This article was downloaded by: [106.51.226.7] On: 09 August 2022, At: 00:21
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

E . Operations Research

OPERATIONS
RESEAH':H Publication details, including instructions for authors and subscription information:
i uﬂ http://pubsonline.informs.org

An Optimal Algorithm for the Traveling Salesman Problem

rf N E i with Time Windows
1 --1 q F . Yvan Dumas, Jacques Desrosiers, Eric Gelinas, Marius M. Solomon,
e ¢
[

594

To cite this article:
Yvan Dumas, Jacques Desrosiers, Eric Gelinas, Marius M. Solomon, (1995) An Optimal Algorithm for the Traveling Salesman
Problem with Time Windows. Operations Research 43(2):367-371. https://doi.org/10.1287/opre.43.2.367

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

© 1995 INFORMS

Please scroll down for article—it is on subsequent pages

informs.

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.

For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/opre.43.2.367
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 00:21 . For personal use only, all rights reserved.

Published in Operations Research on April 01, 1995 as DOI: 10.1287/opre.43.2.367.
This article has not been copyedited or formatted. The final version may differ from this version.

TECHNICAL NOTE

AN OPTIMAL ALGORITHM FOR THE TRAVELING SALESMAN
PROBLEM WITH TIME WINDOWS

YVAN DUMAS, JACQUES DESROSIERS and ERIC GELINAS
GERAD and HEC, Montreal, Canada

MARIUS M. SOLOMON

Northeastern University, Boston, Massachusetts
(Received October 1991; revisions received November 1992, April 1993; accepted July 1994)

This paper presents the development of new elimination tests which greatly enhance the performance of a relatively well
established dynamic programming approach and its application to the minimization of the total traveling cost for the traveling
salesman problem with time windows. The tests take advantage of the time window constraints to significantly reduce the state
space and the number of state transitions. These reductions are performed both a priori and during the execution of the
algorithm. The approach does not experience problems stemming from increasing problem size, wider or overlapping time
windows, or an increasing number of states nearly as rapidly as other methods. Our computational results indicate that the
algorithm was successful in solving problems with up to 200 nodes and fairly wide time windows. When the density of the nodes
in the geographical region was kept constant as the problem size was increased, the algorithm was capable of solving problems
with up to 800 nodes. For these problems, the CPU time increased linearly with problem size. These problem sizes are much

larger than those of problems previously reported in the literature.

he traveling salesman problem (TSP) with time win-
dows (TSPTW) involves the design of a minimum
cost path for a vehicle which visits a set of nodes. Each
node is visited exactly once and the service at a node
must begin within the time window defined by the earli-
est and the latest time when the start of service is per-
mitted at that node. If a vehicle arrives at a node too early,
it will wait. In addition, due dates cannot be violated.
Time windows arise naturally in problems faced by
business organizations which work on fixed time sched-
ules. The TSPTW has important practical applications in
bank or postal deliveries, school-bus routing and sched-
uling, and automated manufacturing environments. It also
constitutes a key component of more complex vehicle
routing problems; in particular, it is an essential module of
“cluster-first, route second”* approaches to such problems.
While the research on time constrained routing prob-
lems has grown at an explosive rate, research on the
TSPTW has been scant. Savelsbergh (1985) has shown
that even finding a feasible solution to the TSPTW is an
NP-complete problem and has, therefore, proposed inter-
change heuristics. Nevertheless, several other authors
have focused on exact algorithms to minimize the total
schedule time. Christofides, Mingozzi and Toth (1981)
propose a branch-and-bound algorithm where lower
bounds are derived from state-space relaxations of dy-
namic programs. The approach solved 50-node problems

with moderately tight time windows. Baker (1983) also
presents a branch-and-bound approach where lower
bounds are obtained from the dual of a relaxation of the
proposed model. The algorithm performed well on prob-
lems with up to 50 nodes when only a small percentage of
the time windows overlap. Langevin et al. (1990) present
a linear multicommodity flow formulation involving two
complementary flows. It can handle either the total trav-
eling time or the total schedule time objective. The authors
report the solution of problems with up to 40 nodes.

Related research has also been performed on the TSP
with precedence constraints, on special routing struc-
tures and on alternative objective functions. This work
and many other time constrained routing problems are
surveyed by Desrosiers, Solomon and Soumis (1992).

Even though the TSPTW is a special case of the vehi-
cle routing problem with time windows, the best known
approach to the latter problem (Desrochers, Desrosiers
and Solomon 1992) is not well suited to solve the
TSPTW. This column generation approach would experi-
ence extreme degeneracy difficulties in this case.

The contribution of this paper is the development of
new elimination tests which greatly enhance the perfor-
mance of a relatively well established dynamic program-
ming approach and its application to the minimization of
the total traveling cost for the TSPTW. The tests take
advantage of the time window constraints to significantly

Subject classifications: Dynamic programming/optimal control: applications. Transportation: vehicle routing.

Area of review: DISTRIBUTION, TRANSPORTATION AND LOGISTICS,

Operations Research
Vol. 43, No. 2, March-April 1995

0030-364X/95/4302-0367 $01.25
© 1995 INFORMS

Copyright © 2001 All Rights Reserved

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 00:21 . For personal use only, all rights reserved.

_ Published in Operations Research on April 01, 1995 as DOI: 10.1287/opre.43.2.367.
This article has not been copyedited or formatted. The final version may differ from this version.

368 / DUMAS ET AL.

decrease the state space and the number of state transi-
tions. These reductions are performed both a priori and
during the execution of the algorithm. This approach is
capable of optimally solving realistic test problems with
fairty wide, overlapping time windows and of much
larger size than previously reported in the literature. Fur-
thermore, for certain classes of problems, its computa-
tional behavior is linear in problem size.

Our method does not experience problems stemming
from increasing problem size, wider, or overlapping time
windows, nearly as rapidly as the method of Baker. Fur-
thermore, it can be used as a standalone method to opti-
mally solve large size problems. Other dynamic
programming approaches, such as those of Christofides,
Mingozzi and Toth, and Baker, use relaxed recursions
only to obtain lower bounds which are then embedded in
a branch-and-bound scheme, for an easier objective func-
tion than that treated in this paper. Finally, it does not
experience numerical instability difficulties as does the
procedure of Langevin et al.

1. A DYNAMIC PROGRAMMING FORMULATION

Consider a network G = (N, A) where N = {1, ..., n}
is the set of nodes and A is the set of feasible arcs.
Associate with each node i € N a time window [a,, b,]
and a service time 5,. Associate with each arc a duration
t, and a cost¢;,. An arc (i, j) € 4 is feasible ifa, + 5, +
t, € b, Let N' be defined as N — {n}. A path in the
network G is defined as a sequence of nodes iy, i3, ...,
i, such that each arc (i;, i;,,) belongs to 4 and the time
service begins at node i;, j = 1, ..., k, is within the
time window of that node. Let the time of departure from
node 1 be a, and the time service begins at node { be ¢,,
i € N. If a path goes from nodes i to j, the time service
begins at node j is given by ¢; = max{t, + 5, + ¢, a,} if
t, +s, +t; <b,andt = o, otherwise. This definition
implies waiting at node j if the path arrives there too
early. For the optimal TSPTW solution, we require a
least-cost feasible path starting at node 1 and ending at
node n that visits every node in G exactly once.

Define now F(S, i, ¢) as the least cost of a path start-
ing at node 1, passing through every node of S & N’
exactly once, ending at node { € §, and ready to service
node i at time ¢ or later. Since the cost F(S, i, ¢) and the
time ¢ need to be addressed separately, a two-
dimensional labeling is necessary. This also makes the
dynamic programming minimization of the total traveling
time more difficult than that of the total schedule time.
The function F(S, i, t) can be computed by solving the
recurrence equations:

N T >4
F(S,j,) (:I}l)lélA {F(S —{j}, i, ') + ¢t s,
+t,,a; <t' £b)} (1)

forall S C N',j € S and a; < ¢ < b;. The recursion
formula is initialized by

F{1,j}, j, t)=cy if (1, j) €A, and F({1, j}, j, 1)
=o otherwise, (2)

where a; < t < b, t = max{a, + s, + ty, a;}. The
optimal TSPTW solution is given by:

ming,n)eA4 alrgtigb‘ {F(N, i, t) +clt 2b, —t,, —s;}.

()

Formulas (1)-(3) define a shortest path algorithm on a
state graph whose nodes are the states (S, i, ¢) and
whose arcs represent transitions from one state to an-
other. This algorithm is a forward dynamic programming
algorithm where at steps, s = 1, ..., n — 1, a path of
length s is generated. The states (S, i, #) of cost F(S, i,
t) are defined as: S is an unordered set of visited nodes, i
is the last visited node, i € S, and ¢ is the time service
begins at node i. Note that there are several paths that
visit set S and end at i. Among them, we only conserve
the Pareto optimal elements. In other words, given (S, i,
t') and (S, i, ¢?), the second state can be eliminated if
t' < ¢ and F(S, i, t') < F(S, i, t*). A number of
applications of dominance between states as a function
of time and cost values can be found in the literature
(see, for example, Kolen, Rinnooy Kan and Trienekens
1987, Desrochers and Soumis 1988).

The number of states (S, i, #), a; < t < b, is count-
able in ¢ if we use integer data to define the time windows
and the traveling times. In addition, the function F(S, i,
t) is stepwise decreasing as a function of ¢ over the inter-
val [a;, b,). After the dominance test, the two-
dimensional labels (¢, F(S, i, 1)) of (S,) can be ordered
by increasing time and decreasing cost value. Let
FIRST(S, i) be the time value of the first label of that
list.

2. POST FEASIBILITY TESTS

For the TSP, the most important and difficult constraint
is to visit all nodes. When time windows or precedence
constraints are present, these impose a partial ordering
of the nodes. Great computational efficiency can be de-
rived from eliminating partial paths that do not satisfy
such orderings. The tests presented here detect when a
node cannot extend a current partial path, thereby per-
mitting the elimination of such paths.

To describe them, let EAT(i, j) be the earliest arrival
time at node j from node i. This can be computed by
solving a shortest time path problem, where the path
starts at time @, and satisfies the time window constraints
from i to j. Also let LDT(i, j) be the latest departure
time from i such that ¢, is feasible. Likewise, this can be
computed by solving a constrained shortest time path
problem, where the path starts at node j at time b; and
uses the reverse arc directions. Now define BEFORE(j)
to be the set of all nodes which must necessarily be
visited before j. Hence, BEFORE(j) = {k € N|
EAT(k, j) > bj}. Note that the values EAT({, j) and

Copyright © 2001 All Rights Reserved

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 00:21 . For personal use only, all rights reserved.

Published in Operations Research on April 01, 1995 as DOI: 10.1287/opre.43.2.367.
This article has not been copyedited or formatted. The final version may differ from this version.

LDT(i, j) can be overestimated or underestimated, re-
spectively, by using an unconstrained time path. This is
much faster to compute and it gives satisfactory results
in practice. Furthermore, if travel times satisfy the trian-
gle inequality, no shortest time paths need to be com-
puted as, for example, EAT(i, j} > b, can be replaced by
a, + s, + t, > b,. Finally, we say that a state (S, i, 7)
admits a feasible extension toward j, i.e., the state
(S U {j}, j, max{a;, t + s; + t,}) can be created if £ +
s, + t; < b,

The post-feasibility tests that we present next are sim-
ilar to the ones in Desrosiers, Dumas and Soumis (1986)
developed for the single vehicle pick-up and delivery
problem with time windows. An important difference,
however, is that while this problem necessitates a more
complex formulation, it is easier to solve by dynamic
programming than is the TSPTW. This is because the
precedence constraints between the pick-up and the de-
livery location associated with the same request help
eliminate a significant number of states and state transi-
tions. To obtain significant reductions for the TSPTW,
we had to create a precedence structure as defined by
BEFORE(j), for each node j. This will be used in test 2
below.

The first test involves the comparison between two
values, FIRST(S, i) and mingsLDT(i, j) and it has an
effect on all the successors of i.

Test 1. Given the states (S, i, f) foralla, < ¢ < b, if the
smallest time value to begin service at node / is greater
than the latest feasible departure time toward j, for all j,
i.e.,

FIRST(S, i) > min LDT(,),
J

then the states (S, i, ¢) for all g, < ¢t < b; do not admit
feasible extensions toward any node.

This global test eliminates the states (S, i, ¢) for all ¢
by only examining the earliest time to begin service at i.
If for this time a feasible arrival at some other node is
impossible, then all the states (S, i, ¢) are eliminated. In
this case, the states to be treated next are those with a
new ending node i and the same set S; when all ending
nodes i have been considered, a new set § is examined.

The next test consists of examining whether one set S
is included in another, BEFOREZ(j). Its effect is only on
one successor of i.

Test 2. Given the states (S, i, ¢) for alla, < ¢ < b, and
given node j, j & S, (i, j) € A, if BEFORE(j) ¢ S,
then no feasible extensions exist toward j.

This test states that all “predecessors’ of node j must
necessarily be visited before visiting j. If the test suc-
ceeds in eliminating node j as a successor for i, the next
step is to test another potential successor, or to apply
test 1 to a new set of states with a different .

DuMAS ET AL. / 369

The final test examines the future of a state. Its effect
is local: It only concerns the extension of a single label of
(S,).

Test 3. Given the state (S, i, ¢) forafixeds, a, <t < b,
and given node j, j & S, (i, j) € A, if (S, i, t) can be
extended to j, i.e., t < LDT(i, j), but cannot be ex-
tended further to some k, k € S, (i, k) € A4, ie., t +
t, > LDT(j, k), then j cannot succeed { for (S, i, ¢) and
the states (S, i, t'), ¢’ = ¢t are not extended toward j.

If the new label (S U {j}, j, max{a,, t + 5, + ¢,}) is
not created, a new node j is considered, because no
other labels can be feasible for time values greater than .

3. COMPUTATIONAL EXPERIMENTS

The algorithm was coded in C and the experiments were
conducted on a Hewlett-Packard workstation HP9000/
730. During preprocessing, the arc set 4 was reduced to
A’ by applying TSPTW specific rules (Langevin et al.).
The time windows were also reduced by applying the
rules described in Desrochers, Desrosiers and Solomon.

The algorithm was tested on two sets of problems. The
first set consists of symmetric Euclidean problems de-
scribed in Langevin et al., where customer coordinates
are uniformly distributed between 0 and 50 and travel
times equal distances. The time windows are generated
around the times to begin service at each customer of a
second nearest neighbor TSP tour. Each side of a time
window is generated as a uniform random variable in the
interval [0, w/2], where w = 20, 40, 60, 80, and 100.
The problems exhibit various degrees of difficulty.
First, the second nearest neighbor tour is not near opti-
mal for the TSPTW. Experiments conducted for n = 60
and all w indicate that the number of common arcs in the
two tours is only about 20%. Second, for a given problem
size, problem difficulty increases with the time windows’
width, because the percentage of overlapping time win-
dows increases. Third, it also increases significantly with
problem size because the geographical area remains con-
stant. Hence, as n increases, the density of the points in
this area increases. In turn, this decreases the ability of the
time windows to reduce the number of feasible tours.

The results are presented in Table 1. They indicate that
our algorithm was successful in solving problems with up
to 200 nodes and fairly wide time windows. As expected,
the CPU time increases with time window width and
with problem size. Using the logarithm in base 10 of the
CPU time, it can be seen that for a given problem size
the behavior of the algorithm is exponential with respect
to time window width. Nevertheless, for narrow widths,
its behavior is less than exponential allowing larger size
problems to be solved. For example, a 250-node problem
with w = 20 is easy to solve in less than 10 seconds.

Note that the algorithm is designed to handle functions
capturing the additional cost for waiting at a node, such
as the total schedule time. In this case, by letting F(S, i/,

Copyright © 2001 All Rights Reserved

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 00:21 . For personal use only, all rights reserved.

Published in Operations Research on April 01, 1995 as DOI: 10.1287/opre.43.2.367.

This article has not been copyedited or formatted. The final version may differ from this version.

370 / DuUMAS ET AL.

Table 1
Computational Results for the TSPTW
n w |A'| Init Opt S| (S, i)l (S, i, 1) CPU Log
20 20 34.2 375.0 361.2 2.8 4.4 4.4 0.02 -1.63
20 40 72.2 349.8 316.0 7.0 14.8 19.6 0.05 -1.33
20 60 115.2 374.4 309.8 14.8 33.8 35.6 0.14 -0.85
20 80 143.8 373.6 311.0 22.4 54.0 64.0 0.23 -0.63
20 100 207.0 373.0 275.2 86.2 244.8 291.4 1.27 0.10
40 20 121.8 526.4 486.6 5.4 9.6 16.0 0.08 -1.12
40 40 230.2 521.0 461.0 14.0 33.0 55.0 0.24 ~0.61
40 60 404.2 507.6 416.4 154.6 428.2 554.0 4.37 0.64
40 80 488.8 508.4 399.8 268.2 740.6 890.4 7.52 0.88
40 100 640.8 486.6 377.0 636.6 2644 .4 5298.4 31.40 1.50
60 20 226.0 632.8 581.6 7.8 15.2 21.8 0.15 —0.81
60 40 462.8 662.6 590.2 38.6 103.2 145.8 0.89 -0.05
60 60 670.6 684.8 560.0 243.6 626.8 1344.4 6.84 0.83
60 80 987.4 652.6 508.0 1151.8 3526.0 8414.2 46.62 1.67
60 100 1219.8 649.6 514.8 2897.8 8465.8 20846.4 199.84 2.30
80 20 362.6 753.8 676.6 11.0 28.2 49.8 0.35 —0.46
80 40 755.6 730.4 630.0 77.0 198.0 359.0 2.68 0.43
80 60 1149.6 732.6 606.4 843.8 3232.8 7716.8 55.32 1.74
80 80 1490.8 735.8 593.8 3179.4 10449.2 16419.0 220.29 2.34
100 20 510.0 826.4 757.6 14.6 33.4 45.0 0.62 -0.21
100 40 1051.2 830.6 701.8 143.2 442.6 1059.4 7.40 0.87
100 60 1731.4 828.4 696.6 1589.6 4432.2 6804.8 107.95 2.03
150 20 975.8 982.2 868.4 47.4 137.0 326.8 2.44 0.39
150 40 2128.0 996.4 834.8 1484.8 5857.4 20371.0 115.86 2.06
150 60 2953.6 996.6 805.0 4144.6 13158.0 26351.0 462.97 2.67
200 20 1655.6 11436 1005.0 60.8 195.8 480.4 6.65 0.82
200 40 3351.2 1163.8 984.2 2380.6 8391.4 14240.0 251.41 2.40

n: the number of nodes;
w: the width of the time windows;
|4']: the arc size of the reduced network;

Init: the average over five problems of the initial solutions obtained by a second nearest neighbor heuristic for the TSP;
Opt: the average over five problems of the optimal solutions for the TSPTW (for n = 100 and w = 60, the average is
only over three problems as the memory limitation of 50 Mb was exceeded for the other two problems);

IS!, (S, i)} and |(S, i, £)}: the maximum number of labels created;
CPU

: the CPU time in seconds on a Hewlett-Packard workstation (HP9000/730, 76 mips, 22 M flops);

log: the logarithm in base 10 of the CPU time.

t) = t — a, and preserving only the state with the small-
est ¢, the states (S, i, #) can be reduced to (S, i). Com-
paring the results depicted in columns seven and eight of
Table 1, it is apparent that the minimization of the total
schedule time is an easier dynamic programming optimi-
zation problem than the one treated in this paper.

We also analyzed the separate impact of each test. As
can be seen from Table 11, test 2 is the most beneficial.
Without it we were not able to solve a problem of much
smaller size than the ones solved when we utilized this
test. Test 1 is the least powerful because much of its
work was performed by reducing the width of the time
windows in the preprocessing phase.

We also tested the algorithm on problems where the
density of the points remains constant. We generated
them by starting from the geographical and time window
characteristics of the problems described above and dou-
bling the geographical area each time the number of

points doubles. In these experiments, we fixed w at 60,
to provide for fairly wide time windows. Note that the
number of common arcs between the second nearest
neighbor TSP tour and the optimal TSPTW tour stayed at
about 20% even for the 800-node problems. Figure 1 il-
lustrates that the computational behavior of the algo-
rithm is linear in the number of nodes. Hence, we were
capable of solving problems with up to 800 nodes in
about 650 seconds. For larger problems, the method did
not experience CPU time difficulties. However, it en-
countered memory problems.

4. CONCLUSIONS AND EXTENSIONS

This paper presented the development of a very effective
optimal dynamic programming algorithm for the minimi-
zation of the total traveling cost for the TSPTW. Its ef-
fectiveness stems from the post-feasibility tests which

Copyright © 2001 All Rights Reserved

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 00:21 . For personal use only, all rights reserved.

Published in Operations Research on April 01, 1995 as DOI: 10.1287/opre.43.2.367.
This article has not been copyedited or formatted. The final version may differ from this version.

TABLE II
The Impact of Each Test on the Behavior of the
Algorithm (n = 60)

All Test 1 Test 2 Test 3

w = Tests Removed Removed Removed
20 (S, i, 1) 21.8 21.8 3716.4 374
CPU 0.15 0.15 6.20 0.17
40 |(S, i, 1) 1458 145.8 18520.5 229.0
CPU 0.91 0.91 49.23 0.98
60 |(S, i,)] 1344.4 1346.2 * 3864.8
CPU 6.84 7.42 * 9.54

exploit the time window constraints to substantially re-
duce the state space and the number of state transitions.
These eliminations are derived from trying to validate the
most important TSPTW constraint which imposes the visit
of all the nodes. Consequently, our algorithm starts expe-
riencing memory and CPU time difficulties only for much
larger problem sizes and more difficult time window struc-
tures than previously reported in the literature.

Several important extensions can be seen. First, as can
be observed from test 2, the algorithm can handle addi-
tional precedence constraints. Second, because the
method is a forward dynamic program, it can optimize
more general cost functions, such as step functions, and
nonlinear functions. As long as the cost function is a
nondecreasing function of time, the algorithm and the
dominance process can be adapted. Furthermore, when
there are several nodes at the same physical location, but
with different time windows, the algorithm can be accel-
erated by removing a priori a set of arcs between these
nodes. This is the ‘“‘same location criterion’ used in
Dumas, Desrosiers and Soumis (1991).

The optimal algorithm presented in this paper can be
transformed into a much faster heuristic by removing a
priori some unattractive arcs or by controlling and limit-
ing the number of states created. This type of relaxation

800 T T T T L

700 -

600

500

ceuy

400 +
300

200 F

100}'

" ot 4
4] 100 200 300

L i 1

.
400 500 800 700 800
Number of Nodes

Figure 1. Computational behavior of the algorithm on
constant point density problems.

Dumas ET aL. / 371

can provide a good solution to much larger or very diffi-
cult problems.

The method can also be used as a sensitivity analysis
tool for the TSP. Given a heuristic solution for the TSP,
one can impose cost windows around the cost of the
solution at each node. The width of each cost window
equals twice the travel cost to each node’s nearest, sec-
ond nearest, and third pearest neighbor, respectively.
Our algorithm can then be used to explore the neighbor-
hood of solutions.

ACKNOWLEDGMENT

The authors benefited from fruitful discussions with
Francois Soumis and Sylvie Gelinas. The authors also
wish to thank Pierre Girard for his programming help.
The research of the fourth author was partially supported
by the Resecarch Centers GERAD and CRT, Montreal,
Canada and by the Patrick F. and Helen C. Walsh
Research Professorship.

REFERENCES

Baker, E. 1983. An Exact Algorithm for the Time Con-
strained Traveling Salesman Problem. Opns. Res. 31,
938-945.

CHrISTOFIDES, N., A. MINcozzi anp P. Torn. 1981. State
Space Relaxation Procedures for the Computation of
Bounds to Routing Probilems. Networks 11, 145-164.

DEesrocHERS, M., anp F. Soumis. 1988. A Reoptimization
Algorithm for the Shortest Path Problem With Time
Windows. Eur. J. Opnl. Res. 35, 242-254.

DESROCHERS, M., J. DESROSIERS AND M. SoLoMON. 1992. A
New Optimization Algorithm for the Vehicle Routing
Problem With Time Windows. Opns. Res. 40, 342-354.

DESROSIERS, J., Y. Dumas AnND F. Soumis. 1986. A Dynamic
Programming Solution of the Large-Scale Single-
Vehicle Dial-a-Ride Problem With Time Windows. Am.
J. Math. and Mgmt. Sci. 6, 301-325.

DEesrosIErs, J., M. SoLomoN anp F. Soumis. 1992. Time
Constrained Routing and Scheduling. In Handbooks in
Operations Research/Management Science, Volume on
Networks, M. Ball, T. Magnanti, C. Monma and G.
Nemhauser (eds.). Elsevier Science, Amsterdam, The
Netherlands (to appear).

Duwmas, Y., J. Desrosiers anD F. Soumts. 1991. The Pick-up
and Delivery Problem With Time Windows. Fur. J.
Opnl. Res. 54, 7-22.

KoLEN, A., A. Rinnooy Kan AnNp H. TRIENEKENs. 1987.
Vehicle Routing With Time Windows. Opns. Res. 35,
266-273.

LaNGEVIN, A., M. DEresrocHers, J. DESROSIERS AND
F. Soumis. 1990. A Two-Commodity Flow Formula-
tion for the Traveling Salesman and the Makespan
Problems With Time Windows. Working Paper CRT-
732, Centre de Recherche sur les Transports, Montreal,
Canada.

SAVELSBERGH, M. 1985. Local Search in Routing Problems
With Time Windows. Anns. Opns. Res. 4, 285-305.

Copyright © 2001 All Rights Reserved

