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An optimal and practical cache-oblivious

algorithm for computing multiresolution rasters

Lars Arge, Gerth Stølting Brodal, Jakob Truelsen, Constantinos Tsirogiannis

MADALGO⋆, Department of Computer Science, Aarhus University, Denmark
{large, gerth, jakobt, constant}@madalgo.au.dk

Abstract. In many scientific applications it is required to reconstruct
a raster dataset many times, each time using a different resolution. This
leads to the following problem; let G be a raster of

√
N ×

√
N cells.

We want to compute for every integer 2 ≤ µ ≤
√
N a raster Gµ of

⌈
√
N/µ⌉ × ⌈

√
N/µ⌉ cells where each cell of Gµ stores the average of the

values of µ× µ cells of G. Here we consider the case where G is so large
that it does not fit in the main memory of the computer.
We present a novel algorithm that solves this problem in O(scan(N))
data block transfers from/to the external memory, and in Θ(N) CPU
operations; here scan(N) is the number of block transfers that are needed
to read the entire dataset from the external memory. Unlike previous
results on this problem, our algorithm achieves this optimal performance
without making any assumptions on the size of the main memory of the
computer. Moreover, this algorithm is cache-oblivious; its performance
does not depend on the data block size and the main memory size.
We have implemented the new algorithm and we evaluate its performance
on datasets of various sizes; we show that it clearly outperforms previous
approaches on this problem. In this way, we provide solid evidence that
non-trivial cache-oblivious algorithms can be implemented so that they
perform efficiently in practice.

1 Introduction

Rasters are one of the most common formats for modelling spatial data. A raster
is a 2-dimensional grid of square cells where each cell is assigned a real value.
Among other applications, rasters are used to represent real-world terrains; in
this case each cell corresponds to a region of a terrain, and the value of the cell
indicates the average height of the terrain in this region. Today, it is possible to
acquire massive rasters that represent terrains with very fine resolution; the size
of each cell in such a raster can be less than one square meter. Yet, studying a
terrain in such a small scale might lead to wrong conclusions. This happens for
example when we want to identify landforms on terrains; when we study a terrain
at a scale of a few meters, we might identify many small peaks concentrated
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within a small area. Yet, when looking on a larger scale, these peaks may be a
part of another landform; for instance a rough ridge, or a valley.

To tackle this problem, we need to have a method that can analyze the
same raster in many different scales. Fisher et al. [4] use such a method in their
landform classification algorithm; their algorithm constructs multiple rasters Gµ,
where a cell c of Gµ covers the same region as µ × µ cells of the original fine-
resolution raster. The value assigned to c is equal to the average of the values of
the original µ × µ cells. Given the constructed rasters Gµ, it is then possible to
search for landforms at different scales.

Reconstructing a raster in different resolutions is an important tool for many
other scientific applications; in remote sensing, Woodcock and Strahler [9] in-
troduced an algorithm to extract the average size of tree canopies in grayscale
images of forests. Here, an image is represented by a raster of square pixels, where
each pixel is assigned a grayscale value. Their algorithm reconstructs many in-
stances of a given image raster, in exactly the same way as the algorithm of
Fisher et al. constructs different instances of a terrain raster. For their appli-
cation, it is critical to construct one instance of the image for every pixel size
which is an integer multiple of the pixel size in the original image, until a single
pixel covers almost the entire image. This approach has been also used in other
image processing algorithms [3].

Therefore, all of the different applications that we described above lead to
the same algorithmic problem; let G be a raster that consists of

√
N ×

√
N

cells. For every integer µ ∈ {2, 3, . . . ,
√
N} we want to compute a raster Gµ of

⌈
√
N/µ⌉ × ⌈

√
N/µ⌉ cells where each cell of Gµ stores the average of the values

of the µ× µ cells of G that cover the same region.

External Memory Algorithms As already mentioned, today many available raster
datasets are massive, and may consist of terabytes of data. A raster of this size
cannot fit entirely in the main memory of a normal computer; thus, it can only
be stored entirely in the hard disk. When we want to process the dataset, we
have to transfer blocks of data from the disk to the main memory. We call such
a block transfer an I/O-operation, or an I/O for short. Unfortunately, an I/O
can take the same time as a million CPU operations. Thus, when designing
an algorithm that may process such a large dataset, we want to minimise the
number of block transfers that are required to process the full dataset.

For this reason, Aggarwal and Vitter [1] introduced a computational model
that takes into account the number of block transfers between the disk and the
main memory. This model considers two important parameters: the size of the
internal memory M , and the maximum size B of a block of data that we can
transfer from/to the disk. The efficiency of an algorithm in this model is equal
to the number of I/Os that the algorithm requires during its execution. We call
this concept of efficiency the I/O-efficiency of the algorithm. The I/O-efficiency
of an algorithm is expressed as a function of the input size N , but also of the
block size B and memory size M . To scan a set of N records stored in the disk
we need O(scan(N)) I/Os, where scan(N) = N/B. To sort a set of N records
we need O(sort(N)) I/Os, where sort(N) = N/B logM/B N/B.
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Today computers contain several layers of memory; these include layers of
cache that are utilised between the main memory of the computer and the pro-
cessor. In this context, the values of parameters M and B differ for every pair
of consecutive layers of cache that we consider. Then, to minimise the number
of block transfers between all layers, the algorithm must be designed so that it
achieves an optimal I/O-performance without knowing the parameters M and
B. The external memory algorithms that have this property are known as cache-
oblivious algorithms [5].

Previous Results For the problem of computing multiple resolution instances of a
given raster, we consider the case where the raster does not fit in the main mem-
ory of the computer. We want to design an external memory algorithm for this
problem that has an optimal performance both in terms of I/Os and in terms of
CPU operations. In a previous paper, Arge et al. [2] proposed two external mem-
ory algorithms for this problem; the first algorithm requires O(sort(N)) I/Os and
O(N logN) CPU time, and is very easy to implement. Their second algorithm
requires O(scan(N)) I/Os and O(N) CPU time, which is obviously optimal.
However, this algorithm assumes that M is at least Θ(B1+ε) for some selected
ε > 0. This algorithm is cache-aware, which means that M and B should be
known to the algorithm to achieve this performance. Moreover, this algorithm
has a strong limitation when it comes to its implementation; it requires that
Θ(B) files are maintained open simultaneously during its execution. Nowadays,
B can be in practice as large as a few million units, while most operating systems
allow that only a relatively small number of files can be open at the same time
(usually around a thousand).

Our Results In this paper we present a new, cache-oblivious algorithm that
achieves the optimal performance of O(scan(N)) I/Os and O(N) CPU time,
without making any assumptions on the size of the main memory; that is it
performs O(scan(N)) I/Os even when M = O(B). The new algorithm is very
easy to implement; we have developed a purely cache-oblivious implementation
of the algorithm, and we have tested its performance against an implementation
of the algorithm of Arge et al. that requires O(sort(N)) I/Os. Recall that the
O(scan(N)) algorithm of Arge et al. is not practically implementable due to
limitations of today’s operating systems. The new algorithm performs extremely
well and, as expected, clearly outperforms the older approach. We consider this to
be a solid proof that non-trivial cache-oblivious algorithms can be implemented
to perform efficiently in practice, and be used in real-world applications in the
place of standard cache-aware implementations.

2 Description of the Algorithm

Preliminaries For a raster G we denote by G[i, j] the cell that appears in the i-th
row and j-th column of G. We use v(i, j) to denote the value that is assigned to
this cell. We use |G| to indicate the number of cells of this raster. We assume that
G is a square; it consists of

√
N rows and

√
N columns of cells. Yet, it is easy to

show that our analysis holds also for rasters that do not have an equal number
of rows and columns. Given a cell G[i, j] of G, consider the set of cells G[k, l] for
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which it holds that 1 ≤ k ≤ i and 1 ≤ l ≤ j. We denote the sum of the values of
these cells by psum(i, j), that is:

psum(i, j) =
∑

1≤k≤i
1≤l≤j

v(k, l) .

The value psum(i, j) is the so-called prefix sum of cell G[i, j].
Let G be a raster of dimensions

√
N ×

√
N , and let µ be an integer such that

1 < µ ≤
√
N . We define Gµ as the raster of dimensions ⌈

√
N/µ⌉×⌈

√
N/µ⌉ such

that for any cell Gµ[i, j] the value vµ[i, j] associated with this cell is equal to the
average value of all cells G[k, l] for which we have that (i− 1)µ+1 ≤ k ≤ iµ and
(j − 1)µ + 1 ≤ l ≤ jµ. We say that Gµ is the scale instance of G at µ, and we
call µ the scale of this instance.

Considering the size of a scale instance Gµ, we observe that as we increase
µ the number of cells of Gµ decreases quadratically. In fact, Arge et al. showed
that the total size of all scale instances Gµ is Θ(N). We retrieve the following
lemma from their paper.

Lemma 1. Given a raster G of
√
N ×

√
N cells, the total number of cells for

all rasters Gµ with 2 ≤ µ ≤
√
N is less than 0.65 ·N .

Proof. The total number of cells for all rasters Gµ is:

√
N
∑

µ=2

N

µ2
< N

∞
∑

µ=1

1

µ2
= N · ζ(2) ,

where ζ(x) is the so-called Riemann zeta function [6]. The value of this function
is a constant for every x > 1. For x = 2 we have that ζ(2) ≤ 1.65. ⊓⊔

Let M be a 2D matrix whose entries are real numbers. We denote by M(i, j) the
value of the entry that appears in the i-th row and j-th column of this matrix.
We denote the number of entries of this matrix by |M |.

2.1 A Solution Based on Prefix Sums

In the rest of this section we describe our new cache-oblivious approach for
computing all scale instances of a raster G. To describe this new approach, we
first present some concepts used by Arge et al. [2]. For any scale instance Gµ of
a raster G, Arge et al. observed that we can express the value of a cell Gµ[i, j]

using the prefix sums of the cells of G as vµ[i, j] =
Sum(i,j,µ)

µ2 , where:

Sum(i, j, µ) = psum(iµ, jµ)− psum(iµ, (j − 1)µ)

−psum((i− 1)µ, jµ) + psum((i− 1)µ, (j − 1)µ) .

Hence, to compute Gµ we only need to extract the prefix sums from all cells G[i′, j′]
of G such that both i′ and j′ are integer multiples of µ. It is easy to compute
all rasters Gµ if G fits in the main memory; first we compute a matrix that has
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√
N ×

√
N entries, and which stores the prefix sums for all cells in G. Then we

can compute the value of each cell of Gµ in constant time, with only four ran-
dom accesses to the entries of this matrix. Since the total number of cells of all
rasters Gµ is Θ(N), this approach leads to an internal memory algorithm that
runs in Θ(N) CPU operations. However, it is not straightforward how to com-
pute the rasters Gµ if G does not fit in the main memory. To solve this problem
we provide the following definitions.

Let M1 denote the 2-dimensional matrix of
√
N ×

√
N entries, such that for

every entry M1(i, j) of this matrix we have that M1(i, j) = psum(i, j). For any
µ ∈ {2, 3, . . . ,

√
N}, let Mµ be the matrix that has ⌈

√
N/µ⌉ × ⌈

√
N/µ⌉ entries,

whereMµ(i, j) = M1(iµ, jµ). Thus,Mµ stores all the prefix sums that are needed

for constructing Gµ; the value of each cell Gµ(i, j) is equal to vµ[i, j] =
Sumµ(i,j)

µ2 ,
where:

Sumµ(i, j) = Mµ[i, j]−Mµ[i, j − 1]−Mµ[i− 1, j] +Mµ[i− 1, j − 1] .

Therefore, assume that we already had an efficient algorithm for computing all
matrices Mµ. Then, we can extract from these matrices all scale instances Gµ

I/O-efficiently, in only O(scan(N)) I/Os and Θ(N) CPU operations by simply
scanning each matrix Mµ, and maintaining four pointers to access the prefix
sums needed for computing each value vµ(i, j).

Hence, we now focus on designing an efficient algorithm for computing matri-
ces Mµ for every µ ∈ {2, 3, . . . ,

√
N}. It is easy to compute M1; we can do this by

scanning G, starting from G[1, 1] and visiting all cells in increasing order of their
row and column indices. To compute a matrix Mµ with µ > 1, we could scan
M1 and extract each entry M1(i, j) such that both i and j are multiples of µ.
However, in this manner we spend O(scan(N)) I/Os to extract each matrix Mµ,

leading to O(
√
N · scan(N)) I/Os for extracting all of these matrices.

To speed up the computation of the matricesMµ, we can exploit the following
property; consider two distinct integers ρ and λ such that ρ, λ ∈ {2, 3, . . . ,

√
N},

and ρ = νλ, for some ν ∈ N, ν > 1. Then it holds that Mρ(i, j) = Mλ(iν, jν) for
every entry Mρ(i, j) of matrix Mρ. In other words, the entries of matrix Mρ are
a subset of the entries of Mλ if ρ is divisible by λ. Thus, we can construct Mρ by
processing a matrix that can be much smaller than M1. To construct Mρ faster,
we want to use the smallest matrix Mλ for which ρ is a multiple of λ; we must
find the largest λ < ρ which is a divisor of ρ. We call this number the largest
distinct divisor of ρ, and we denote it by ldd(ρ). Consider two matrices Mρ and
Mλ such that ρ, λ ∈ {1, 2, . . . ,

√
N}, and ρ = ldd(λ). We say that matrix Mρ

derives from matrix Mλ, and that Mρ is a derived matrix of Mλ. In a similar
manner, we say that scale instance Gρ derives from instance Gλ. For a matrix Mµ

we denote the set of matrices that derive from Mµ by Dµ, that is:

Dµ = {Mρ : ρ ∈ {2, 3, . . . ,
√
N} and ρ = ldd(µ)} . (1)

To compute matrices Mµ, we first scan G to construct matrix M1 that stores all
prefix sums. Then, we extract all matrices D1 that derive from M1; these are
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the matrices Mµ such that µ is a prime ≤
√
N . To do this, we use a function

ExtractDerived(Mµ); the input of this function is a prefix sum matrix Mµ, and
the output is the set of the matrices that derive from Mµ. We describe later
in more detail how this function works. After constructing matrices Mµ ∈ D1,
we apply again function ExtractDerived on these matrices to extract all sets of
matrices Dµ. We continue this process recursively, until we have computed all

matrices Mµ for the values µ ∈ {2, 3, . . . ,
√
N}. We call the algorithm that we

just described for computing all the scale instances of G as MultirasterSpeedUp.
It is easy to prove that MultirasterSpeedUp computes the scale instances of G

correctly, assuming that function ExtractDerived(Mµ) computes correctly the
derived matrices of any given Mµ. Also, by Lemma 1, excluding the performance
of ExtractDerived , the rest of the algorithm requires only O(scan(N)) I/Os and
Θ(N) CPU operations. Next we present in detail how we can implement function
ExtractDerived .

2.2 Extracting the Derived Matrices

To compute the matrices Dµ that derive from a given matrix Mµ, we first have
to compute all scale values ρ such that Mρ is a matrix that derives from Mµ.
We call these values the derived indices of µ. We denote the set of these values
by Sµ. Given µ, we can calculate all derived scales Sµ using the following ob-
servation; let µ, ρ be two natural numbers such that µ = ldd(ρ). Then it holds
that µ = ρ/spd(ρ), where spd(ρ) is the smallest prime divisor of ρ. Since µ is
the largest distinct divisor of ρ we also have that spd(ρ) ≤ spd(µ). Based on
the above, to compute Sµ we first compute spd(µ); we go through all integers
κ ∈ {2, . . . , ⌈√µ⌉} in increasing order, and we stop when we find the first κ
that divides µ. Then we compute all prime numbers in the range [2, spd(µ)] by
trivially trying all possible pairs of integers within this range, and checking if
the largest of the two is divided by the smallest. For the special case µ = 1 the
smallest prime divisor is undefined, and we consider that Sµ consists of all prime

numbers smaller than
√
N . Thus, for µ > 1 we can compute scale values Sµ in

O(µ) CPU operations. We need at most O(scan(µ)) I/Os to store these values.
For µ = 1 this process requires O(N) CPU operations and O(scan(N)) I/Os.

To extract the derived matrices Dµ, we will use Mµ to construct an inter-
mediate file Fµ that contains altogether the entries of all matrices in Dµ. We
will then process this file to extract each derived matrix I/O-efficiently. More
specifically, file Fµ is organised as follows; for every prime ρ ∈ Sµ, and for every
entry Mρ(i, j) ∈ Mρ , Fµ contains a record of the form: < iρ, jρ, ρ, vµ(iρ, jρ) > .
The two first fields of the record indicate which is the entry in Mµ that has the
same value as Mρ(i, j). The third field indicates the scale of Mρ, and the last
field carries the value Mρ(i, j). Most importantly, the records in Fµ appear in
lexicographical order of their three first fields.

Thus, Fµ stores a record for each entry of the matrices in Dµ, including
multiples. The number of records in Fµ is O(|Mµ|); the number of entries of
Mµ is |Gµ|, and due to Lemma 1 the total number of cells of all the scale in-
stances of a raster Gµ cannot exceed |Gµ|. To construct Fµ, we create an indi-
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vidual file Fµ,κ for each matrix Mκ ∈ Dµ. File Fµ,κ contains only records of the
form {iκ, jκ, κ,⊗}, where ⊗ is a symbolic “no-data” value. Then we merge all
those files into Fµ in a bottom-up manner; first we generate Fµ by merging the
two files Fµ,κ and Fµ,ρ that correspond to the two smallest matrices Mρ and Mκ

in Dµ; that is ρ, κ are the two largest values in Sµ. We go on merging Fµ each
time with the smallest remaining file Fµ,λ, until all files are merged into Fµ.

Next we fill in the prefix sum values at the last field of each record in Fµ with
a single simultaneous scan of Fµ and Mµ. To extract matrices Dµ from Fµ we
scan Fµ once per matrix in Dµ. The matrices are extracted in order of decreasing
size; in the first scan of Fµ we extract the largest matrix Mρ ∈ Dµ, and so on and
so forth. To extract Mρ, we pick the records in Fµ whose third field is equal to ρ.
We then throw away these records from Fµ, creating a new smaller instance of
Fµ. When Fµ becomes empty we will have extracted all derived matrices in Dµ.
The correctness of the algorithm follows from how we handle the prefix sum
values in the records of file Fµ. Next we prove the efficiency of this algorithm.

Lemma 2. Function ExtractDerived computes the set of matrices Dµ that de-
rive from Mµ in O(scan(|Mµ|+ µ)) I/Os and O(|Mµ|+ µ) CPU operations.

Proof. We showed that for µ ≥ 1 computing the scales Sµ takes O(scan(µ))
I/Os and O(µ) CPU time. Recall that for the case µ = 1, we can compute
Sµ in O(scan(N)) I/Os and O(N) CPU operations. Now we prove that for any
µ > 1 we can construct all matrices Dµ in O(scan(|Mµ|)) I/Os and O(|Mµ|) CPU
operations. To construct file Fµ, we merge several smaller files Fµ,ρ, one merge
at a time. As soon as file Fµ,ρ gets merged with Fµ the records of Fµ,ρ become
a part of Fµ; from this point and on, these records are scanned once each time
we merge Fµ with another file Fµ,κ. Hence, each record that initially belonged
to file Fµ,ρ gets scanned as many times as the number of primes that are smaller
or equal to ρ; this is because Sµ contains all primes in the range [2, spd(µ)],
and because we merge files Fµ,κ in decreasing order of κ. In the mathematical
literature, the number of primes that are smaller or equal to ρ is denoted by π(ρ).
As each record of Fµ,ρ is scanned π(ρ) times, and as Fµ,ρ has |Mµρ| records, the
total number of records scanned when constructing Fµ is:

∑

ρ∈Sµ

π(ρ)|Mµρ| =
N

µ2

∑

ρ∈Sµ

π(ρ)

ρ2
. (2)

The following upper bound is known for π(ρ) [7]: π(ρ) < 1.26ρ
ln ρ . Combining this

with (2) we get:

N

µ2

∑

ρ∈Sµ

π(ρ)

ρ2
< 1.26

N

µ2

∑

ρ∈Sµ

1

ρ ln ρ
=

1.26

log e

N

µ2

∑

ρ∈Sµ

1

ρ log ρ
, (3)

where e is the base of the natural logarithm. We have that:

∑

ρ∈Sµ

1

ρ log ρ
≤

∞
∑

i=0

∑

ρ is prime

22
i
≤ρ≤22

i+1

1

ρ log ρ
≤

∞
∑

i=0

∑

ρ is prime

22
i
≤ρ≤22

i+1

1

2iρ
. (4)
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The following bound is known in the mathematical literature [7]:
∑

ρ is prime
ρ≤x

1

ρ
= O(log log x) . (5)

From (4) and (5), we get:

∞
∑

i=0

∑

ρ is prime

22
i
≤ρ≤22

i+1

1

2iρ
= O

( ∞
∑

i=0

i+ 1

2i

)

= O(1) .

Combining (3) with (5) we conclude that the total number of records that we
need to scan in order to construct Fµ is O(|Mµ|). This requires O(scan(|Mµ|))
I/Os. During the merging we do one comparison for every record that we scan,
which implies that we do O(|Mµ|) operations in the CPU in total.

It remains now to show that extracting all matrices of Dµ from Fµ requires
O(scan(|Mµ|)) I/Os and O(|Mµ|) time in the CPU. Recall that we extract the
matrices Mρ in increasing order of ρ, hence, the records of Mµσ will get scanned
as many as π(σ) times each. Therefore the records scanned in this part of the
algorithm are as many as the records scanned for constructing Fµ. We showed
that this number is equal to O(|Mµ|), implying O(scan(|Mµ|)) I/Os and O(|Mµ|)
CPU operations for extracting the matrices for Fµ, and the lemma follows. ⊓⊔
By construction our algorithm does not require knowledge of M and B, hence it
is cache-oblivious. Also, its performance does not depend on a lower bound on
the size of M . We obtain the following theorem.

Theorem 1. Given a raster G of
√
N ×

√
N cells, we can compute all scale

instances of G cache-obliviously in O(scan(N)) I/Os and O(N) CPU operations.

Proof. Function ExtractDerived is called only once for each matrix Mµ so, ac-
cording to Lemma 2, the total number of I/Os and CPU operations required
by the entire algorithm is O(scan(

∑

µ(|Mµ| + µ))) and O(
∑

µ(|Mµ| + µ)) re-
spectively. Since Mµ has the same size as Gµ, then according to Lemma 1 and
because

∑

µ |Mµ| = Θ(N), the theorem follows. ⊓⊔
2.3 Ordering the Prefix Sum Matrices

So far, we have described an algorithm that computes efficiently all scale in-
stances of a given raster G. However, this algorithm does not output the scale
instances of G in the right order. More specifically, from the description of algo-
rithmMultirasterSpeedUp we can see that there can be pairs of scale instances Gµ

and Gρ with µ < ρ such that Gρ appears in the output before Gµ. Yet, for most
practical applications, it makes sense to have those instances sorted in the output
in order of increasing scale value. Fortunately, we can solve this problem while
achieving the same performance as with the algorithm MultirasterSpeedUp. The
proof of the next theorem appears in the full version of the paper.

Theorem 2. Given a raster G of
√
N ×

√
N cells, we can compute cache-

obliviously all scale instances of G, and output these instances in order of in-
creasing scale using O(scan(N)) I/Os and O(N) CPU operations.
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2.4 Improving the practical performance of the algorithm

Earlier in this section, we described how we can extract the prefix sum ma-
trices Dµ from a matrix Mµ by building an intermediate file Fµ. This ap-
proach of building Fµ requires merging several smaller files, and needs only
O(scan(|Mµ|)) I/Os. Yet we can evade this merging process, and thus improve
the practical I/O-performance of the entire algorithm by a constant factor;
to build Fµ, we can scan Mµ and stream the records that correspond to the
entries of matrices in Dµ in the form of queries to Mµ. As soon as we ex-
tract the prefix sum value of a queried record, we append this record in Fµ.

M2µ

M3µ

Mspd(µ)−1µ Mspd(µ)µ

Fig. 1. The structure of
the skewed heap that we
use to stream the records.
With each node we indi-
cate that derived matrix
that corresponds to this
node.

To do this properly, the records should be streamed
to Mµ in lexicographical order of their three first
fields. To produce the stream of the ordered records
we build a min-heap structure. Each leaf node ν[ρ] of
the heap corresponds to a derived matrix Mµρ ∈ Dµ

and stores the next record of Mµρ that has to be
streamed. The root of the heap stores the next record
to be queried toMµ. Figure 1 illustrates the structure
of the heap; we can see that the heap is as skewed
as it can get in favour of the larger derived matri-
ces. The heap contains one leaf node for each derived
matrix of Mµ, so the size of the heap is O(spd(µ)).
Although we do not know M , we can build the heap
so that at any point the nodes of the O(M) topmost
levels appear in memory. For the rest of the levels, a
record will have to pay one I/O for every B levels that it goes up in the heap.
Although this method is oblivious of M , we show that we can stream all records
to Mµ so that the number of I/Os decreases as M increases. The proof of the
following lemma is provided in the full version of the paper.

Lemma 3. Let Mµ be a prefix sum matrix. We can stream all the records that
correspond to the entries of the derived matrices of Dµ in lexicographical order
in O(scan(|Mµ|/ logM)) I/Os and O(|Mµ|) CPU operations.

3 Implementation & Benchmarks

We have implemented MultirasterSpeedUp and evaluated its efficiency on input
datasets of various sizes. In the experiments that we conducted, we tried sev-
eral alternatives in the way that we implemented the most important routines
of the algorithm, and we assessed the efficiency of the implementation for each
one of these alternatives. We also compared the performance of our implemen-
tation with an older implementation of the O(sort(N)) algorithm of Arge et al.
. Recall that it is not currently possible to implement the O(scan(N)) algorithm
of Arge et al. due to restrictions in standard operating systems; this algorithm
requires that B files are open simultaneously, and while B today is usually in the
order of millions of units, standard operating systems allow for about a thousand
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files open at the same time. Next we describe in detail the settings that we used
for our experiments.

To measure the performance of our algorithm we used massive raster datasets
of many sizes. The datasets that we used originate from a massive raster that
consists of roughly 26 billion cells, arranged in 146974 rows and 176121 columns.
This raster models the terrain surface over the entire region of Denmark. Each
cell of the raster represents a square region on the terrain that has dimension of
2 meters. The elevation of each cell is stored as a 4-byte floating point number,
and the entire dataset is stored in a geotif file that has 97 gigabytes size. From
this dataset, we constructed all scale instances Gµ for µ ≤ 146974, and we used
the largest of these instances as input for the algorithm; we did this to evaluate
the performance of the algorithm for a large range of different input sizes.

As already mentioned, we tried different options for implementing the key
routines of the algorithm. These are the routines that involve merging or extract-
ing a sequence of files from/to another larger file. For those routines we evaluated
how the performance of the algorithm is affected when trying to merge/extract
several files simultaneously. More specifically, the routines that we tweaked are
the following:

– The part of ExtractDerived where, given a prefix sum matrix Mµ, we merge
several files to construct an intermediate file Fµ which contains the records
that correspond to all the entries of the derived matrices Dµ.

– The part of ExtractDerived where we extract the derived matrices Dµ from
the intermediate Fµ.

For the above routines we measured how the performance of the algorithm
changes if we change the number of files that are merged or extracted together.
For the first routine we use f1 to denote the number of files that we merged
simultaneously at each point for constructing Fµ. For the second routine we
use f2 to denote the number of derived matrices that we extracted together each
time that we performed a scan of Fµ. In the description of the algorithm, we
convey that the value of each of these two parameters is equal to two.

We also implemented a version of the routine that constructs the interme-
diate file Fµ based on the mechanism of the skewed heap that is described in
Section 2.4. Recall that this method does not involve merging any files in or-
der to construct Fµ. All of the variants of our implementation work in a purely
cache-oblivious manner.

The algorithms were implemented in C++ using the software library TPIE

(the Templated Portable I/O Environment) [8]. This library offers I/O-efficient
algorithms for scanning and sorting large files in external memory. Our exper-
iments where run on a machine with a 3.2GHz four-core Xeon CPU (W3565).
The main memory of the computer is 12GB. This workstation has 20 disks that
have a btrfs (raid 0) file system configuration. The operating system on this com-
puter was Linux version 2.6.38. During our experiments, 8GB of memory was
managed by our software, and the rest was left to the operating system for disk
cache. For each of the versions of our implementation, the maximum amount of
disk space used at any time during the execution was 672 GB.
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In our first experiment, we ran our implementation of the algorithm on the
97GB dataset for all possible combinations of values of the two parameters
f1, f2 ∈ {2, 3, 10, 20, 35, 50}. We also ran the implementation of the algorithm us-
ing the skewed heap approach for all values of parameter f2 ∈ {2, 3, 10, 20, 40, 50}.
From all the possible versions that we tried, the best running time was achieved
by the version that uses the skewed heap approach, and parameter value f2 = 50;
the running time in this case was 2 hours and 15 minutes. The best running time
that we got without using the skewed heap approach was for the version with
parameter values f1 = f2 = 50. In this case, the running time was 2 hours and
28 minutes. The worst running time that we got among all versions was from the
version that has parameter values f1 = 2, and f2 = 2; the running time for this
version was 3 hours and 35 minutes. In general, the running time of each version
that behaved like a decreasing function on the values of paramaters f1 and f2.
Running the implementation of the O(sort(N)) algorithm of Arge et al. on the
largest dataset yielded a running time of 13 hours and 14 minutes. This running
time is a bit less than four times larger than the worst running time that we got
for any version of our implementation. For our next experiment, we ran the two
best versions of our implementation on the datasets that we got from extracting
the 100 largest scale instances of the 97GB raster, including the initial raster
itself. We also ran on these datasets the implementation of the O(sort(N)) algo-
rithm of Arge et al., and the naive internal-memory algorithm that uses prefix
sums. Figure 2 illustrates the performance of the four implementations. There,
we get a good impression on how the performance of our implementation scales
with the size of the input. This is a strong indication that the theoretical bounds
that we proved for the performance of the algorithm can be reflected in practice.
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Fig. 2. The performance of the two best ver-
sions of our implementation, together with the
implementation of the O(sort(N)) algorithm of
Arge et al. , and the naive internal memory algo-
rithm. The x-axis shows the input sizes using a
logarithmic scale with base 10. The y-axis shows
running times divided by input size.

The results of both experiments
show evidently the practical effi-
ciency of our algorithm, when also
compared to the implementation
of the algorithm of Arge et al..
Of course, it could be argued
here that this result is hardly sur-
prising; in theory, an O(sort(N))
algorithm has obviously worse
asymptotical behaviour than an
O(scan(N)) algorithm. However,
in practice, the performance of
an O(sort(N)) algorithm scales
linearly in terms of I/Os. Fig-
ure 2 provides some evidence on
this argument for the algorithm of
Arge et al., at least for the range
of input sizes that we considered.
The explanation behind this phe-
nomenon is that the ratio M/B in most computers has a value close to one thou-
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sand, and therefore the term logM/B(N/B) in sort(N) is not larger than two in
all practical cases. Thus, it is not unrealistic to observe O(sort(N)) algorithms
performing better in practice than O(scan(N)) algorithms. More than that, in
our case, we compare a cache-aware implementation with a cache-oblivious one,
and we could expect that this is an advantage for the performance of the cache-
aware implementation. Yet, as we see from our experiments, this is clearly not
the case; the cache-oblivious algorithm performs much better in practice. This
result shows that purely cache-oblivious software can be developed to perform
efficiently in real-world applications. It will be interesting to see if similar results
can be obtained for other external memory problems as well.
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Fig. 3. The CPU utilisation and I/O-throughput
of the best version of our implementation.

In our last experiment, we
ran the best version of our imple-
mentation on the largest of our
datasets, and at every minute
of the execution we measured
the rate of the CPU utilisation
and the I/O-throughput of this
implementation. Figure 3 illus-
trates the results of this experi-
ment. We see that both the I/O-
throughput and CPU utilisation
were fairly constant during the
run. Also, for the largest part of
the execution of the algorithm, the CPU utilisation remained above or close to
40%; hence, the running time of the algorithm was almost equally distributed
between the CPU and the I/O-operations.
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