
An Optimal Algorithm for Reconstructing Images from

Binary Measurements

Feng Yang1, Yue M. Lu1, Luciano Sbaiz2, and Martin Vetterli1,3

1School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

2Google, CH-8002 Zürich, Switzerland
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ABSTRACT

We have studied a camera with a very large number of binary pixels referred to as the gigavision camera [1] or the
gigapixel digital film camera [2, 3]. Potential advantages of this new camera design include improved dynamic
range, thanks to its logarithmic sensor response curve, and reduced exposure time in low light conditions, due
to its highly sensitive photon detection mechanism.

We use maximum likelihood estimator (MLE) to reconstruct a high quality conventional image from the binary
sensor measurements of the gigavision camera. We prove that when the threshold T is “1”, the negative log-
likelihood function is a convex function. Therefore, optimal solution can be achieved using convex optimization.
Base on filter bank techniques, fast algorithms are given for computing the gradient and the multiplication of
a vector and Hessian matrix of the negative log-likelihood function. We show that with a minor change, our
algorithm also works for estimating conventional images from multiple binary images.

Numerical experiments with synthetic 1-D signals and images verify the effectiveness and quality of the
proposed algorithm. Experimental results also show that estimation performance can be improved by increasing
the oversampling factor or the number of binary images.

Keywords: Computational photography, high dynamic range imaging, low light level imaging, the gigavision
camera, digital film, photon-limited imaging.

1. INTRODUCTION

Conventional digital camera comprises a single lens, an image sensor, an image processing unit, and readout
circuitry. The image sensor converts photons to analog electrical signals, which are then quantized by an A/D
converter into 8 or 12 bits.

In this paper, we study a camera having image sensor with 1-bit quantizer first proposed as the gigapixel
digital film in [2, 3], then studied theoretically in the name of the gigavision sensor in [1]. The main differece
between the gigavision camera and the conventional camera is that the A/D converter is 1-bit quantizer, where
a threshold T determines how many photoelectrons are needed to switch the value of the binary pixel from “0”
to “1”. Due to the diffraction limit, Rayleigh criterion gives the minimum spatial resolution of an ideal lens
[4]. Thanks to the scaling effects in CMOS technology, the state of the art pixel size is already smaller than
the minimum spatial resolution of most consumer lens [5]. In this case, the image sensor can be considered as
an oversampling device. Through using binary pixel, we can reduce the size of pixels further, hence increase
the oversampling factor. This binary sensor works as a spatial oversampling A/D converters, thus potentially
high resolution A/D converters [6]. Gray levels are determined, like in a conventional film, by the density of
tiny digital pixels, and we can obtain these values by low-pass filtering the binary image. Owing to the number
of photons hitting the sensor well-modeled by the Poisson process [7], as shown in [1], the sensor’s response is
non-linear and similar to a logarithmic function, which is suitable for acquiring high dynamic range scenes.
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Figure 1. Simplified block diagram of a gigavision sensor. The light intensity function is f(x). There are N pixels in
the sensor. The light intensity on each pixel is f [n], n = 1, . . . , N . The electrical signal s[n] is quantized by a one-bit
quantizer Q with threshold T .

The most important problem in the gigavision camera is to reconstruct a conventional image using the binary
image. Since the performance of reconstructing images by low-pass filtering the binary images is sub-optimal
[1], we need to design new reconstruction algorithms according to the physical model of the gigavision camera.
Section 2 gives the imaging model and problem statement. Section 3 describes the maximum likelihood estimator
(MLE) used for reconstruction. We show that when the threshold of the gigavision camera is equal to “1”, the
negative log-likelihood function is a convex function. Thus, the optimal solution can be found using convex
optimization. To accelerate the optimization speed, we propose fast algorithms to compute the negative log-
likelihood function’s gradient and the multiplication of its Hessian matrix and a vector based on filter bank
techniques. We prove that our algorithm can be used for reconstructing images from multiple binary images
with a minor change. Section 4 is the experimental results on synthesized 1-D signals and images which show
the effectiveness of our algorithm. We also demonstrate that the estimation performance can be improved by
increasing the oversampling factor or the number of binary images using numerical experiments. We conclude
this paper in Section 5.

2. IMAGING MODEL AND PROBLEM STATEMENT

2.1 Imaging model

2.1.1 Pixel model

For simplicity of notation, we consider a one-dimensional (1-D) sensor array in this paper. All the results and
discussions can be straightforwardly extended to the two-dimensional (2-D) case. Figure 1 shows the model of a
gigavision sensor. The gigavision pixel is similar to a conventional camera pixel except that the quantizers Q are
binary with threshold T . The number of photons impinging on the pixel can be modeled as a Poisson process
with intensity f(x), where x is the position parameter. Suppose there are N pixels and neglect the integration
for simplicity, then the light intensity for every pixel is f [n], n = 1, . . . , N , respectively. The response of each
binary pixel b[n], n = 1, . . . , N ∗ is obtained by comparing the number of arrivals s[n], i.e. the electrons due to
detected photons, with the threshold T . The quantities b[n] are binary random variables with parameter

pf [n]
∆
= P(s[n] ≥ T ) =

∞∑

k=T

e−f [n] (f [n])k

k!
, n = 1, . . . , N.

2.1.2 Camera model

In the gigavision camera, the incident light I is first low-pass filtered by the lens and then oversampled using
the gigavision sensor, as shown in Figure 2. An estimation method is implemented to reconstruct the light
intensity using the binary image captured by the gigavision sensor. The model of the gigavision camera is shown
in Figure 3. Let f = [f [1], f [2], . . . , f [N ]]T be the sampled light intensity values and b = [b[1], b[2], . . . , b[N ]]T

be the binary image captured by the gigavision sensor. The estimated light intensity values for each pixel
f̂ = [f̂ [1], f̂ [2], . . . , f̂ [N ]]T is obtained using some reconstruction algorithm. Since the lens is a low-pass filter,

∗we use bold letter to denote a random variable or vector and the corresponding normal-font letter is a realization.
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Figure 2. Simplified architecture of a gigavision camera. The incident light is focused by the lens and then impinges on
the image sensors.
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Figure 3. The model for the gigavision camera. f = [f [1], f [2], . . . , f [N ]]T is the sampled light intensity values. b =

[b[1], b[2], . . . , b[N ]]T is the binary image. f̂ = [f̂ [1], f̂ [2], . . . , f̂ [N ]]T is the reconstructed light intensity. h[n] is a low-
pass filter. K = N

M
is downsampling factor and is equal to the oversampling factor of the gigavision sensor. ĝ =

[ĝ[1], ĝ[2], . . . , ĝ[M ]]T is the reconstructed non-blurred image.

f̂ is a blurred image. Low-pass filtering and downsampling by a factor of K which is equal to the oversampling
factor of the gigavision sensor are needed to generate a non-blurred image ĝ = [ĝ[1], ĝ[2], . . . , ĝ[M ]]T . The
downsampling factor K = N

M
.

2.2 Problem statement

Since the final goal is to estimate the non-blurred image g = [g[1], g[2], . . . , g[M ]]T , which is obtained by low-
pass filtering and downsampling f , we want to design a reconstruction algorithm which can directly compute
ĝ without f̂ . To achieve this, the model for the gigavision camera is described in an equivalent way as shown
in Figure 4. g is critically sampled light intensity values. We upsample g with a factor of K = N

M
and filter it

using a low-pass filter to get the oversampled light intensity values f . The binary image b are generated by the
gigavision sensor. Finally a reconstruction algorithm is used to obtain ĝ.

3. IMAGE RECONSTRUCTION USING MAXIMUM LIKELIHOOD ESTIMATION

3.1 Maximum likelihood estimator

A maximum likelihood estimator(MLE) is proposed for solving the reconstruction problem. The relation between
f and g can be written as f = Hg, where H is N ×M matrix representing the upsampling and low-pass filtering
operator, as shown in Figure 5. Suppose H = [h1, h2, . . . , hN ]T , then f [n] = hT

ng, n = 1, 2, . . . , N . We assume
all the entries in H is larger than 0 to avoid negative light intensity values. f [n] is a linear function of g and we
can also write f [n] as fn(g). According to the pixel model of the gigavision sensor and only considering the case
when the threshold T = 1, we have

{
P(bn = 0) = e−fn(g) = e−hT

n g

P(bn = 1) = 1 − e−fn(g) = 1 − e−hT
n g

, n = 1, 2, . . .N.

The MLE is as follows:

ĝ = arg max
g

P (b; g)

= arg max
g

N∏

n=1

(
(1 − b[n])e−fn(g) + b[n](1 − e−fn(g))

)

= arg max
g

ln

(
N∏

n=1

(
(1 − b[n])e−fn(g) + b[n](1 − e−fn(g))

))

= arg min
g

−

N∑

n=1

ln
(
(1 − b[n])e−fn(g) + b[n](1 − e−fn(g)

)
.
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Figure 4. The equivalent model for the gigavision camera. g = [g[1], g[2], . . . , g[M ]]T is critically sampled light intensity
values. K = N

M
is the upsampling factor. h[n] is a low-pass filter. f = [f [1], f [2], . . . , f [N ]]T is the oversampled light

intensity values. b = [b[1], b[2], . . . , b[N ]]T is the binary image. ĝ = [ĝ[1], ĝ[2], . . . , ĝ[M ]]T is the reconstructed light
intensity values.

g fK h[n]

H

Figure 5. H is the matrix notation for upsampling and low-pass filtering operator. K is the upsampling factor. h[n] is a
low-pass filter.

The negative log-likelihood function is O(g) = −
N∑

n=1
ln

(
(1 − b[n])e−fn(g) + b[n](1 − e−fn(g)

)
, g ∈ RM

+

Lemma 3.1. The gradient of O(g) is ▽O(g) = HT [(1 − b[1]) + b[1] −e−f1(g)

1−e−f1(g) , . . . , (1 − b[N ]) + b[N ] −e−fN (g)

1−e−fN (g) ]
T .

Proof. ∂O(g)
∂fn(g) =

{
1, b[n] = 0
−e−fn(g)

1−e−fn(g) , b[n] = 1
, n = 1, 2, . . . , N.

According to the chain rule,

▽O(g) =
∂O (g)

∂g
=

∂f

∂g

∂O (g)

∂f
= HT [(1 − b[1]) + b[1]

−e−f1(g)

1 − e−f1(g)
, . . . , (1 − b[N ]) + b[N ]

−e−fN (g)

1 − e−fN (g)
]T .

Lemma 3.2. The Hessian matrix of O(g) is Q = HT AH, where,

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

b[1]e−f1(g)

(1−e−f1(g))2
0 · · · 0

0 b[2]e−f2(g)

(1−e−f2(g))2
· · · 0

...
...

. . .
...

0 0 · · ·
b[N ]e−fN (g)

(1−e−fN (g))2

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Proof. According to the chain rule,

Q =
∂

∂g

(
∂O(g)

∂g

)
=

∂f

∂g

∂

∂f

(
∂O(g)

∂g

)
= HT AH.

Then the following proposition holds true.

Proposition 1. O(g) is a convex function.

Proof. Since the Hessian matrix of O(g), Q � 0, i.e. Q is positive semidefinite, O(g) is a convex function [8].

Figure 6 shows the negative log-likelihood function in a 2-D case, when g = [g[1], g[2]]T = [2, 3]T , oversampling
factor is 200 and H is a randomly generated 400 × 2 matrix, which also demonstrates that the negative log-
likelihood function is a convex function. Thus, any method for solving convex optimization problem such as the
interior-point method can be used to solve the above optimization problem.
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Figure 6. The objective function, when g = [g[1], g[2]]T = [2, 3]T , and the oversampling factor is 200.

gf Kh[−n]

HT

Figure 7. HT is the matrix notation for low-pass filtering and downsampling operator. h[−n] is a low-pass filter. K is
the downsampling factor.

3.2 Implementation

3.2.1 Calculation of gradient and Hessian matrix times a vector

In most methods for solving convex optimization problem, like interior-point algorithm or trust-region algorithm,
we need to provide the negative log-likelihood function’s gradient, Hessian matrix multiplication with a vector.
These can be computed according to lemma 3.1 and 3.2. The problem for directly calculating using the above
two equations is that if the upsampling factor is large, the matrix H is big and huge storage space is required for
H which makes it impractical. Since H is the matrix notation for upsampling and low-pass filtering operator,
as in Figure 5, there is no requirement for storing the matrix H . We only need to know the parameters of the
upsampling and low-pass filtering operator, i.e the upsampling factor K and the coefficients of the low-pass filter
h[n]. Let H = LU , where L indicates low-pass filtering operator and U denotes upsampling operator. Then
HT = (LU)T = UT LT = DG, where D is the matrix notation for downsampling operator and G is the matrix
notation for low-pass filtering operator. The downsampling factor of D is equal to the upsampling factor of U .
If the filter coefficients of L is h[n], then the filter coefficient of G is h[−n]. In the case of symmetric low-pass
filter, the filter coefficients of L and G are the same. Thus HT is the matrix notation for low-pass filtering and
downsampling operator, as in Figure 7.

According to lemma 3.1, the gradient of the negative log-likelihood function can be computed by first low-

pass filtering the vector [(1 − b[1]) + b[1] −e−f1(g)

1−e−f1(g) , . . . , (1 − b[N ]) + b[N ] −e−fN (g)

1−e−fN (g) ]
T , then downsampling it by

a factor of K = N
M

. According to lemma 3.2, the negative log-likelihood function’s Hessian matrix Q times a
vector v is Qv = HT AHv. Figure 8 shows the diagram for computing the above equation. We upsample v with
upsampling factor K = N

M
, then low-pass filter it using a filter h[n]. Since the matrix A is a diagonal matrix,

the multiplication of A and vector Hv is equal to the elementwise multiplication of the diagonal of A and Hv.
After that, we low-pass filter the obtained vector with a filter h[−n] and downsample by a factor of K = N

M
to

get Qv.
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v KK h[n] Qv
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Figure 8. The diagram from computing the negative log-likelihood function’s Hessian matrix Qv times a vector v. K = N

M

is upsampling and downsampling factor. h[n] and h[−n] are low-pass filters.

���������
�������	�����	

���
�
�����	��

���������
�������	�����	

���
�
������

x[n]

K

K

K

K

K

K

z

zK−1

x0[n]

x1[n]

xK−1[n]

h[n]

z−1

z−(K−1)

h0[n]

h1[n]

hK−1[n]

Figure 9. The polyphase representation of a sequence x[n] (left) and a filter h[n] (right).

3.2.2 Polyphase representation

To further increase the speed of the optimization process, we propose to use polyphase representation [9] to
reduce the computing time of the upsampling and low-pass filtering operator, also the low-pass filtering and
downsampling operator. Polyphase representation is a very useful tool in multirate signal processing. We will
introduce the definition and properties of the polyphase representation here to those readers who are not familiar
with this topic. Different polyphase representations are defined for a sequence and a filter.

Definition 3.3. A 1-D sequence x[n] or filter h[n] can be decomposed into K polyphase components, defined as,

xi[n]
∆
= x[Kn + i], hi[n]

∆
= h[Kn − i], i = 0, 1, . . . , K − 1.

Figure 9 shows the polyphase representation of a sequence x[n] and a filter h[n]. In the z-domain, we have

X(z) =
K−1∑
k=0

z−kXk(zK), and H(z) =
K−1∑
k=0

zkHk(zK).

Proposition 2. Let Y (z) be the z transform of the sequence y[n], which is the output when we implement the

low-pass filtering and downsampling operator on a signal x[n], then we have Y (z) =
K−1∑
k=0

Hk(z)Xk(z).

Proof. Omitted.

Remark 1. This means that the process for the implementation of the operator on a sequence x[n] is decomposing

the filter and sequence into K polyphase components, filtering the kth polyphase component of the sequence

separately with the corresponding kth polyphase component of the filter, and summing all the filtered results to

generate y[n]. During this process, we avoid to compute the sequence value which will be discarded during the

downsampling process, therefore the computing time can be saved.

Proposition 3. If we decompose h[n] using the definition of polyphase representation for a sequence, then

H(z) =
K−1∑
k=0

z−kHk(zK) and the output of the implementing the upsampling and low-pass filtering operator on

x[n] can be written as ⎛

⎜⎜⎜⎝

Y0(z)
Y1(z)

...

YK(z)

⎞

⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

H0(z)
H1(z)

...

HK(z)

⎞

⎟⎟⎟⎠
X(z),
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where Yk(z) is the z transform of the kth polyphase component of the output sequence y[n].

Proof. Omitted.

Remark 2. This means that kth polyphase component of y[n] can be calculated by filtering x[n] using the kth

polyphase component of h[n], and y[n] can be obtained according to Y (z) =
K−1∑
k=0

z−kYk(zK). Since we avoid to

compute the multiplication of the filter coefficient and the “0”s generated during the upsampling process, we can

increase the speed of the algorithm by a factor of K.

3.3 Multiple exposures

In the above, we only discuss about the reconstruction problem when a single binary image is captured by the
gigavision camera under one exposure. In some cases the resolution of the gigavision camera is not large enough
or the high speed is not required, we can capture many binary images using multiple exposures and estimate
light intensity using all the binary images to achieve better reconstruction performance. In what follows, we show
that the proposed reconstrucion algorithm can be straightforwardly extended to the multi-frame case, with no
increase in the computational complexity. When taking S binary images, b1, b2, . . . , bS , the maximum likelihood
estimator is

ĝ = arg max
g

P (b1, b2, . . . , bS ; g) = arg max
g

S∏

s=1

N∏

n=1

(
(1 − bs[n])e−fn(g) + bs[n](1 − e−fn(g))

)

= arg max
g

ln

S∏

s=1

N∏

n=1

(
(1 − bs[n])e−fn(g) + bs[n](1 − e−fn(g))

)

= arg min
g

−

S∑

s=1

N∑

n=1

ln
(
(1 − bs[n])e−fn(g) + bs[n](1 − e−fn(g)

)
.

The negative log-likelihood function is O(g) = −
S∑

s=1

N∑
n=1

ln
(
(1 − bs[n])e−fn(g) + bs[n](1 − e−fn(g)

)
.

Lemma 3.4. The gradient of O(g) is

▽O(g) = HT [

S∑

s=1

(1 − bs[1]) + bs[1]
−e−f1(g)

1 − e−f1(g)
,

S∑

s=1

(1 − bs[2]) + bs[2]
−e−f2(g)

1 − e−f2(g)
,

. . . ,

S∑

s=1

(1 − bs[N ]) + bs[N ]
−e−fN (g)

1 − e−fN (g)
]T .

Proof. ∂O(g)
∂fn(g) =

S∑
s=1

(
(1 − bs[n]) + bs[n] −e−fn(g)

1−e−fn(g)

)

According to the chain rule,

▽O(g) =
∂O(g)

∂g
=

∂f

∂g

∂O(g)

∂f
= HT ∂O(g)

∂f

= HT [
S∑

s=1

(1 − bs[1]) + bs[1]
−e−f1(g)

1 − e−f1(g)
,

S∑

s=1

(1 − bs[2]) + bs[2]
−e−f2(g)

1 − e−f2(g)
,

. . . ,

S∑

s=1

(1 − bs[N ]) + bs[N ]
−e−fN (g)

1 − e−fN (g)
]T .
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Figure 10. The model for reconstructing images from multiple binary images. g = [g[1], g[2], . . . , g[M ]]T is critically
sampled light intensity values. K = N

M
is the upsampling factor. h[n] is a low-pass filter. f = [f [1], f [2], . . . , f [NS]]T is

the oversampled light intensity values. c[n] = 1, n = 1, 2, . . . , S.

Lemma 3.5. The Hessian matrix of O(g) is Q = HT RH, where,

R =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S∑
s=1

bs[1]e−f1(g)

(1−e−f1(g))2
0 · · · 0

0

S∑
s=1

bs[2]e−f2(g)

(1−e−f2(g))2
· · · 0

...
...

. . .
...

0 0 · · ·

S∑
s=1

bs[N ]e−fN (g)

(1−e−fN (g))2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof. According to the chain rule,

Q =
∂

∂g

(
∂O(g)

∂g

)
=

∂f

∂g

∂

∂f

(
∂O(g)

∂g

)
= HT RH.

The calculation of gradient and Hessian matrix is almost the same as that for the single exposure.

There is also an insight linking temporal oversampling with a special form of spatial oversampling.

Proposition 4. The estimation result ĝ(b1, b2, . . . , bS) with spatial oversampling factor K = N
M

and low-pass

filter h[n] is equivalent to ĝ(b) with spatial oversampling factor W = S N
M

and low-pass filter l[n], where l[n]
equals to the convolution between a filter c[n] = 1, n = 1, 2, . . . , S with the upsampled version of h[n] by a factor

of S.

Proof. The model for reconstructing images from multiple binary images is shown in Figure 10. If we exchange
the positions of the second upsampling operator and low-pass filter h[n], the resulting model is equivalent to the
model used to generate ĝ(b) with spatial oversampling factor W = S N

M
and low-pass filter l[n]. So the above

proposition is correct.

4. EXPERIMENTAL RESULTS

4.1 1-D signals

We first did some experiments on 1-D synthesized signals. The gigavision model used is the model shown in
Figure 4. We first generate a 1-D synthesized signal. Then it is upsampled by 100 and low-pass filtered by a
Gaussian low-pass filter with variance σ = 30 and filter length 301. After that, a binary sequence is generated
according to the pixel model of the gigavision sensor. The estimated signal is obtained using the binary sequence
and the MLE method described above. The optimization method used is the interior-point algorithm. The
estimation result is shown in Figure 11. The mean square error (MSE) is 0.3477. Figure 12 shows the estimation
result when the oversampling factor is 200, the Gaussian low-pass filter’s σ is 50 and filter length is 401. The
MSE is 0.2060. Figure 13 shows the result using the same parameters as in Figure 11, except that we take 20
binary images. The MSE is 0.0158.

In Figure 14, we shows the relation between oversampling factor and MSE for the above synthesized sequence.
We only use 1 binary image and run the experiment 50 times for each oversampling factor. The MSE is an average
MSE of the 50 experiments. Figure 15 shows the relation between number of binary images and MSE for the
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Figure 11. The estimation result when oversampling factor is 100 and we only take 1 binary image. The MSE is 0.3477.
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Figure 12. The estimation results when the oversampling factor is 200 and we only take 1 binary image. The MSE is
0.2060.

synthesized sequence. The oversampling factor is equal to 100 for each number of binary images. We run the
experiments 50 times. The MSE is an average MSE of the 50 experiments. We can conclude that with higher
oversampling factor or more binary images, the estimation performance can be improved.

4.2 2-D images

A color image with resolution 2016× 3024 is used for simulation. The color image contains three channels, R, G,

and B. We reconstruct each channel seperately. The image is first filtered by a 1-D Gaussian low-pass filter with
σ = 4 and filter length 61 horizontally and vertically. After that, it is downsampled using downsampling factor
8 by 8. The resulting image is shown in Figure 16(a). A binary image is generated according to the pixel model
of the gigavision sensor using the original image. Then we use the proposed reconstruction method to estimate
the reconstructed image using the binary image. The results when using 1 binary image and 255 binary images
are shown in Figure 16(b) and (c) respectively. We can see that when using 1 binary image, the reconstructed
image is a bit noisy, but when using 255 binary images, the quality of the reconstructed image becomes better.
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Figure 13. The estimation results when the oversampling factor is 100 and we take 20 binary images. The MSE is 0.0158.
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Figure 14. The relation between the oversampling factor and MSE for the synthetic sequence. We only use 1 binary image
and run the experiment 50 times for each oversampling factor.

5. CONCLUSIONS

In this paper, we propose a maximum likelihood estimator algorithm for reconstructing images from binary
measurements. When the threshold of the gigavision camera is equal to “1”, we show that the problem is a
convex optimization problem, and hence we can reach the global optimal solution. To increase the speed of the
optimization, fast algorithms based on filter bank techniques are proposed. We prove that our algorithm also
works for reconstructing images from multiple binary images with a small change. Experimental results verify
the effectiveness of our algorithm. We show that the estimation performance can be improved by increasing the
oversampling factor or the number of independent exposures.
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