
An Optimal Algorithm for the Distinct Elements
Problem

Daniel M. Kane

Department of Mathematics
Stanford University

aladkeenin@gmail.com

February 21st, 2014

Joint work with Jelani Neslon (Harvard) and David Woodruff (IBM)

D. Kane (Stanford) Distinct Elements February 2014 1 / 30

Streaming Algorithms

Algorithm to analyze

Data passing through a server OR

Data in a large database

In either case, there may be too much data to store a full (separate) copy
of everything. Want an algorithm that:

Uses little space

Little processing time per item

Makes only one pass through the data

D. Kane (Stanford) Distinct Elements February 2014 2 / 30

Distinct Elements Problem

Distinct elements problem: Given a stream S of elements of
[n] := {1, 2, . . . , n}, return the number of distinct elements in S .
Example:

S = 1, 7, 2, 7, 23, 1, 7

Distinct elements are 1, 2, 7, 23. Return 4.
Applications:

Detecting Denial of Service Attacks
[Akella, Bharambe, Reiter, Seshan]

Query planning
[Selinger, Astrahan, Chamberlin, Lorie]

Data Integration
[Brown, Haas, Myllymaki, Pirahesh, Reinwald, Sismanis]

D. Kane (Stanford) Distinct Elements February 2014 3 / 30

Approximation

Returning |S | exactly is too much to hope for.

Compare |S |,|S ∪ {x}| to determine if x ∈ S

Would essentially need to store all elements of the stream

Requires Ω(n) space

Instead return answer F so that F = |S |(1± ε) for some small ε > 0.

D. Kane (Stanford) Distinct Elements February 2014 4 / 30

Randomization

Deterministic algorithms also do not work:

Let Si be subsets that overlap at most 2/3rds of their elements.

Need to distinguish stream SiSi from SiSj .

Need to store enough information to tell which Si you have.

Requires Ω(n) space.

Thus, to obtain reasonable space, we will need to use a randomized
algorithm that we will only require to be correct with probability 2/3 (this
can be improved to 1− δ by running O(log(δ−1)) copies of the algorithm
in parallel).

D. Kane (Stanford) Distinct Elements February 2014 5 / 30

Problem Statement

Problem

Find a randomized algorithm that given a stream S of elements in [n]:

Makes only a single pass over the stream

Uses s space

Uses t time per update

Returns a value in (|S |(1− ε), |S |(1 + ε)) with probability at least 2/3rds

D. Kane (Stanford) Distinct Elements February 2014 6 / 30

Past Work

Paper Space Time Notes

[FM85] O(log(n)) - Const. ε, rand. oracle

[AMS99] O(log(n)) O(log(n)) Const. ε

[GT01] O(ε−2 log(n)) O(ε−2)

[BJKST02] O(ε−2 log(n)) O(log(ε−1))

[BJKST02] Õ(ε−2 + log(n)) Õ(ε−2 log log(n))

[KNW10] O(ε−2 + log(n)) O(1) Optimal, This talk

D. Kane (Stanford) Distinct Elements February 2014 7 / 30

Lower Bounds

Space lower bounds of Ω(ε−2 + log(n)) were proven by Indyk and
Woodruff (later extended to cover all ε > n−1/2 by Woodruff).
Idea: Given a stream ST need to distinguish the cases:

S and T overlap on a 1/2 + ε-fraction of their entries

S and T overlap on a 1/2− ε-fraction of their entries

This reduces it to the one-way communication complexity of the
Gap-Hamming Problem.

D. Kane (Stanford) Distinct Elements February 2014 8 / 30

Basic Idea: Subsampling

The basic idea behind the majority of algorithms is due to Flajolet and
Martin.

Let A be a random subset of [n] of size m

Consider |S ∩ A|
I Has expectation |S|mn
I Is 0 with 5/6 probability if |S | < n

6m
I Is positive with 5/6 probability if |S | > 2n

m

Idea: Keep track of whether or not S contains any element of A for a
number of random A of different sizes.

D. Kane (Stanford) Distinct Elements February 2014 9 / 30

Implementation

Let h : [n]→ [n] be a random hash function.
Let lsb(x) be the location of the least significant bit of x which is a 1.

Note that Ak := {x ∈ [n] : lsb(h(x)) > k} is a random subset of [n]
of size about n2−k

Algorithm:

Maintain a counter r = maxx∈S(lsb(h(x)))

With 2/3rds probability log(|S |) = r ± 2

Thus 2r gives an approximation of |S | likely good to within a factor
of 4

Requires O(log log(n)) bits of space

D. Kane (Stanford) Distinct Elements February 2014 10 / 30

Reducing Error: Statistics

To get a better approximation to |S |, you can run multiple copies of this in
parallel:

Take K ≈ ε−2

Have K hash functions hi and record ri = maxx∈S(lsb(hi (x)))

Pick some r∗ ≈ log(|S |) (perhaps given by the value of an extra ri)

Pr(ri ≤ r∗) ≈ exp(−|S |2−r∗)

Let T = #{i : ri ≤ r∗}
Estimator:

|S | ≈ 2r∗ log

(
K

T

)

D. Kane (Stanford) Distinct Elements February 2014 11 / 30

Improving Runtime: One Bin per Element

In the previous algorithm, we needed to update the values of K ≈ ε−2 bins
per update, causing the update time to be about ε−2. We would like to
improve this to constant time per update.
Idea: Each update effects only one bin

K ≈ ε−2, have K counters Ci

Hash functions h : [n]→ [n] and g : [n]→ [K]

When you see x , replace Cg(x) with the maximum of its current value
and lsb(h(x))

So Ci holds the value maxx∈S :g(x)=i lsb(h(x)).

D. Kane (Stanford) Distinct Elements February 2014 12 / 30

Analysis: Balls and Bins

Pick r∗ so that 2r∗ ≈ |S |/K
How many Ci store a value of more than r∗?

Let A := {x ∈ S : lsb(h(x)) > r∗}
|A| = |S |2−r∗(1± ε) with reasonable probability

We need to count the number of distinct values that g takes on A

Question: |A| ≈ K balls are randomly thrown into K bins. What can we
say about the distribution of T , the number of bins with at least one ball
in them?

D. Kane (Stanford) Distinct Elements February 2014 13 / 30

Balls and Bins

Lemma

E[T] = K

(
1−

(
1− 1

K

)|A|)
.

Furthermore, if 100 < |A| < K/20,

Var(T) <
4|A|2

K
.

Thus, if |A| ≈ K ≈ ε−2,

T = K

(
1−

(
1− 1

K

)|A|)
(1± ε)

Or

|A| =
log(1− T/K)

log(1− 1/K)
(1± ε)

Which gives us an estimator for |S | = |A|2r∗(1± ε).
D. Kane (Stanford) Distinct Elements February 2014 14 / 30

Improving Space: Store Count Differences

The previous algorithm needs to maintain K ≈ ε−2 counters of log log(n)
bits each, which is more space than we would like. On the other hand,
most counters store values very close to r∗.
Idea: Instead store the differences between Ci and r∗

With high probability the number of counters differing from r∗ by
more than b will be O(K2−b)

Total space necessary is O(K) = O(ε−2)

Need a Variable Bitlength Array (VBA) with constant time updates
(one has been developed by Blandford and Blelloch)

Problem: Need 2r∗ to be a good approximation to |S |/K throughout
entire computation, not just at the end.

D. Kane (Stanford) Distinct Elements February 2014 15 / 30

RoughEstimator

New algorithm: RoughEstimator maintain an approximation to |S | so that
with 90% probability is correct to within a constant factor for the entire
stream.

Same basic idea as above

K ≈ log2/3(n)

Hash functions h : [n]→ [n], g : [n]→ [K]

Maintain Ci = maxx∈S:g(x)=i (lsb(h(x)))

I Total space O(log2/3(n) log log(n))

Let r∗ be the median of the Ci

|S | = Θ(2r∗K) with probability 1− O(K−2)

Sufficient to verify correctness when |S | is a power 2

Correct at all such times with probability 1− O(log(n)−1/3)

D. Kane (Stanford) Distinct Elements February 2014 16 / 30

Space Efficient Version

Run RoughEstimator in parallel
I Maintain r∗ with 2r∗ ≈ |S |/K

Hash functions h : [n]→ [n], g : [n]→ [K]

Maintain Ci = maxx∈S:g(x)=i (lsb(h(x)))− r∗ in VBA

Total space O(K + log(n)) = O(ε−2 + log(n))

Constant time updates unless r∗ changes

Deamortize decrements to the Ci when r∗ increases

D. Kane (Stanford) Distinct Elements February 2014 17 / 30

Derandomization

Thus, we have an algorithm which uses O(ε−2 + log(n)) space and O(1)
update time given access to random functions h and g . Unfortunately, we
don’t have access to these. We will need to store a description of any hash
functions that we use, which will add to our space bound.
We need to derandomize this algorithm. Namely, we need to find less
random families of functions (which can be described in a small number of
bits) that are still good enough for our analysis to work.

D. Kane (Stanford) Distinct Elements February 2014 18 / 30

k-Independence

We will be able to do our derandomization with the help of k-wise
independent families of hash functions. Recall:

Definition

A family H of hash functions h : U → V is k-wise independent if for any
distinct u1, . . . , uk ∈ U and any v1, . . . , vk ∈ V

Prh∈H(h(ui) = vi for all i) =
1

|V |k
.

Or in other words, h acts like a completely random function when
restricted to any k elements of U.

There are known (approximately) k-wise independent families of hash
functions which can be stored in O(k log(|U||V |)) bits and evaluated in
constant time.

D. Kane (Stanford) Distinct Elements February 2014 19 / 30

Analysis

Recall that the analysis of both our main algorithm and RoughEstimator
depended on understanding the statistic

T = #{i : ∃x ∈ S , lsb(h(x)) > r∗, g(x) = i}.

Or in other words, letting

A = {x ∈ S : lsb(h(x)) > r∗},

T = |g(A)|.
Enough to show that |A| = 2−r∗ |S |(1± ε) and that

T = K
(

1−
(
1− 1

K

)|A|)
(1± ε) with large probability.

D. Kane (Stanford) Distinct Elements February 2014 20 / 30

2-Wise Independent h

We claim that choosing h from a 2-wise independent family is sufficient to
control the size of A.

E[|A|] = |S |2−r∗

Var(|A|) = O(|S |2−r∗)

Both of these still hold under 2-independence

The bounds on |A| follow from Chebyshev’s inequality

D. Kane (Stanford) Distinct Elements February 2014 21 / 30

k-Wise Independent Balls and Bins

Want to control T = |g(A)| under k-wise independence of g

Under full independence had E[T] = K (1− (1− 1/K)|A|) and
Var(T) = O(|A|2/K), which was enough

Need to show the above under k-wise independence

D. Kane (Stanford) Distinct Elements February 2014 22 / 30

k-Wise Independent Balls and Bins

Need to show that the expected size of g(A) is approximately preserved by
k-wise independence.

Lemma

Let A be a finite set and K a positive integer. Let g , g ′ : A→ [K] be
functions with g random and g ′ chosen from a k-wise independent family.
Let T = |g(A)|,T ′ = |g ′(A)|, then

∣∣E[T]− E[T ′]
∣∣ ≤ K

(
|A|
K

)k

/k!

Thus k-wise independence will be sufficient to preserve our expectations
for k ≈ log(ε−1).

D. Kane (Stanford) Distinct Elements February 2014 23 / 30

Considering Each Bin

Let Ti be the indicator random variable for the event that i is in the
image of g , and T ′i the indicator of the event that i is in the image of
g ′

T =
∑K

i=1 Ti ,T
′ =

∑K
i=1 T

′
i

Enough to show that

∣∣E[Ti]− E[T ′i]
∣∣ ≤ (|A|

K

)k

/k!

D. Kane (Stanford) Distinct Elements February 2014 24 / 30

Approximate Inclusion-Exclusion

For each x ∈ A, let Bx be the event that g ′(x) = i .
Then T ′i is the indicator function of the event B =

∨
x∈A Bx .

Theorem (Inclusion-Exclusion)

Pr(B) =

|A|∑
t=1

(−1)t+1
∑

{x1,...,xt}⊂A

Pr(Bx1 ∧ Bx2 ∧ . . . ∧ Bxt).

D. Kane (Stanford) Distinct Elements February 2014 25 / 30

Approximate Inclusion-Exclusion

For each x ∈ A, let Bx be the event that g ′(x) = i .
Then T ′i is the indicator function of the event B =

∨
x∈A Bx .

Theorem (Approximate Inclusion-Exclusion)

If m is odd,

Pr(B) ≤
m∑
t=1

(−1)t+1
∑

{x1,...,xt}⊂A

Pr(Bx1 ∧ Bx2 ∧ . . . ∧ Bxt).

If m is even,

Pr(B) ≥
m∑
t=1

(−1)t+1
∑

{x1,...,xt}⊂A

Pr(Bx1 ∧ Bx2 ∧ . . . ∧ Bxt).

D. Kane (Stanford) Distinct Elements February 2014 25 / 30

Bounds on Pr(B)

Thus, E[T ′i] = Pr(B) is bounded between

k−1∑
t=1

(−1)t+1
∑

{x1,...,xt}⊂A

Pr(Bx1 ∧ Bx2 ∧ . . . ∧ Bxt),

and
k∑

t=1

(−1)t+1
∑

{x1,...,xt}⊂A

Pr(Bx1 ∧ Bx2 ∧ . . . ∧ Bxt).

Both of these bounds are determined by k-independence, and they differ by

∑
{x1,...,xk}⊂A

Pr(Bx1 ∧ Bx2 ∧ . . . ∧ Bxk) =

(
|A|
k

)
K−k ≤

(
|A|
K

)k

/k!

Since g is also k-wise independent, E[Ti] and E[T ′i] differ by at most this
much.

D. Kane (Stanford) Distinct Elements February 2014 26 / 30

Composition

Unfortunately, there may not be enough space to store an
log(ε−1)-wise independent hash function from [n] to [K].

To fix this let g1 : [n]→ [K 3] be 2-independent and g2 : [K 3]→ [K]
be log(ε−1)-wise independent and let g = g2 ◦ g1.

I With probability 1− 1/K , |g1(A)| = |A|
I If this holds, our analysis for |g2(g1(A))| works

D. Kane (Stanford) Distinct Elements February 2014 27 / 30

Final Algorithm: RoughEstimator

Initialize:
I Let K ≈ log2/3(n), k ≈ log(log(n))
I Let h : [n]→ [n] be 2-independent, g1 : [n]→ [K 3] be 2-independent

and g2 : [K 3]→ [K] k-independent, g = g2 ◦ g1
I Initialize K counters of log log(n) bits each Ci at 0

Update(x) : Cg(x) ← max(Cg(x), lsb(h(x)))

Query: Return 2median(Ci)K .

D. Kane (Stanford) Distinct Elements February 2014 28 / 30

Final Algorithm

Initialize:
I Let K ≈ ε−2, k ≈ log(ε−1)
I Let h : [n]→ [n] be 2-independent, g1 : [n]→ [K 3] be 2-independent

and g2 : [K 3]→ [K] k-independent, g = g2 ◦ g1
I Initialize a copy of RoughEstimator
I Initialize a VBA storing C1, . . . ,CK , all initially 0. Initialize r = 0.

Update(x) :
I Cg(x) ← max(Cg(x), lsb(h(x))− r)
I Update(RoughEstimator)
I Let r ′ ← blog(Query(RoughEstimator)/K)c
I If r ′ 6= r : Ci ← Ci + r − r ′, r ← r ′

Query:
I Let T = #{i : Ci > 0}
I Return

2r log(1− T/K)

log(1− 1/K)

D. Kane (Stanford) Distinct Elements February 2014 29 / 30

Conclusions

We have produced a streaming algorithm to compute approximations to
the number of distinct elements in a data stream with asymptotically
optimal space and update time. Similar techniques also yield a nearly
optimal algorithm for L0 moment estimation (where updates can remove
copies elements from the stream as well as add them), although the
correct space bound for that problem remails open.

D. Kane (Stanford) Distinct Elements February 2014 30 / 30

A. Akella, A. Bharambe, M. Reiter, and S. Seshan Detecting DDoS
attacks on ISP networks In Proc. MPDS, 2003.

N. Alon, Y. Matias, and M. Szegedy The Space Complexity of
Approximating the Frequency Moments J. Comput. Syst. Sci.,
58(1):137–147, 1999.

Z. Bar-Yossef, T.S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan
Counting distinct elements in a data stream In Proc. RANDOM,
pages 1–10, 2002.

D. K. Blandford and G. E. Blelloch Compact dictionaries for
variable-length keys and data with applications ACM Trans. Alg.,
4(2), 2008.

P. Brown, P. J. Haas, J. Myllymaki, H. Pirahesh, B. Reinwald, and Y.
Sismanis Toward automated large-scale information integration and
discovery In Data Management in a Connected World, pages 161–180,
2005.

D. Kane (Stanford) Distinct Elements February 2014 30 / 30

P. Flajolet and G. N. Martin Probabilistic counting algorithms for data
base applications J. Comput. Syst. Sci., 31(2):182–209, 1985.

P. B. Gibbons and S. Tirthapura Estimating simple functions on the
union of data streams In Proc. SPAA, pages 281–291, 2001.

P. Indyk and D. P. Woodruff Tight lower bounds for the distinct
elements problem In Proc. FOCS, pages 283–, 2003.

Daniel M. Kane, Jelani Nelson, David P. Woodruff An Optimal
Algorithm for the Distinct Elements Problem, Symposium on
Principles of Database Systems (PODS) 2010.

P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T.
G. Price Access path selection in a relational database management
system In SIGMOD, pages 23–34, 1979.

D. P. Woodruff Optimal space lower bounds for all frequency
moments In Proc. SODA, pages 167–175, 2004.

D. Kane (Stanford) Distinct Elements February 2014 30 / 30

