
An Optimal Algorithm for Scheduling

Soft-Aperiodic Tasks

in Fixed-Priority Preemptive Systems

John P. Lehoczkyt and Sandra Ramos-Thuelj

Department of Statistics+

Department of Electrical and Computer Engineering*

Carnegie Mellon University,

Pittsburgh, PA 15213

Abstract

This paper presents a new algorithm for servicing

soft deadline aperiodic tasks in II red-time system in

which hard deadline periodic tusks are scheduled us-

ing a fixed priority algorithm. The new algorithm

is is proved to be optimal in the sense that it provides

the shortest aperiodic response time amony ull possi-

ble aperiodic service methods. Simulation studies show

that it offers substantial performance improvements

over current approaches including the sporudic server

algorithm. Moreover, standard yueueiny formulas cun

be used to predict aperiodic response times over (I wide

range of conditions. The algorithm can be extended to

schedule hard deadline aperiodics and to eficiently re-

claim unused periodic service time when periodic tusks

have stochastic execution times.‘12

1 Introduction

In 1973, Liu and Layland [l] presented an anal-

ysis of the rate monotonic algorithm for scheduling

periodic tasks with hard deadlines. Recently, this

algorithm has gained popularity as an approach to

designing predictable real-time systems. Moreover,

the algorithm has been modified to allow for the

‘The authors wish to thank Stephen W. Gdyas for his par-

ticipation in this research effort and Jay K. Strosuider aud his

research group for their insightful comments and suggestions.

‘This research is supported in part by a grant from the Of-

fice of Naval Research under contracts N00014-84-K-0734 and

NOOO14-91-J-1304Nl73, by the Naval Ocean Systems Center un-

der contract N66001-87-C-01155, by the Federal Systems Divi-

sion of IBM Corporation under University Agreement Y-278067,

and by AT&T Bell Laboratories uuder the Cooperative He-

search Fellowship Program.

solution of many practical problems which arise in

actual real-time systems including task synchroniza-

tion, transient overload, and simultaneous scheduling

of both periodic and aperiodic tasks, among others.

The mixed task scheduling problem is important, be-

cause many real-time systems have substantial ape-

riodic task workloads. Moreover, the aperiodic tasks

may themselves have a variety of timing requirements,

ranging from hard deadlines to soft deadlines. For ex-

ample, recovery from transient failures may create an

aperiodic stream of hard deadline periodic tasks which

must be reexecuted (see Ramos-Thuel [2]).

In this paper, we reconsider the problem of jointly

scheduling hard deadline periodic tasks and aperiodic

tasks. Although the methods presented in this pa-

per apply both to hard deadline and soft deadline

aperiodic tasks, we limit our attention to the case of

scheduling soft deadline aperiodic tasks. That is, we

seek to schedule a mixture of periodic and aperiodic

tasks in such a way that all periodic task deadlines are

met and the response times for the aperiodic tasks are

as small as possible.

There are two standard approaches to this problem.

The least effective approach is to service the aperi-

odic tasks in the background of the periodic tasks (i.e.,

when the processor is idle). A better approach is to

create a periodic polling task with as large a capacity

as possible. The polling task will be run periodically,

and its capacity will be used to service aperiodic tasks.

While the polling server is faz superior to background,

the periodic polling task is not necessarily coordinated

with the aperiodic arrival process, so some aperiodic

arrivals must wait for the return of the polling task

before they can be executed. This waiting may create

unnecessarily long task response times. In addition,

110

1052-8725192 $3.00 0 1992 IEEE

the polling task may be ready but have no tasks ready

for execution, a situation that wastes the high priority

capacity of the polling task.

Recently, new approaches to the joint scheduling

problem have been developed including the sporadic

server algorithm by Sprunt [3, 41 and the deferrable

server algorithm by Strosnider [5]. Although similar

in spirit to the polling server, these algorithms allow

their capacity to be used throughout the server’s pe-

riod rather than only at the beginning. The two algo-

rithms differ in the way their capacity is replenished,

and each has its own individual schedulability analy-

sis; however, in certain circumstances, both can offer

up to an order of magnitude improvement in aperiodic

response time over the polling approach.

This paper develops a new approach to aperiodic

service, and shows that this method can offer sub-

stantial improvements over the deferrable aud spo-

radic server algorithms. The new approach, called the

slack stealing algorithm, does not create a periodic

server for aperiodic task service. Rather it creates a

passive task, referred to as the slack stealer, which

when prompted for service attempts to make time for

servicing aperiodic tasks by “stealing” all the process-

ing time it can from the periodic tasks without, caus-

ing their deadlines to be missed. This is equivalent

to “stealing slack” from the periodic tasks. Note the

similarity of this approach to cycle stealiug t8echniques

used in memory systems [6].

The slack stealer relies on the exact schedulability

conditions given by Lehoczky, Sha and Ding [7] and

Lehoczky [S] to provide the maximum possible capac-

ity for aperiodic service at the time it is needed. Sub-

stantial improvements in aperiodic task response times

will be demonstrated with the slack stealer. It will

also be shown to be optimal for the particular fixed

priority assignment chosen for the periodic tasks. In

addition, the slack stealer can be generalized to han-

dle hard deadline aperiodic tasks, and its functionality

can be efficiently augmented by a recl&~cr. A re-

claimer can cooperate with a slack stealer by making

available for aperiodic service any processing time uu-

used by the periodic tasks when they require less thau

their worst-case execution times. The slack stealing

algorithm requires a relatively large amount of calcula-

tion. Consequently, a direct implementation may not

be practical. It does, however, provide a lower bound

on aperiodic response which is attainable and a basis

for finding nearly optimal implementable algorithms.

2 F’ramework and Assumptions

Consider a real-time system with n periodic tasks,

Tl, . . . , r, . Each task, ri, has a worst-case computa-

tion requirement Ci, a period Ti, an initiation time

4; 2 0 or offset relative to some time origin, and a

deadline Di, assumed to satisfy Di 5 Ti. The pa-

rameters Ci, Ti, +i, and Di are known deterministic

quantities. We require that these tasks be scheduled

according to a fixed priority algorithm, such as the

deadline monotonic algorithm, in which tasks with

small values of D; are given relatively high priority

[‘3]. We assume that the periodic tasks are indexed in

priority order with 71 having highest priority and r,,

having lowest priority. For simplicity, we refer to those

levels as 1, . . . , n with 1 indicating highest priority and

R the lowest. The aperiodic tasks can be assigned any

priority, and we even permit them to be executed dy-

namically at different priority levels. We assume that

if an aperiodic task executes at priority level k, then it

has lower priority than any periodic task with priority

1 .‘1 k - 1 and higher priority than any periodic task

Gith priority k, k + 1, . . . , n. Aperiodic task execution

at priority level n + 1 is equivalent to background ex-

ecutiou.

A periodic task, say Ti, gives rise to an infinite se-

quence of jobs. The kth such job is ready at time

di + (k - 1)Ti and its Ci units of required execution

must, be completed by time di + (k - 1)Ti + Di or else

a periodic task timing fault will occur.

We next introduce the aperiodic tasks, {Jk, k 2 1).

Each aperiodic job, Jk, has an associated arrival time

Uk and a processing requirement pk. The tasks are

indexed such that 0 5 &‘k 5 (Yk+l, k 2 1. It is useful

to defiue the cumulative aperiodic workload process,

WA(t) = c Pk, (1)
{k I aklfl

which accumulates all the aperiodic work that arrives

in the interval [0, t]. Any algorithm for scheduling

both periodic and aperiodic loads will, for any periodic

task set and aperiodic task stream { Jk, k 2 l}, create

a cumulative aperiodic execution process, c(t), giving

the cumulative time during [O,t] that aperiodic tasks

were executed. ~(1) is a continuous function which

must, necessarily satisfy E(t) 5 WA(t),t 2 0 , and we

require that the associated algorithm must meet all

periodic deadlines.

We assume aperiodic tasks are processed in FIFO

order”. The completion time of Jk, denoted Tk, is

31r~ section 4 we consider the shortest remaining processing

time queue discipline which will result in lower average aperiodic

t,wk response times.

111

given by executed at priority level i or higher during [O,t] and

Tk = min{t 1 E(t) = &pi },

still have Tij finish by Dij.

(2)
Since we seek the largest amount of aperiodic pr*

i=l

cessing possible, and are only concerned with rij’s

deadline, the processor will be busy with level i or

and the response time of JI; , denoted &, is given by

R, = Tk - Qk. (3)

We seek a scheduling algorithm that will minimize

& which is equivalent to minimizing Tk. Thus, we

need to find a scheduling algorithm whose associated

c(t) is the supremum or upper envelope of all possible

aperiodic execution functions that are associated with

algorithms which meet all periodic deadlines. It is

important to note that if such an upper envelope can

be found, it will lead to the minimum response time

for every aperiodic task, not just the average response

time. We will determine the upper envelope and the

associated optimal aperiodic scheduling algorithm in

the next section, under the following assumptions:

l Al: All overhead for context swapping, task

scheduling, etc., is assumed to be zero.

l A!?: Tasks are ready at the start of their period

and do not suspend themselves or synchronize

with any other task.

l AJ: Any task can be instantly preempted.

higher priority-work from 0 until the completion time

Of Tij. We now follow the methods developed by

Lehoczky, Sha, and Ding [7] and Lehoczky [8] to de-

termine the necessary and sufficient conditions for Tij

to be schedulable.

Suppose ai is the aperiodic processing at level i

or higher during [0, t], 0 5 t 5 Dij , resulting from

some algorithm. The job rij will finish by Dij, thus

meeting its deadline, if and only if there is a time

t E [Rij, Dij] at which all ai units of aperiodic pro-

cessing and all periodic jobs of priority i or higher

ready before t, including the j jobs of ri are com-

pleted. Let Pi(t) be the periodic ready work in [O,t],

where Pi(t) = CjS: Cj * [maz(O, t - dj)/Tjl + jCi.

The total ready work in [0, t] is then defined by

wi(t) = f%(t) f%(t) + + Pi(t) Pi(t) + + h(t), h(t), (4) (4)

where Zi(t) is the cumulative level-i inactivity in [0, t].
Thus rij will meet its deadline if and only if there ex-

ists t E [Rij , Dij] such that Wi(t) = t or equivalently,

Wi(t)/t = 1. This condition for the feasibility of ai
can be alternatively expressed as

min{Rij 5 t < Dij} {wi(t)/t} I l* (5)

l A4: There is unlimited buffer space for the ape-

riodic tasks.

3 The Slack Stealing Algorithm

3.1 Formulation

If we assume that the aperiodic workload is suffi-

ciently large so that WA(t) > c(t) for any feasible E(t),
then we can increase ai by Ii(t) and the processor

will be continually busy with level i or higher priority

work up to the completion time of Tij. Equation (5)

can now be rewritten as

mini0 5 t 5 Dij} {Wilt)lt.l I l. (6)

To determine the upper envelope on aperiodic pro-

cessing, we focus on the maxjmum amount of process-

ing possible such that all periodic deadlines are met.

Consider, for example, the jth job of ri, or Tij, which

is ready at time l&j = & + (j - 1)Ti and must be

finished by &j + Di = Dij. During [0, Dij] the pro-

cessor may execute tasks at a priority level equal to or

greater than i, tasks at a priority level below i, or may

be idle. Under our fixed-priority system any tasks ex-

ecuted at priority level lower than i are equivalent to

being idle or inactive relative to level i, thus we refer

Given that we want to increase the aperiodic pro-

cessing time as much as possible, we define Aij to be

the largest amount of aperiodic processing possible at

level i or higher during [0, Cij], such that Cij 5 Dij

(Cij refers to the completion time of ‘ii). Thus Aij is

the largest value such that

min{o < t < oij>{(Aj + Pi(t))/t) = 1. (7) - -

A;j is well defined because the periodic task set is as-

sumed to be schedulable and the function being min-

to level-i inactivity as processor time spent on activi- imized is piecewise continuous and decreasing. Aij is

ties with priority lower than i. Since level-i inactivity increased until a minimum of 1 is exactly achieved.

cannot influence the schedulability of any 7i job, we The completion time of rij, or Cij, is the smallest

seek to find the amount of aperiodic work that can be value oft for which equality holds in Equation (7).

112

Aperiodic processing at level i or higher given by

Aij during [O,t] will cause the processor to be con-

stantly busy, but Tij will meet its deadline. We now

need to guarantee that all jobs of ri meet their dead-

line. To ensure the schedulability of Ti, we define

Ai = Aij, Cij-1 5 t < Cij, j > 1, (8)

where Cio = 0. The non-decreasing step function

Ai gives the largest amount of aperiodic processing

in [0, t] at priority level i or higher possible such that

the processor is constantly busy with priority level i or

higher activity but all jobs of Ti meet their deadline.

To illustrate, let us consider a task set with two

tasks, ~1 and 72, with Cl = 1, Tl = 4, D1 = 1, 41 = 0,

and C2 = 3, Tz = 6, D2 = 6, q5z = 0. Note that

the tasks follow a deadline monotonic priority order.

We restrict our attention to an interval of time [0, H],

where H is the hyperperiod of the task set, or the time

at which the distribution of periodic arrivals repeats

itself. The hyperperiod of a periodic task set is equiv-

alent to the least common multiple of the task periods

which is 12 for this example. Figure 1.a shows the pro-

cessor schedule if no aperiodic work is processed. The

non-decreasing functions Al(t) and AZ(t) are shown

in Figure 1.b. These are step functions, with jump

points corresponding to the completion times of the

jobs of Ti, or the Cij’s, and jump heights correspond-

ing to the Aij values computed by Equation (7). Note

that in this example, all jump points for ~1 are known zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a-priori because Clj = Dlj , for all j 2 1. Thus, ev-

ery job of ~1 has zero slack, in the interval of time

between its arrival and completion. On the contrary,

the jobs for 5 have non-zero slack, so their execution

can be delayed by the processing of aperiodic tasks. As

a result, their exact completion times depend on the

amount of higher priority aperiodic processing done

at run-time. Although the exact completion times for

each job of 72 cannot be determined a-priori, their

best- and worst-case values are known. For instance,

job 721 in Figure 1.a will complete no earlier than time

4 and no later than time 6, so its jump point is guar-

anteed to lie somewhere in the time interval [4, 61.

For the particular case in which aperiodics consume

all aperiodic processing time possible, the jump point

for 721 is 6, as shown in Figure 1.b for AZ(t).

We next determine bounds on the aperiodic pro-

cessing at each level for which all deadlines of all pe-

riodic tasks can still be met. Let Li(t) denote the

total amount of aperiodic processing in [0, t] at prior-

ity level i, 1 5 i 5 n. For Tk to meet all deadlines, it

is necessary that

J%(i) J%(i) + + + + Lk(t) Lk(t) < < Ak(t), Ak(t), 15 15 k k 5 5 n. n. (0) (0)

Tl Tl 3 3

4O 4O ' ' * * 3 3 ' ' 5.F2s 5.F2s 7 7 5 5

0 0 10 10 11 11 12 12

r, r,

, , # # / / /_ /_ r., r., /_ /_ /./_ /./_

012345675 012345675 0 0 IO IO 11 11 12 12

(a)
l 3 3 +31

+3 +3

* * I I

AI(~) AI(~)

,,,,I,. ,,,,I,. I I I I I I -I -I
012 012 3 3 4 4 5 5 6 6 7 7 5 5 9 9 IO IO 11 11 12 12

+l +l)
l 2) 2) IA2" IA2"

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 0 0 10 10 11 11

+o, +‘: , +q A%, 9 (, , , 1 I 1 , 1 1
012 012 3 3 4 4 5 5 6 6 7 7 5 5 0 0 10 10 11 11 12 12

(b) (b)

Figure 1: Example 1. Illustrating Slack Stealer opera-

tion: (a) Processor schedule in absence of aperiodics;

(b) Functions used by the Slack Stealer

Let A*(t) = mirql 5 k 5 ,.,I AI(t) and k*(t) be the

index of the highest priority level satisfying &e(t) =

A*(t). Thus &(t) + . . . + Lkt(t)(t) can be no larger

than A*(t). If this sum does assume its maximum

value, then all n inequalities in (9) will hold. Hence,

all periodic tasks at all levels with deadlines no later

than t will meet their deadlines and the processor will

be continuously busy throughout [0, t] executing only

tasks of priority k*(t) or higher. Hence, all periodic

task deadlines before t will be met if and only if

L1(2) +. . . + Lk*(t)(t) 5 A*(t) (10)

Figure 1.b illustrates the function A*(t) for our task

set example. Note that priority level 1 places the tight-

est constraint on aperiodic processing time available

in the interval [0, l), whereas in the interval [l, 12),

priority level 2 places the tightest constraint. There-

fore, k*(t) = 1 , for 0 5 t < 1, and k*(t) = 2 , for

1 5 t < 12.

We next address the question of the priority level

at which the aperiodic tasks can be executed. If

J&(t) + . . . + Lqt)(t) < A*(t), then one can modify

&(t)+. . .+&(t)(t) to L’,(t) = &(t)+...+&*(t)(t),

L’,(t) = . . . = L&*)(l) = 0 and still be feasible. In

other words, one can carry out all aperiodic processing

at the highest priority level without any reduction in

aperiodic capacity. Since elevating the priority level

of aperiodic processing reduces their response times,

it is optimal to service aperiodic tasks at the high-

est priority level, and the total aperiodic processing

time cannot exceed A*(t), t 2 0. It follows for the

case in which WA(t) > c(t) for all feasible schedul-

ing algorithms, that the upper envelope on aperiodic

113

processing time is given by A*(t), t 2 0.
rc

The previous analysis assumed that there was ai-
,L_-_

+3r- --------
ways a sufficiently large amount of aperiodic work to +0, ‘Y---------’

be processed such that aperiodic processing would al- ’ ’ 2 3 4 5 6 ? ’ ’ di ”
ways use ail available slack at ail levels. This is, how- +2,-- +, __--___________-_ A
ever, not the general case. There may often be times 012 012 3 3 4 4 5 5 6 6 7 7 6 6 9 9 10 10 11 11 12 12

at which aperiodic processing could be done but none
+,____--_-t2_r--

____~U___________-________. d(A*“’

is ready. We must modify our analysis to accommo- *o, : : , , , , , , ,

date this case and define the upper envelope. Define
012 012 34 34 5 5 6+7 6+7 6 6

, ,
9 10 10

,; ,; ,2p&=, ,2p&=, 1) 1)

C C

t~5.5 t~5.5

A(t) = cumulative aperiodic processing consumed

at any priority level during [0, t]

Zi(t) = level-i inactivity during [O,t], for 1 5 i 2 71

and t 2 0.

Here, level-i inactivity refers to the cumulative amount

of time spent processing periodic tasks of priority i+ 1

or lower or any time the processor is idle during [0, t].

Suppose we now start at time s rather than at 0

and wish to determine the maximum amount, of aperi-

odic processing possible during [s, t], t 2 s. The anal-

ysis is the same as before. For example, Aij gives the

largest possible amount of aperiodic processing at pri-

ority level i or higher that can be carried out in [0, t]
and still meet the deadline of rij. However, during

[0, s], A(s) units of processing have already been used

for aperiodic processing and Ii(s) units of level-i inac-

tive time have taken place, time which was available

for level i aperiodic processing but was not used for

that purpose. Thus the amount of time availsMe for

additional aperiodic processing at time t, Aij must be

reduced by A(S) + Z;(S). G eneraiizing Equation (8) to

an arbitrary time origin s, we define for t 2 s,

Ai(s,t) = Aij-A(s)-Zi(s), Cij_1 5 t < Cij. (11)

This quantity gives the maximum amount, of aperi-

odic processing time possible during [s, t] at level i or

higher with ail 7i deadlines still being met. The anal-

ysis is now the same as the earlier analysis with s = 0.

Specifically, define

A*(s,t) = mini1 5 i 5 n} A($, t) (12)

and Ap~~)(s, t) = A*(s, t) where k*(t) is the high-

est priority such task. As before, the total aperi-

odic processing during [s, t] cannot exceed A*(s, t) and

ail should be executed at the highest priority level.

The function Apct)(s, t) thus gives the upper envelope

on aperiodic processing over any interval [s, t] during

which the aperiodic workload does not vanish.

Referring back to our previous example, suppose

that no aperiodic work was ready during [0, 5.51 and

an aperiodic task, rap, requiring 2 units of computa-

tion arrives at 5.5. We now use 5.5 as the new time

Figure 2: Example 1. Illustrating Slack Stealer oper-

ation with a change in the time origin

origin and note that A(5.5) = 0, Zl(5.5) = 3.5 (corre-

sponding to the level-l inactivity during 11, 41 and [5,

5.51) and Zx(5.5) = 0.5 (corresponding to the level-2

inactivity during [5, 5.51). The level-i inactivity values

can be visualized in Figure 1.a. Since we have changed

the time origin to 5.5, the curves from Figure 1.b must

be adjusted for t 2 5.5, to reflect the fact that some

aperiodic processing time has been lost due to inac-

tivity. Thus, the functions Al(5.5, t), Az(5.5, t), and

A”(5.5,t) are obtained according to Equations (11)

and (12). These are depicted in Figure 2. Given these

functlions, the slack stealer finds 2.5 units of processing

capacity at time 5.5 and immediately allocates 2 units

to service rap. Consequently, rap finishes at time 7.5

and leaves 0.50 units of aperiodic processing available

for any aperiodic tasks that may arrive during [5.5,

7.51. if no other aperiodic tasks arrive, the processor

will spend [7.5, 81 on 7-2, [8, 91 on ~1, [9, 11.51 on rz

and then idle during [11.5, 12).

We next define the slack stealing algorithm, an ai-

gorit,hm which achieves the maximum possible amount

of aperiodic service time subject to the constraint of

meeting all the periodic deadlines. Later we will prove

its optimaiity property using the upper envelope de-

rived in this section.

3.2 Algorithm Description

The slack stealing algorithm uses the functions

A;(t) for each task Ti, 1 5 i 5 n, in determining the

capacity that can be allocated to aperiodic service.

Because the arrival pattern of the periodic workload

repeats itself every H time units, or the task set hyper-

period, it is sufficient to compute ail Ai functions

for 0 5 t < H. Given this, we compute the jump

heights associated with each job Tij, of each task ri,

according to Equation (7), for 0 5 t < H. These jump

heights are then stored as pairs of points (i, j), where i

is the task priority, 1 5 i 5 n and i is the job number

114 114

for ri, 1 5 j 5 H/x. This two-dimensional array of

values is computed before run-time.

At run-time, we distinguish n+2 different activities.

Activity 0 refers to aperiodic task processing, activi-

ties l,..., n refer to periodic task processing at the

corresponding priority level, and activity n + 1 refers

to the processor being idle. We also establish accu-

mulators which are initialized to 0 at time 0 and reset

at the beginning of each hyperperiod. At any time, A

gives the total aperiodic processing and Zi gives the

level-i inactivity, 1 5 i 5 n.

Suppose the processor begins activity j,O 5 j 5

n + 1 at time tl and finishes that activity at time

t2 2 tl. Then,

{

0, add 12 - 21 to A,

ifj= 1, do nothing.

21jLn, add t2 - t1 to 11,. ,Zj-1,

Any time there is aperiodic work ready to be done,

say at time s, we must determine the slack available

for aperiodic processing by computing

A*(s, 1) = mini1 5 i 5 n)(Ai(s, t)-Ii(s))-A. (13)

Suppose W is the amount of aperiodic work to be

done. If A*(s, t) > W, then the W units of aperi-

odic activity can be processed immediately, i.e., in

[s, s+W], at the highest priority level. If A*(s, t) < W,

then aperiodic work can be done during [s, s+A*(s, t)]

at the highest priority level, but no further work can

be done until additional slack becomes available. Note

that more aperiodic processing capacity can become

available only when a periodic job is completed, be-

cause these are the only points in time in which the

Ai(s, t) functions step up to their next values. Thus,

the evaluation of A*(s, t) should be done only when

aperiodic work arrives to an empty aperiodic queue

or when there is aperiodic work ready and a periodic

task completes.

3.3 Optimality of the Slack Stealer

In this section, we combine the formulations given

in sections 2 and 3.1 and the algorithm given in section

3.2 to provide a proof of optimality of the slack stealer.

The result is summarized in the following theorem:

Theorem 1 For uny periodic tusk set scl~edulcd by u

given fixed priority ulgorithm und uny uperiodic urrivul

stream processed in FIFO order, the slack steuling ul-

goritlrm minimizes the response time of every uperi-

odic tusk among ull scheduling ulgorithms u~hich meet

all periodic tusk deudlines.

Proof: For the given periodic task set and ape-

riodic task arrival process {Jk, E 1 l), the slack

stealing algorithm will create a sequence of aperiodic

busy intervals {Bk}rcl with BL = [lk, uk), lk < Uk,

Uk < lk+l. The Bk denotes intervals of time dur-

ing which there is aperiodic work available for pre

cessing. In the notation of section 2, 11 = (~1, and

WA(t) = E*(t), for uk 5 t < lk+l, k 1 1. Now COP

sider any other scheduling algorithm X which uses

the same fixed priority assignment for the period&

and meets all such deadlines. Algorithm X will cre-

ate a cumulative aperiodic execution function E(t).
We wish to show that E*(t) 2 c(t), t 2 0, from

which, using the argument in section 2, we can con-

clude that all aperiodic response times are minimized.

Clearly, there is no aperiodic activity until (~1, the

time of the first arrival, so E*(t) = E(t) = 0, for

t E [0, al). During [cY~, ul), E*(t) = A*(O, t), because

the slack stealer achieves the upper envelope A*(O, t),

and throughout [LYE, ~11, E*(t) = A*(O, t) 2 E(t) since

A*(O, t) gives an upper bound on cumulative aperi-

odic execution. There is no aperiodic work for the

slack stealer during [~1,12), thus c*(t) 2 c(t) during

this int,erval. Algorithm K may also finish all ape-

riodic work in which case E*(/z) = ~(12) or it may

not, in which case ~*(12) > ~(12). For t E [Iz,ua),
the slack stealer achieves the upper envelope of cu-

mulative aperiodic execution, A*(12, t), and there is

aperiodic work always available during this interval.

Thus the increments in aperiodic execution satisfy

E*(t) -I* = A*(12, t) 1 E(t) - ~(12). Thus recalling

that E”(l2) 2 .5(12), we have c*(t) > s(t), t E [12,112).
Thus E*(t) > c(t), for 0 2 t 5 2~2. A simple induction

argument, over the busy intervals { Bk}rZ1 now proves

that the response time of every aperiodic task is min-

imized provided tasks are processed in FIFO order.

4 Extensions of the Algorithm

4.1 Reclaiming Unused Periodic Execu-

tion Time

Previous work suggests that the actual execution

time of tasks may be very different from their esti-

mated worst-case execution times [lo, 111. As a result,

a pre-allocation of processor utilization for periodic

tasks based on their worst-case execution times may

result in an undesirable waste of processing potential.

Some researchers have taken advantage of this pre-

allocat,ed but unused execution time to improve av-

erage system performance [12] or to redundantly ex-

ecute the tasks for transient fault detection [13]. In

115

spite of its potential advantages, aperiodic server al-

gorithms such as polling, the deferrable server, and the

sporadic server, do not provide the ability to reclaim

unused periodic execution time. However, the slack

stealing algorithm can be easily extended to reclaim

this time.

If the execution time of Ti is stochastic with Ci

being an upper bound, then the actual execution time

of ri may be smaller than Ci. If rij finishes early, the

unused time can be used for aperiodic processing. This

can be done by adding the unused execution time, call

it Uij, to Ai(t > Cij. A simpler way to implement

this is to subtract Uij from L?k, i 5 k 5 n, which will

make the time available to tasks at or below priority

level i.

4.2 Servicing Hard Deadline Aperiodics

The problem of scheduling hard deadline aperiodic

tasks where the periodic tasks are scheduled using the

Earliest Deadline algorithm was studied by Ghetto

and Chetto [14]. A similar approach can be used to

solve this scheduling problem for the case in which

the periodic tasks are scheduled according t,o a fixed

priority algorithm.

The quantity A*(s, t) gives the total amount of pe-

riodic processing that can occur in an interval [s, t].

If one were faced with an aperiodic task arriving at, s

having a processing requirement of C and a hard dead-

line of D, one could check to see if C < A(s, s + D). If

so, that aperiodic task’s deadline could be guaranteed.

This is the basis for an approach to guaranteeing hard-

deadline aperiodic tasks. This topic is the subject of

a subsequent paper.

4.3 Managing Aperiodic Capacity: The

Allocation Problem

The slack stealing algorithm maximizes the aperi-

odic processing capacity available during [0, t], t 2 0.
This, coupled with the fact that all aperiodic ser-

vice occurs at the highest priority level, is a first

step toward optimality. We must, however, consider

how the aperiodic processing capacity should be al-

located among the pending aperiodic tasks to mini-

mize their response times on average. If the aperi-

odic tasks have deterministic processing times which

are known at arrival, the solution is straightforward.

The aperiodic tasks should be processed according to

the SRPT (shortest-remaining-processing-time) algo-

rithm. Thus, the aperiodic task with the shortest

remaining processing time should be the one utiliz-

ing the aperiodic service capacity if any is available.

The optimality of this service policy for minimizing re-

sponse times is well-known (see, for example Schrage

[15]). Because the processor must process both ape-

riodic and periodic tasks, rather than having a single

task type, Schrage’s argument must be modified. Nev-

ertheless, the interchange argument presented in [15]

still applies, and the proof requires only minor changes

in his argument.

It is important to point out that the SRPT would

reduce the uveruge aperiodic response times; however,

if the slack stealer were to process aperiodic tasks

using SRPT instead of FIFO ordering, it would no

longer possess the strong optimality property of mini-

mizing every aperiodic response time. Thus an aperi-

odic scheduling policy different from the slack stealer

using SRPT will have a longer average aperiodic re-

sponse time, but the response times of some of the

aperiodic tasks may be shorter.

4.4 Finding An Optimal Fixed-Priority

Assignment for Joint Scheduling

The slack stealer maximizes the time available for

aperiodic processing during any interval of time among

all algorithms that use fixed priority for the periodic

tasks and meet all periodic deadlines. However, this

optimality property is relative to a given fixed-priority

order for the periodic tasks. To see that changes in the

fixed priority order can alter the aperiodic response

times, consider the following example:

Example 2

Consider two periodic tasks 7, and 76 with the fol-

lowing timing requirements: C, = cb = 1, T, = 14,

Tb = 10, D, = 14, Db = 10, I,, = Ib = 0. Assume

these tasks are not in rate monotonic order, so that

rU = 71 and 71 = 72. Suppose an aperiodic task, rap,

arrives at time 14 and requires 13 units of processing.

As illustrated in Figure 3.a, this task can be processed

during [14, 271, thus completing at 27 for a response

time of 13. ~1 will be processed during [27, 281, then

[‘L8, 291, while ~1 will be processed during [29, 301 and

then [30, 311. Consequently, all periodic deadlines are

met and the response time is 13.

If the priority order were reversed, so that it con-

forms to the rate monotonic (RM) algorithm, then

TV = ~2 and rb = 71, As illustrated in Figure 3.b, the

same aperiodic task would be processed during [14,26]

and [28, 291 for a response time of 15, which is longer

than the 13 obtained with the other fixed-priority as-

signment. ~1 would be processed in [26, 271 then [30,

311, while ~1 would be processed in [27, 281, then [29,

LIE wt. Biho workload on the aperiodic response times. The esti-

(1)

0 2 4 4 4 10 12 14 14 14 20 22 7.4 24 24 20 22

@)
0 2 4 4 4 IO 12 14 14 14 20 22 24 24 24 30 22

Figure 3: Example 2. Illustrating effect of Fixed-

Priority Assignment on Aperiodic Response-Times:

mation of periodic interference is interesting, because

it gives insight into the cost to aperiodic responsive-

ness incurred by servicing the periodic and aperiodic

workloads on a shared processor. Consequently, we

also wish to identify the operating conditions in which

the performance of the slack stealing algorithm ap-

proaches and/or deviates significantly from the lower

bound derived from the queueing model.

(a) Non-RM order; (b) RM order
5.1 Variables Affecting Aperiodic Re- - -

sponse Times

301. The aperiodic task cannot be processed beyond

26 or else 72 would miss its deadline at 28.

In spite of the lack of global optimality, we rec-

ommend that the periodic tasks be given a deadline

monotonic order.

There are four important parameters which play a

major role in determining the aperiodic task response

times and the accuracy of simple queueing formulas

for approximating those response times. The parame-

ters are: (1) the periodic load, expressed as a utilizai

tion factor, U,. obtained by summing the utilizations

5 Performance Evaluation

It is important to compare the performance of the

slack stealing algorithm4 against that of current aperi-

odic scheduling policies, such as background, polling,

and the recently proposed server algorithms. To this

effect, we would like to answer the following questions:

Whaf are the operating conditions for a real-time sys-

tem under which the slack stealer significantly outper-

forms state-of-the-art server algorithms? How much

do their performances differ under such conditions?

The answers to these questions can provide valuable

insights for assessing the potential value of implement-

ing the slack stealing algorithm as an alternative to

current server algorithms.

Another issue of interest is to predict the average

response times of aperiodic tasks which are serviced

using the slack stealing algorithm. We will show that

a very simple approximation, namely using a queue-

ing model which ignores all service delays due to the

periodic tasks is very accurate over a wide range of

operating conditions. Surprisingly, it is sufficient to

compute the aperiodic response times that would be

attained if the aperiodic tasks were to have sole ac-

cess to the processor. Clearly, the response times pre-

dicted by such a queueing model could be very opti-

mistic, especially in situations of high periodic loads.

However, this model provides the absolute lowest ape-

riodic response times attainable, thus constituting a

lower bound. This lower bound is useful in estimat-

ing the degree of interference exerted by the periodic

‘Henceforth, the terms slack stealing algorithm and optimal

algorithm are used interchangeably.

, r.

of the individual periodic tasks, (2) the breakdown

utilization, Uen, of the periodic task set, a measure

of the maximum utilization attainable for the periodic

task set without violating any of the tasks’ timing con-

straints, (3) the utilization of the aperiodic tasks, Uap,

and (4) the mean computation requirement of the ape-

riodic tasks, l/p.

To understand the role of these four parameters,

consider first the aperiodic load in isolation. Stan-

dard results from queueing theory indicate that job

response times will increase with the traffic intensity

parameter, popcr = Uopr and also with the mean com-

putation requirement of the aperiodic jobs. For exam-

ple, in an M/M/l queueing system, aperiodic response

times are given by {p(1 -paper)}-‘. These effects will

carry over to a processor which handles both aperiodic

tasks and hard deadline periodic tasks.

Over a long time interval, the processor must devote

a fraction of time, U,, , to servicing periodic tasks. The

crucial issue is whether there is usually enough slack

for the aperiodic8 to be serviced immediately and to

completion or whether the aperiodics will be forced to

wait from some periodic8 to be processed so they can

meet their deadlines. The longer the aperiodic mean

service times, the more the periodic8 will be forced to

interrupt aperiodic processing thus increasing their re-

sponse times. We also need a measure of the amount

of slack that is typically available for aperiodic use.

The larger the value of UP, the smaller the slack that

is available. Moreover, the difference between UP and

UBD is an additional measure of the slack that is typ

ically available. As UP approaches UBD there will be

increasingly long periods of time in which little if any

slack is available which will, in turn, increase aperiodic

117

response times. Hence, we should find that aperiodic

response times are an increasing function of l/p and

U, and a decreasing function of UBD - Up, the prox-

imity of the periodic load to the task set’s breakdown

utilization.

In order to model the effect of changes in the mean

computation requirement of the aperiodic tasks, we

define a parameter called the demand-capacity ratio.

The demand-capacity ratio is the ratio of the mean

aperiodic execution time to the maximum capacity or

execution time of a server task residing at the highest

Load Task Set SS Size Exec. Times

40% TLBD 26.49 1.32 6.62

THBD 33.00 1.65 8.25

70% TLBD 5.10 0.26 1.28

THBD 16.50 0.83 4.13

Table 1: Mean Aperiodic Execution Times for

Demand-Capacity Ratios of 5% and 25%

priority level.

5.2 Simulation Studies

Simulations were conducted to compare the aver-

age response times of four aperiodic scheduling poli-

cies, namely, background, polling, sporadic server, and

the slack stealing or the optimal algorithm. The de-

ferrable server was omitted because its performance is

comparable to that of a sporadic server. This sect,ion

outlines the basic simulation framework and proceeds

to present in-depth simulation studies.

Three periodic task sets were considered. Two

were randomly generated and one is an application

task set obtained from an Inertial Navigation System

(INS) [16]. The objective in selecting these task sets

is twofold: first, to give some insight into the scope

of performance variations that may be attributed to

significant differences in the breakdown utilizations of

the periodic task sets; and second, to explore the po-

tential performance gains that may be attained in a

practical system by using the optimal algorithm.

In all simulations, aperiodic tasks were queued and

serviced in FIFO order. The aperiodic workload was

modeled by an exponential distribution of execution

times and Poisson arrival times. An M/M/l queue-

ing model can be used to compute the ideal response

time bound for such an aperiodic workload, using the

M/M/l formula previously stated. Without loss of

generality, we chose mean aperiodic execution times

to be a fraction of the maximum execution time for a

sporadic server task with a period equal to the small-

est period of the periodic task set. The periods for the

polling tasks were also fixed in this manner.

5.2.1 Evaluation of Random Task Sets

Liu aud Layland least upper schedulability bound for

a set of 10 tasks, given by 10(21/‘o - 1) R 71.77% [7].

This task set is identified as TLBD, because of its low

breakdown utilization. The other task set had a high

breakdown utilization of x 100% and is identified as

THBD.

For a given periodic task set, the computation re-

quirements were scaled to create two periodic utiliza-

tious, 40% aud 70%. For the case of a 40% periodic

load, the aperiodic load was varied from 57~55%. For

a 70% periodic load the aperiodic load was varied from

5%-25%. Note that the maximum total load in both

cases w‘as 95%. The demand-capacity ratios consid-

ered were 5’% and 25’%. The sporadic server (SS) sizes

and the aperiodic mean execution times correspond-

iug to such demand-capacity ratios are summarized in

Table 1. The size of a polling task is equal to that of

a corresponding sporadic server.

Figure 4 presents the aperiodic response times for

the low breakdown utilization task set, TLBD with a

periodic load of 40%. In general, a significant perfor-

mance degradation is observed as the aperiodic load is

iucreasetl from 5’?&55’%. Note that the magnitude of

the performance degradation does not solely depend

on a particular aperiodic load but also on the demand-

capacity ratio. Higher demand-capacity ratios imply

that aperiodic jobs arrive less frequently but are larger

on average, which increases task waiting times and the

probability of preemption by periodic tasks. Figure

4.b shows that at high aperiodic loads and relatively

large job sizes, all aperiodic service algorithms, includ-

ing the optimal, eventually have a difficult time ac-

commodating aperiodic requests responsively. Under

these conditions, aperiodic response times are domi-

nated by the high accumulation of preemption delays

due to the periodic tasks. On the contrary, for rel-

Sets of 10 periodic tasks were randomly generated, atively small aperiodic job sizes their response times

with periods ranging from 55 to 2,310 and a com- are prirnarily dominated by the ability of the aperi-

mon hyperperiod of 2,310, until one high and one low odic scheduling algorithm to efficiently allocate time

breakdown utilization set was found. One set had a on the processor. This observation is supported by

breakdown utilization of 77%, which is close to the Figure 4.a which shows a noticeable performance dif-

cl+. ,
0.0 0.1 0.2 0.3 0.4 as 0.6

@I
Aperlodlc Loud

Figure 4: Response-Times for TLBD at 40’% and

demand-capacity ratios of: (a) 5% ;(b) 25%

ference among the algorithms over the entire range of

aperiodic loads.

The optimal algorithm outperforms all of the other

aperiodic scheduling algorithms studied. Further-

more, background scheduling has the woist perfor-

mance, and the performance of the sporadic server

is the closest to the optimal. With a 5% demand-

capacity ratio, the performance of the sporadic server

is approximately optimal for aperiodic loads up to

25%, or a combined load of 65%. At higher aperiodic

loads the performance of the sporadic server tends to

degrade to that of a polling task, because there is a

high probability that there is always aperiodic work

pending upon the arrival of the server task. As a re-

sult, the differences in consumption and replenishment

of execution time for a polling and sporadic server

become indistinguishable. Increasing the demand-

capacity ratio to 25% causes the sporadic server to

deviate from the optimal even at small aperiodic loads.

However, the magnitude of their performance gap is

not large because, as stated previously, this is a very

stressful condition for all aperiodic service algorithms.

A very interesting result is that the performance of

the optimal algorithm is very close to the ideal M/M/l

bound for an appreciable region of operating condi-

tions . Hence, in this region, the optimal algorithm

is capable of “masking out” the presence of periodic

tasks so efficiently that the responsiveness of aperi-

odic tasks is almost equal to that attainable on a ded-

icated processor. In Figure 4.a the performance of

the optimal algorithm is within a 10% envelope above

the M/M/l bound for combined loads up to 85% and

up to 75% in Figure 4.b. On the other hand, the

performance of the optimal algorithm deviates signif-

icantly from the M/M/l bound when the aperiodic

load is high and/or the job sizes are relatively large.

Deviations are due exclusively to the preemption de-

lays caused by the periodic tasks, as any delays due

to the aperiodic queue length are accounted for in the

queueing model. This highlights our previous observa-

tion that preemption delays dominate response times

when aperiodic job sizes are large. In addition, we

observe that if the aperiodic load is sufficiently high,

the response times are affected by preemption delays

even if the jobs are small (see Figure 4.a at a 55%

aperiodic load). The cause is a large incidence of spill-

avers, or cases in which the server execution time is

not long enough to empty the aperiodic queue before

the next preemption by periodics [4]. In conclusion,

results indicate that TLBD has a particular operating

region under which the M/M/l queueing model can

be used to predict average aperiodic response times

within a reasonably small error margin. Furthermore,

the optimal algorithm guarantees that this operating

region, delimited by a particular aperiodic load and

mean aperiodic job size, is maximized.

Now consider a task set with a high breakdown uti-

lization, such as THBD . Simulation results for THBD

with a periodic load of 40% are presented in Figure 5.

The general trends observed are the same as those de-

scribed for TLBD in Figure 4. However, unlike T,Q~D,

the performance gains from using server algorithms

over background are more significant. Task sets with

a high breakdown utilization tend to have larger aperi-

odic server execution times as compared to those with

a low breakdown utilization, as illustrated in Table

1. A larger server execution time reduces the prob-

ability of spill-overs, so the aperiodic response times

are shorter on average, yielding a more dramatic per-

formance advantage over background. By the same

token, the performance differences among the polling

and sporadic server algorithms in Figure 5 are more

noticeable for the same demand-capacity ratios de-

picted in Figure 4.

An interesting observation is that for a fixed

demand-capacity ratio and a given aperiodic load,

the mean aperiodic execution times for THBD are

119

04.. _. . . - *. , . ,
0.0 0.1 0.2 0.3 0.4 0.5 0.6

@)
Aperlodk Loud

Figure 5: Response-Times for THBD at 40% and

demand-capacity ratios of: (a) 5% ;(b) 25%

larger than those for TLBD. Thus, one woulcl ex-

pect that larger job sizes would tend to mask out per-

formance differences due to a larger server execution

time. However, noticeable performance differences for

the two task sets are observed, nonetheless. These re-

sults are further evidence of the significant impact of

breakdown utilization on the performance of different

scheduling algorithms in allocating time for aperiodic

service.

The high breakdown utilization of THBD guaran-

tees that there is no utilization loss when the server

task is added to the task set; the total utilization of the

periodic task set and the server task is lOO%, regard-

less of the periodic load. Given this, the performance

of the sporadic server algorithm promises to be ideal

in that none of the aperiodic processing is relegated

to background. Hence, the performance of the spo-

radic server lies close to the optimal for an appreciable

range of aperiodic loads (e.g., up to 35% in Figure 5.a).

Yet, the optimal algorithm outperforms the sporadic

server as the aperiodic load is increased, even under

these ideal conditions. This phenomenon illustrates a

major shortcoming of current server algorithms.

The underlying philosophy behind current server

algorithms is to transform processor idle times (which

@)
Aperiodic Lomd

Figure 6: Response-Times for TLBD at 70% and

demand-capacity ratios of: (a) 5% ;(b) 25%

would otherwise appear as background service times),

into a more favorable distribution of service oppor-

tunities for aperiodics. Background time is carefully

transformed into a high priority server task with peri-

odic timing attributes such that schedulability is not

violated. As a result, the distribution of service oppor-

tunities provided by such server tasks tends to become

periodic m the aperiodic load increases. Evidence of

this is the prior observation that the performance of

the sporadic server and that of a polling server are in-

distinguishable at sufficiently high aperiodic loads, as

depicted in Figure 4.b.

The optimal algorithm circumvents this shortcom-

iug by allocating time for aperiodic service in the most

aggressive way possible subject only to schedulability

constraints. Hence, the artificial timing constraints

imposed by a periodic server abstraction are elimi-

nated. Moreover, the distribution of service oppor-

tunities is optimal, so aperiodic response times are

guaranteed to degrade as gracefully as possible.

Consider an increase in the periodic load. Figure 6

presents the aperiodic response times for TLBD with

a periodic load of 70%. The performance curves for

background are not shown because they have degraded

an order of magnitude relative to all other algorithms.

Recall that the aperiodic load varies from 5% to 25%.

120

(a)
Aperiudic Loud

Figure 7: Response-Times for THBD at! 70% and

demand-capacity ratios of: (a) 5% ;(b) 25%

There are two outstanding differences with respect to

the results presented for a 40% periodic load in Figure

4. First, note the dramatic performance gains of the

optimal algorithm as compared to all other algorithms.

Although the sporadic server continues to outperform

polling and background, its performance deviates from

the optimal even at low aperiodic loads. This perfor-

mance gap is primarily caused by the small server size

(5.10) which is a function of the low breakdown ut,i-

lization. The performance gains of the optimal algo-

rithm, on the other hand, illustrate the superiority of

allocating time for the aperiodics on demand, without

the constraints of a periodic server task. Second, we

observe that the optimal curve departs from the ideal

M/M/l bound at lower aperiodic loads than those ob-

served for the 40% load. Evidently, at a 70% periodic

load, the preemption delays experienced by the aperi-

odics have a significant impact on their response times.

Increasing the utilization of THBD to 70% h‘as a

different effect on aperiodic response times, as shown

in Figure 7. Note the difference in the performance

gaps between the sporadic server and the optimal for

a 5% demand-capacity ratio, shown in Figures 6.a and

7.a. Because of its high breakdown utilization, THBD

has a much larger server execution time than TLBD

(16.50 vs. 5.10), which allows the sporadic server to

Task Period Exec. 1 Description
r

r1 2.5 1.18 Update Ship Attitude

FZ 40 4.28 Update Displacement

Ts 62.5 10.28 Send Attitude Message

74 1000

Tc, 1000

7C 1250

20.28 Send Navigation Message

100.28 Update Status on SFreen

25 Undate Shin Position

Table 2: Timing Requirements for the Inertial Navi-

gation System

maiutain near optimal performance for aperiodic loads

below 15% and relatively small job sizes. In addition,

it is observed that the performance of the optimal al-

gorithm is remarkably close to the M/M/l bound for

the entire range of aperiodic loads. These results sug-

gest that aperiodic tasks can experience an ideal level

of responsiveness even when sharing the processor, as

long as the periodic task set has a high breakdown

utilization and the aperiodic execution times are not

very large.

5.2.2 Evaluation of the INS Task Set

The INS t,ask set consists of 6 periodic tasks as de-

scribed in Table 2. It has a periodic load of m 88%,

a hyperperiod of 5,000 and a breakdown utilization of

99.4%. The sporadic server size is 0.28, yielding mean

aperiodic execution times of 0.028 and 0.069 for de-

mand capacity ratios of 25% and 50%, respectively.

The aperiodic load was varied from l%lO%, for a

maximum combined load of 98%. Simulation results

are shown in Figure 8.

Once again, the performance of the sporadic server

approaches the optimal at low aperiodic loads and

small aperiodic execution times. However, the spo-

radic server deviates from the optimal at a very low

aperiodic load (less than 3% in Figure 8.a), which reaf-

firms the higher susceptibility of the sporadic server to

the periodic load relative to the optimal algorithm. In

fact, the optimal algorithm is capable of maintaining

aperiodic response times equal to those of the M/M/l

bound for the entire range of aperiodic loads and both

demand-capacity ratios shown in Figure 8.

The performance results for the INS task set con-

firm that a periodic workload with a high breakdown

utilization is very favorable to aperiodic responsive-

ness, as concluded in the random task set study. A

surprising result is that the optimal algorithm’s per-

formance is essentially equal to that of an M/M/l

121 121

0.02 0.05 0.07 cl.cm

(a)
Ayeriodic Load

0.w 0.07 o.oe

@)
Ayeriodic Load

Figure 8: Response-Times for the INS Task Set

demand-capacity ratios of: (a) 25% ;(b) 50%

and

queue with the periodic workload ignored, even when

the periodic load is as high as 88%. It seems even

more surprising that such a performance is maintained

for all reasonable aperiodic loading levels, even for a

moderate demand-capacity ratio of 50%. This is a sig-

nificant result because it shows a promising direction

for finding some solutions to the analytical prediction

of aperiodic response times, which is an open research

issue.

5.3 Performance Summary

Simulation data shows that all aperiodic scheduling

algorithms are sensitive to the breakdown utilization

of the periodic task set. A low breakdown utiliza-

tion suggests that the schedulability constraints of the

task set make it inherently more difficult to steal large

blocks of time for aperiodic service relative to a task

set with a high breakdown utilization.

The sporadic server can attain near optimal per-

formance when both the periodic and aperiodic loads

are relatively low. In contrast, neither background

nor polling approach optimal performance under any

of the circumstances considered.

The performance of the sporadic server degrades

significantly when the periodic load is increased, even

122

if the periodic task set has a high breakdown utiliza-

tion. This performance degradation is due to the rapid

increase in the incidence of spill-overs as the server ex-

ecution time is decreased.

The optimal algorithm, on the other hand, is much

less sensitive to the periodic load than any other al-

gorithm. Its main performance degradations are due

to increases in aperiodic load. Even then, its perfor-

mance degrades more slowly than the other algorithms

because it guarantees that the distribution of service

opportunities for aperiodics is optimal.

The largest performance gains of the optimal al-

gorithm occur at high periodic loads, with aperiodic

loads reaching their upper limit as imposed by the

total resource utilization. On the contrary, the most

strenuous condition for the optimal algorithm, as well

as for all the algorithms, is a high aperiodic load su-

perimposed on a relatively low periodic load. In ad-

dition, the aperiodic response times observed for all

algorithms was increased by an increase in aperiodic

execution times.

The performance of the optimal algorithm ap-

proaches the ideal M/M/l bound within a 10% error

margin for a relatively large range of total loads. In

our simulation studies, performance deviations from

M/M/l occurred at a minimum total load of 65% in

Figure 4.b and a maximum total load of 98% in Figure

8. In most cases, optimal performance tends to deviate

significantly from the ideal when the aperiodic load is

high relative to the periodic load. Under these con-

ditions, preemption delays due to the periodic tasks

tend to dominate the aperiodic response times. Since

this situation is not likely to occur at high periodic

loads, the performance of the optimal algorithm re-

mains close to the M/M/l bound for a wide range of

operating conditions.

6 Implement at ion Issues

An implementation of the slack stealing algorithm

requires one level-i inactivity counter per priority level

(Xi), one counter for the cumulative aperiodic pro-

cessing time (A), one completion status flag per task,

where the status can be ucliue, if the task has a pend-

ing job, or inuctive, if it has no pending job, and a two-

dimensional array of Ai values, as described in sec-

tion 3.2. These requirements give a total of: m level-i

inactivity counters, where 1 5 i 5 m and m 5 n, (n

is the number of periodic tasks), 1 counter for A, n

task completion status flags, and a table of size z x n,

where x = 7rWX{X~,X~,..., x,} and 2i is the number

of jobs of 7; in a hyperperiod. Note that z = x1, if the

tasks are in deadline monotonic order. Clearly, the

largest implementation overhead of the slack stealer

is this table, which could be very large for task sets

with long hyperperiods. To reduce this overhead, we

have developed an approximate algorithm which pro-

vides near optimal performance and requires that only

n values be stored for the table. This algorithm is the

topic of a subsequent paper.

7 Summary

This paper focuses on the problem of jointly

scheduling hard deadline periodic tasks and soft ape-

riodic tasks. The periodic tasks are assumed to be

scheduled according to some fixed priority assignment

scheme and the aperiodic tasks are allowed to be ser-

viced any time, subject to the condition that all pe-

riodic deadlines be met. We develop a new aperiodic

scheduling algorithm called the sluck stealer, which

is proved to be optimal in the sense that it guaran-

tees aperiodic response times are minimized over all

aperiodic service methods. We conducted simulation

studies to evaluate the potential performance gains of

the slack stealer over conventional aperiodic service

methods such as background, polling, and the spo-

radic server. Results indicate that in some circum-

stances, the sporadic server can attain near optimal

performance while in other circumstances all conven-

tional aperiodic service methods are significantly out-

performed by the slack stealer. Moreover, it is shown

that the aperiodic response times that the slack stealer

yields are very close to those predicted by a queueing

model, under a wide range of conditions. In addition

to its performance advantages, the slack stealer can

be extended to service hard deadline aperiodic tasks

and to reclaim processing time unused by the periodic

tasks when they require less than their worst-case ex-

ecution times. Although the implementation require-

ments for the slack stealer can be high in some cases,

it provides the basis for approximate algorithms which

can be implemented efficiently.

References

[l] C.L Liu and J.W. Layland. Scheduling Algorithms

for Multiprogramming in a Hard-Real-Time Environ-

ment. JACM, 20(1):46-61, 1973.

[2] S. Ramos-Thuel and J.K. Strosnider. The Transient

Server Approach to Scheduling Time-Critical Recov-

ery Operations. In RTSS, pages 286-295, 1991.

PI

[41

[51

PI

PI

PI

PI

PI

WI

WI

WI

P41

I151

WI

B. Sprunt, L. Sha and J.P. Lehoczky. Aperiodic task

scheduling for hard real-time systems. Journal of

Real-Time Systems, 1:27-60, 1989.

B. Sprunt. Aperiodic Task Scheduling for Real- Time

&stems. PhD thesis, Carnegie Mellon Univ., 1990.

J.K. Strosnider. Highly Responsive Real-Time Token

Rings. PhD thesis, Carnegie Mellon Univ., 1988.

J.P. Hayes. Computer Architecture and Organization,

Chapter 6. McGraw-Hill, 1988.

J.P. Lehoczky, L. Sha and Y. Ding. The Rate-

Monotonic Scheduling Algorithm: Exact Character-

ization and Average Case Behavior. In RTSS, pages

166-171, 1989.

J.P. Lehoczky. Fixed Priority Scheduling of Periodic

Task Sets with Arbitrary Deadlines. In RTSS, pages

201-209, 1990.

J.Y.-T. Leung and J. Whitehead. On the Complex-

ity of Fixed-Priority Scheduling of Periodic Real-Time

T;lsks. Performance Evaluution, 2:237-250, 1982.

M. Woodbury. Analysis of the Execution Time of

Real-Time Tasks. In RTSS, pages 89-96, 1986.

M.H. Woodbury and K.G. Shin. Evaluation of the

Probability of Dynamic Failure and Processor Utiliza-

tion for Real-Time Systems. In RTSS, 1988.

C. Shen, K. Ramamritham and J. Stankovic. Re-

source Rechaiming in Real-Time. In RTSS, pages 41-

50, 1999.

H. Kopetz, H. Kantz, G. Grunsteidl, P. Puschner and

J. R&singer. Tolerating Transient Faults in MARS.

In FTCS, pages 466-473, 1990.

H. Ghetto and M. Chetto. Some Results of the Ear-

liest Deadline Scheduling Algorithm. IEEE Transac-

tions on SW Eng., 15(10):466-473, 1989.

L. S&rage. A Proof of the Shortest Remaining Pro-

cessing Time Discipline. Operutions Research, 16:687-

690, 1968.

K. Fowler. Inertial Navigation System Simulator:

Top-level Design. Technical Report CMU/SEI-89-

TR-38, Software Engineering Institute, 1989.

123

