. In Carnegie Mellon

University Technical Report CMU-CS-91-132.
TRIMBERGER, S. 1998. Scheduling designs into a time-multiplexed FPGA. In ACM/SIGDA Inter-

national Symposium on Field Programmable Gate Arrays. 153–160.
XILINX. Xilinx Products’ Online Documentation. http://www.xilinx.com.

Received January 2003; revised July 2003; accepted August 2003

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 2, May 2004.

