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Abstract. We consider the metric uncapacitated facility location prob-
lem(UFL). In this paper we modify the (1 + 2/e)-approximation
algorithm of Chudak and Shmoys to obtain a new (1.6774,1.3738)-
approximation algorithm for the UFL problem. Our linear programing
rounding algorithm is the first one that touches the approximability limit
curve (γf , 1+2e−γf ) established by Jain et al. As a consequence, we ob-
tain the first optimal approximation algorithm for instances dominated
by connection costs.

Our new algorithm - when combined with a (1.11,1.7764)-approxima-
tion algorithm proposed by Jain, Mahdian and Saberi, and later analyzed
by Mahdian, Ye and Zhang - gives a 1.5-approximation algorithm for the
metric UFL problem. This algorithm improves over the previously best
known 1.52-approximation algorithm by Mahdian, Ye and Zhang, and it
cuts the gap with the approximability lower bound by 1/3.

The algorithm is also used to improve the approximation ratio for the
3-level version of the problem.

1 Introduction

The Uncapacitated Facility Location (UFL) problem is defined as follows. We
are given a set F of nf facilities and a set C of nc clients. For every facility
i ∈ F , there is a nonnegative number fi denoting the opening cost of the facility.
Furthermore, for every client j ∈ C and facility i ∈ F , there is a connection cost
cij between facility i and client j. The goal is to open a subset of the facilities
F ′ ⊆ F , and connect each client to an open facility so that the total cost is
minimized. The UFL problem is NP-complete, and max SNP-hard (see [8]). A
UFL instance is metric if its connection cost function satisfies a kind of triangle
inequality, namely if cij ≤ cij′ + ci′j′ + ci′j for any i, i′ ∈ C and j, j′ ∈ F .

The UFL problem has a rich history starting in the 1960’s. The first results on
approximation algorithms are due to Cornuéjols, Fisher, and Nemhauser [7] who
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considered the problem with an objective function of maximizing the “profit” of
connecting clients to facilities minus the cost of opening facilities. They showed
that a greedy algorithm gives an approximation ratio of (1 − 1/e) = 0.632 . . . ,
where e is the base of the natural logarithm. For the objective function of min-
imizing the sum of connection cost and opening cost, Hochbaum [9] presented
a greedy algorithm with an O(log n) approximation guarantee, where n is the
number of clients. The first approximation algorithm with constant approxima-
tion ratio for the minimization problem where the connection costs satisfy the
triangle inequality, was developed by Shmoys, Tardos, and Aardal [14]. Several
approximation algorithms have been proposed for the metric UFL problem after
that, see for instance [8,4,5,6,15,10,12]. Up to now, the best known approxi-
mation ratio was 1.52, obtained by Mahdian, Ye, and Zhang [12]. Many more
algorithms have been considered for the UFL problem and its variants. We refer
an interested reader to survey papers by Shmoys [13] and Vygen [16].

We will say that an algorithm is a λ-approximation algorithm for a minimiza-
tion problem if it computes, in polynomial time, a solution that is at most λ
times more expensive than the optimal solution. Specifically, for the UFL prob-
lem we consider the notion of bifactor approximation studied by Charikar and
Guha [4]. We say that an algorithm is a (λf ,λc)-approximation algorithm if the
solution it delivers has total cost at most λf · F ∗ + λc · C∗, where F ∗ and C∗

denote, respectively, the facility and the connection cost of an optimal solution.
Guha and Khuller [8] proved by a reduction from Set Cover that there is

no polynomial time λ-approximation algorithm for the metric UFL problem
with λ < 1.463, unless NP ⊆ DTIME(nlog log n). Sviridenko showed that the
approximation lower bound of 1.463 holds, unless P = NP (see [16]). Jain et
al. [10] generalized the argument of Guha and Khuller to show that the existence
of a (λf ,λc)-approximation algorithm with λc < 1 + 2e−λf would imply NP ⊆
DTIME(nlog log n).

1.1 Our Contribution

We modify the (1+2/e)-approximation algorithm of Chudak [5], see also Chudak
and Shmoys [6], to obtain a new (1.6774,1.3738)-approximation algorithm for
the UFL problem. Our linear programing (LP) rounding algorithm is the first
one that achieves an optimal bifactor approximation due to the matching lower
bound of (λf , 1+2e−λf ) established by Jain et al. In fact we obtain an algorithm
for each point (λf , 1+2e−λf ) such that λf ≥ 1.6774, which means that we have
an optimal approximation algorithm for instances dominated by connection cost
(see Figure 1).

Our main technique is to modify the support graph corresponding to the LP
solution before clustering, and to use various average distances in the fractional
solution to bound the cost of the obtained solution. Modifying the solution in
such a way was introduced by Lin and Vitter [11] and is called filtering. Through-
out this paper we will use the name sparsening technique for the combination of
filtering with our new analysis.
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Fig. 1. Bifactor approximation picture. The gray area corresponds to the improvement
due to our algorithm.

One could view our contribution as an improved analysis of a minor modifi-
cation of the algorithm by Sviridenko [15], which also introduces filtering to the
algorithm of Chudak and Shmoys. The filtering process that is used both in our
algorithm and in the algorithm by Sviridenko is relatively easy to describe, but
the analysis of the impact of this technique on the quality of the obtained solu-
tion is quite involved in each case. Therefore, we prefer to state our algorithm
as an application of the sparsening technique to the algorithm of Chudak and
Shmoys, which in our opinion is relatively easy do describe and analyze.

The motivation for the sparsening technique is the “irregularity” of instances
that are potentially tight for the original algorithm of Chudak and Shmoys. We
propose a way of measuring and controlling this irregularity. In fact our cluster-
ing is the same as the one used by Sviridenko in his 1.58-approximation algo-
rithm [15], but we continue our algorithm in the spirit of Chudak and Shmoys’
algorithm, which leads to an improved bifactor approximation guaranty.

Our new algorithm may be combined with the (1.11, 1.7764)-approximation
algorithm of Jain et al. to obtain a 1.5-approximation algorithm for the UFL
problem. This is an improvement over the previously best known 1.52-
approximation algorithm of Mahdian et al., and it cuts of a 1/3 of the gap with
the approximation lower bound by Guha and Khuler [8].

We also note that the new (1.6774,1.3738)-approximation algorithm may be
used to improve the approximation ratio for the 3-level version of the UFL
problem to 2.492.
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2 Preliminaries

We will review the concept of LP-rounding algorithms for the metric UFL prob-
lem. These are algorithms that first solve the linear relaxation of a given integer
programing (IP) formulation of the problem, and then round the fractional so-
lution to produce an integral solution with a value not too much higher than
the starting fractional solution. Since the optimal fractional solution is at most
as expensive as an optimal integral solution, we obtain an estimation of the
approximation factor.

2.1 IP Formulation and Relaxation

The UFL problem has a natural formulation as the following integer program-
ming problem.

minimize
∑

i∈F ,j∈C cijxij +
∑

i∈F fiyi

subject to
∑

i∈F xij = 1 for all j ∈ C (1)
xij − yi ≤ 0 for all i ∈ F , j ∈ C (2)
xij , yi ∈ {0, 1} for all i ∈ F , j ∈ C (3)

A linear relaxation of this IP formulation is obtained by replacing Condition
(3) by the condition xij ≥ 0 for all i ∈ F , j ∈ C . The value of the solution to this
LP relaxation will serve as a lower bound for the cost of the optimal solution.
We will also make use of the following dual formulation of this LP.

maximize
∑

j∈C vj

subject to
∑

j∈C wij ≤ fi for all i ∈ F (4)
vj − wij ≤ cij for all i ∈ F , j ∈ C (5)
wij ≥ 0 for all i ∈ F , j ∈ C (6)

2.2 Clustering

The first constant factor approximation algorithm for the metric UFL problem by
Shmoys et al., but also the algorithms by Chudak and Shmoys, and by Sviridenko
are based on the following clustering procedure. Suppose we are given an optimal
solution to the LP relaxation of our problem. Consider the bipartite graph G
with vertices being the facilities and the clients of the instance, and where there
is an edge between a client j and a facility i if the corresponding variable xij in
the optimal solution to the LP relaxation is positive. We call G a support graph
of the LP solution. If two clients are both adjacent to the same facility in graph
G, we will say that they are neighbors in G.

The clustering of this graph is a partitioning of clients into clusters together
with a choice of a leading client for each of the clusters. This leading client
is called a cluster center. Additionally we require that no two cluster centers
are neighbors in the support graph. This property helps us to open one of the
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open facility

cluster center
j j’

cluster

a path from client j to the facility
serving his cluster center j’

Fig. 2. A cluster. If we make sure that at least one facility is open around a cluster
center j′ , then any other client j from the cluster may use this facility. Because the
connection costs are assumed to be metric, the distance to this facility is at most the
length of the shortest path from j to the open facility.

adjacent facilities for each cluster center. Formally we will say that a clustering
is a function g : C → C that assigns each client to the center of his cluster. For
a picture of a cluster see Figure 2.

All the above mentioned algorithms use the following procedure to obtain the
clustering. While not all the clients are clustered, choose greedily a new cluster
center j, and build a cluster from j and all the neighbors of j that are not
yet clustered. Obviously the outcome of this procedure is a proper clustering.
Moreover, it has a desired property that clients are close to their cluster centers.
Each of the mentioned LP-rounding algorithms uses a different greedy criterion
for choosing new cluster centers. In our algorithm we will use the clustering with
the greedy criterion of Sviridenko [15].

2.3 Scaling and Greedy Augmentation

The techniques described here are not directly used by our algorithm, but they
help to explain why the algorithm of Chudak and Shmoys is close to optimal.
We will discuss how scaling facility opening costs before running an algorithm,
together with another technique called greedy augmentation may help to balance
the analysis of an approximation algorithm for the UFL problem.

The greedy augmentation technique introduced by Guha and Khuller [8] (see
also [4]) is the following. Consider an instance of the metric UFL problem and a
feasible solution. For each facility i ∈ F that is not opened in this solution, we
may compute the impact of opening facility i on the total cost of the solution, also
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called the gain of opening i, denoted by gi. The greedy augmentation procedure,
while there is a facility i with positive gain gi, opens a facility i0 that maximizes
the ratio of saved cost to the facility opening cost gi

fi
, and updates values of gi.

The procedure terminates when there is no facility whose opening would decrease
the total cost.

Suppose we are given an approximation algorithm A for the metric UFL
problem and a real number δ ≥ 1. Consider the following algorithm Sδ(A).

1. scale up all facility opening costs by a factor δ;
2. run algorithm A on the modified instance;
3. scale back the opening costs;
4. run the greedy augmentation procedure.

Following the analysis of Mahdian, Ye, and Zhang [12] one may prove the
following lemma.

Lemma 1. Suppose A is a (λf ,λc)-approximation algorithm for the metric UFL
problem, then Sδ(A) is a (λf + ln(δ),1+ λc−1

δ )-approximation algorithm for this
problem.

This method may be applied to balance an (λf ,λc)-approximation algorithm
with λf << λc. However, our 1.5-approximation algorithm is balanced differ-
ently. It is a composition of two algorithms that have opposite imbalances.

3 Sparsening the Graph of the Fractional Solution

In this section we describe a technique that we use to control the expected
connection cost of the obtained solution. It is based on modifying a fractional
solution in a way introduced by Lin and Vitter [11] and called filtering.

The filtering technique has been successfully applied to the facility location
problem, also in the algorithms of Shmoys, Tardos, and Aardal [14] and of Sviri-
denko [15]. We will give an alternative analysis of what is the effect of applying
filtering on a fractional solution to the LP relaxation of the UFL problem.

Suppose that for a given UFL instance we have solved its LP relaxation, and
that we have an optimal primal solution (x∗, y∗) and the corresponding optimal
dual solution (v∗, w∗). Such a fractional solution has facility cost F ∗ =

∑
i∈F fiy

∗
i

and connection cost C∗ =
∑

i∈F ,j∈C cijx
∗
ij . Each client j has its share vj of the

total cost. This cost may again be divided into a client’s fractional connection
cost C∗

j =
∑

i∈F cijx
∗
ij , and his fractional facility cost F ∗

j = v∗j − C∗
j .

3.1 Motivation and Intuition

The idea behind the sparsening technique is to make use of some irregularities
of an instance if they occur. We call an instance regular if the facilities that
fractionally serve a client j are all at the same distance from j. For such an
instance the algorithm of Chudak and Shmoys produces a solution whose cost is
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bounded by F ∗ + (1 + 2
e )C∗, which also follows from our analysis in Section 4.

It remains to use the technique described in section 2.3 to obtain an optimal
1.463 . . .-approximation algorithm for such regular instances.

The instances that are not regular are called irregular. Difficult to understand
are the irregular instances. In fractional solutions for these instances particular
clients are fractionally served by facilities at different distances. Our approach
is to divide facilities serving a client into two groups, namely close and distant
facilities. We will remove links to distant facilities before the clustering step, so
that if there are irregularities, distances to cluster centers should decrease.

We measure the local irregularity of an instance by comparing a fractional
connection cost of a client to the average distance to his distant facilities. In
the case of a regular instance, the sparsening technique gives the same results
as technique described in section 2.3, but for irregular instances sparsening also
takes some advantage of the irregularity.

3.2 Details

We will start by modifying the primal optimal fractional solution (x∗, y∗) by
scaling the y-variables by a constant γ > 1 to obtain a suboptimal fractional
solution (x∗, γ ·y∗). Now suppose that the y-variables are fixed, but that we now
have a freedom to change the x-variables in order to minimize the total cost.
For each client j we change the corresponding x-variables so that he uses his
closest facilities in the following way. We choose an ordering of facilities with
nondecreasing distances to client j. We connect client j to the first facilities in
the ordering so that among facilities fractionally serving j only the latest one
in the chosen ordering may be opened more then it serves j. Formally, for any
facilities i and i′ such that i′ is later in the ordering, if xij < yi then xi′j = 0.

Without loss of generality, we may assume that this solution is complete (i.e.
there are no i ∈ F , j ∈ C such that 0 < xij < yi). Otherwise we may split facilities
to obtain an equivalent instance with a complete solution - see [15][Lemma 1]
for a more detailed argument.

Let (x, y) denote the obtained complete solution. For a client j we say that a
facility i is one of his close facilities if it fractionally serves client j in (x, y). If
xij = 0, but facility i was serving client j in solution (x∗, y∗), then we say, that
i is a distant facility of client j.

Definition 1. Let

rγ(j) =

{ γ
γ−1

∑
i∈{i∈F|xij=0} cijx∗

ij−C∗
j

F ∗
j

for F ∗
j > 0

0 for F ∗
j = 0.

The value rγ(j) is a measure of the irregularity of the instance around client j.
It is the average distance to a distant facility minus the fractional connection
cost C∗

j (C∗
j is the general average distance to both close and distant facilities)

divided by the fractional facility cost of a client j; or it is equal 0 if F ∗
j = 0.

Observe, that rγ(j) takes values between 0 and 1. rγ(j) = 0 means that client j
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10 distant
facilities

close facilities

distance

average distance to distant facilities

average distance to close facilities

1
γ

v∗
j = C∗

j + F ∗
j

C∗
j + rγ(j) · F ∗

j

C∗
j

C∗
j − r′

γ(j) · F ∗
j

Fig. 3. Distances to facilities serving client j; the width of a rectangle corresponding
to facility i is equal to x∗

ij . Figure explains the meaning of rγ(j).

is served in the solution (x∗, y∗) by facilities that are all at the same distance.
In the case of rγ(j) = 1 the facilities are at different distances and the distant
facilities are all so far from j that j is not willing to contribute to their opening.
In fact, for clients j with F ∗

j = 0 the value of rγ(j) is not relevant for our analysis.
To get some more intuition for the F ∗

j and rγ(j) values, imagine that you
know F ∗

j and C∗
j , but the adversary is constructing the fractional solution and

he decided about distances to particular facilities fractionally serving client j.
One could interpret F ∗

j as a measure of freedom the adversary has when he
chooses those distances. In this language, rγ(j) is a measure of what fraction of
this freedom is used to make distant facilities more distant than average facilities.

Let r′γ(j) = rγ(j) ∗ (γ − 1). For client j with F ∗
j > 0 we have r′γ(j) =

C∗
j −

∑
i∈F cijxij

F ∗
j

which is the fractional connection cost minus the average dis-
tance to a close facility, divided by the fractional facility cost of a client j.

Observe, that for every client j the following hold (see Figure 3):

– his average distance to a close facility equals DC
av(j) = C∗

j − r′γ(j) · F ∗
j ,

– his average distance to a distant facility equals DD
av(j) = C∗

j + rγ(j) · F ∗
j ,

– his maximal distance to a close facility is at most the average distance to a
distant facility, DC

max(j) ≤ DD
av(j) = C∗

j + rγ(j) · F ∗
j .
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Consider the bipartite graph G obtained from the solution (x, y), where each
client is directly connected to his close facilities. We will greedily cluster this
graph in each round choosing the cluster center to be an unclustered client j
with the minimal value of DC

av(j) + DC
max(j). In this clustering, each cluster

center has a minimal value of DC
av(j) + DC

max(j) among clients in his cluster.

4 Our New Algorithm

Consider the following algorithm A1(γ):

1. Solve the LP relaxation of the problem to obtain a solution (x∗, y∗).
2. Scale up the value of the facility opening variables y by a constant γ > 1,

then change the value of the x-variables so as to use the closest possible
fractionally open facilities (see Section 3.2).

3. If necessary, split facilities to obtain a complete solution (x, y).
4. Compute a greedy clustering for the solution (x, y), choosing as cluster cen-

ters unclustered clients minimizing DC
av(j) + DC

max(j).
5. For every cluster center j, open one of his close facilities randomly with

probabilities xij .
6. For each facility i that is not a close facility of any cluster center, open it

independently with probability yi.
7. Connect each client to an open facility that is closest to him.

In the analysis of this algorithm we will use the following result:

Lemma 2. Given n independent events e1, e2, . . . , en that occur with probabil-
ities p1, p2, . . . , pn respectively, the event e1 ∪ e2 ∪ . . . ∪ en (i.e. at least one of
ei) occurs with probability at least 1 − 1

e
∑n

i=1 pi
, where e denotes the base of the

natural logarithm.

Theorem 1. Algorithm A1(γ = 1.67736) produces a solution with expected cost
E[cost(SOL)] ≤ 1.67736 · F ∗ + 1.37374 · C∗.

Proof. The expected facility opening cost of the solution is
E[FSOL] =

∑
i∈F fiyi = γ ·

∑
i∈F fiy

∗
i = γ · F ∗.

To bound the expected connection cost we show that for each client j there
is an open facility within a certain distance with a certain probability. If j is a
cluster center, one of his close facilities is open and the expected distance to this
open facility is DC

av(j) = C∗
j − r′γ(j) · F ∗

j .
If j is not a cluster center, he first considers his close facilities (see Figure 4).

If any of them is open, the expected distance to the closest open facility is at
most DC

av(j). From Lemma 2, with probability pc ≥ (1 − 1
e ), at least one close

facility is open.
Suppose none of the close facilities of j is open, but at least one of his dis-

tant facilities is open. Let pd denote the probability of this event. The expected
distance to the closest facility is then at most DD

av(j).
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j
cluster center j’

close facilities of j

distant facilities of j

close facilities of j’

Fig. 4. Facilities that client j may consider: his close facilities, distant facilities, and
close facilities of cluster center j′

If neither any close nor any distant facility of client j is open, then he connects
himself to the facility serving his cluster center g(j) = j′. Again from Lemma 2,
such an event happens with probability ps ≤ 1

eγ . In the following we will show
that if γ < 2 then the expected distance from j to the facility serving j′ is at most
DD

av(j)+DC
max(j′)+DC

av(j′). Let Cj (Dj) be the set of close (distant) facilities of
j. For any set of facilities X ⊂ F , let d(j, X) denote the weighted average distance
from j to i ∈ X (with values of opening variables yi as weights).

If the distance between j and j′ is at most DD
av(j)+DC

av(j′), then the remaining
DC

max(j′) is enough for the distance from j′ to any of his close facilities. Suppose
now that the distance between j and j′ is bigger than DD

av(j) + DC
av(j

′) (*).
We will bound d(j′, Cj′ \ (Cj ∪ Dj)), the average distance from cluster center
j′ to his close facilities that are neither close nor distant facilities of j (since
the expected connection cost that we compute is on the condition that j was
not served directly). The assumption(*) implies that d(j′, Cj ∩ Cj′) > DC

av(j′).
Therefore, if d(j′, Dj ∩ Cj′) ≥ DC

av(j′), then d(j′, Dj \ (Cj ∪ Dj)) ≤ DC
av(j

′) and
the total distance from j is small enough.

The remaining case is that d(j′, Dj∩Cj′ ) = DC
av(j

′)−z for some positive z (**).
Let ŷ =

∑
i∈(Cj′∩Dj) yi be the total fractional opening of facilities in Cj′ ∪ Dj in

the modified fractional solution (x, y). From (*) we conclude, that d(j, Dj∩Cj′ ) ≥
DD

av(j)+z, which implies d(j, Dj\Cj′) ≤ DD
av(j)−z· ŷ

γ−1−ŷ (note that (**) implies
(Dj \Cj′) �= ∅ and γ −1− ŷ > 0), hence DC

max(j) ≤ DD
av(j) − z · ŷ

γ−1−ŷ . Combin-
ing this with assumption (*) we conclude that the minimal distance from j′ to a
facility in Cj ∩ Cj′ is at least DD

av(j) + DC
av(j

′) − DC
max(j) ≥ DC

av(j
′) + z · ŷ

γ−1−ŷ .
Assumption (**) implies d(j′, Cj′ \ Dj) = DC

av(j′) + z · ŷ
1−ŷ . Concluding, if γ < 2

then d(j′, Cj′ \ (Dj ∪ Cj)) ≤ DC
av(j

′) + z · ŷ
γ−1−ŷ .
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Fig. 5. Figure presents performance of our algorithm for different values of parameter
γ. The solid line corresponds to regular instances with rγ(j) = 0 for all j and it
coincides with the approximability lower bound curve. The dashed line corresponds
to instances with rγ(j) = 1 for all j. For a particular choice of γ we get a horizontal
segment connecting those two curves; for γ ≈ 1.67736 the segment becomes a single
point. Observe that for instances dominated by connection cost only a regular instance
may be tight for the lower bound.

Therefore, the expected connection cost from j to a facility in Cj′ \ (Dj ∪ Cj)
is at most

DC
max(j) + DC

max(j′) + d(j′, Cj′ \ (Dj ∪ Cj))
≤ DD

av(j) − z · ŷ
γ−1−ŷ + DC

max(j′) + DC
av(j

′) + z · ŷ
γ−1−ŷ

= DD
av(j) + DC

max(j′) + DD
av(j

′).

Putting all the cases together, the expected total connection cost is

E[CSOL] ≤
∑

j∈C
(
pc · DC

av(j)+pd · DD
av(j)+ps · (DD

av(j)+DC
max(j′)+DC

av(j
′))

)

≤
∑

j∈C
(
(pc + ps) · DC

av(j) + (pd + 2ps) · DD
av(j)

)

=
∑

j∈C
(
(pc + ps) · (C∗

j − r′γ(j) · F ∗
j )+(pd + 2ps) · (C∗

j + rγ(j) · F ∗
j )

)

= ((pc + pd + ps) + 2ps) · C∗

+
∑

j∈C
(
(pc+ps) · (−rγ(j) · (γ − 1) · F ∗

j ) + (pd + 2ps) · (rγ(j) · F ∗
j )

)

= (1 + 2ps) · C∗ +
∑

j∈C
(
F ∗

j · rγ(j) · (pd+2ps − (γ − 1) · (pc + ps))
)

≤ (1+ 2
eγ ) · C∗+

∑
j∈C

(
F ∗

j · rγ(j) · (1
e + 1

eγ − (γ − 1) · (1 − 1
e + 1

eγ ))
)
.

By setting γ = γ0 ≈ 1.67736 such that 1
e + 1

eγ0 − (γ0 − 1) · (1 − 1
e + 1

eγ0 )=0,
we obtain E[CSOL] ≤ (1 + 2

eγ0 ) · C∗ ≤ 1.37374 · C∗. ��

The algorithm A1 with γ = 1+ ε (for a sufficiently small positive ε) is essentially
the algorithm of Chudak and Shmoys.
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5 The 1.5-Approximation Algorithm

In this section we will combine our algorithm with an earlier algorithm of Jain
et al. to obtain an 1.5-approximation algorithm for the metric UFL problem.

In 2002 Jain, Mahdian and Saberi [10] proposed a primal-dual approximation
algorithm (the JMS algorithm). Using a dual fitting approach they have shown
that it is a 1.61-approximation algorithm. In a later work of Mahdian, Ye and
Zhang [12] the following was proven.

Lemma 3 ([12]). The cost of a solution produced by the JMS algorithm is at
most 1.11 × F ∗ + 1.7764 × C∗, where F ∗ and C∗ are facility and connection
costs in an optimal solution to the linear relaxation of the problem.

Theorem 2. Consider the solutions obtained with the A1 and JMS algorithms.
The cheaper of them is expected to have a cost at most 1.5 times the cost of the
optimal fractional solution.

Proof. Consider the algorithm A2 that with probability p = 0.313 runs the
JMS algorithm and with probability 1 − p runs the A1 algorithm. Suppose that
you are given an instance, and F ∗ and C∗ are facility and connection costs in
an optimal solution to the linear relaxation of the problem for this instance.
Consider the expected cost of the solution produced by algorithm A2 for this
instance. E[cost] ≤ p·(1.11·F ∗+1.7764·C∗)+(1−p)·(1.67736·F ∗+1.37374·C∗) =
1.4998 · F ∗ + 1.4998 · C∗ < 1.5 ∗ (F ∗ + C∗) ≤ 1.5 ∗ OPT. ��

Instead of the JMS algorithm we could take the algorithm of Machdian et al.
[12] - the MYZ(δ) algorithm that scales the facility costs by δ, runs the JMS
algorithms, scales back the facility costs and finally runs the greedy augmen-
tation procedure. With a notation introduced in Section 2.3, the MYZ(δ) algo-
rithm is the Sδ(JMS) algorithm. The MYZ(1.504) algorithm was proven [12]
to be a 1.52-approximation algorithm for the metric UFL problem. We may
change the value of δ in the original analysis to observe that MYZ(1.1) is a
(1.2053,1.7058)-approximation algorithm. This algorithm combined with our A1
(1.67736,1.37374)-approximation algorithm gives a 1.4991-approximation algo-
rithm, which is even better than just using JMS and A1, but it gets more com-
plicated and the additional improvement is tiny.

6 Multilevel Facility Location

In the k-level facility location problem the clients need to be connected to open
facilities on the first level, and each open facility ,except on the last, k-th level,
needs to be connected to an open facility on the next level. Aardal, Chudak, and
Shmoys [1] gave a 3-approximation algorithm for the k-level problem with ar-
bitrary k. Ageev, Ye, and Zhang [2] proposed a reduction of a k-level problem
to a (k − 1)-level and a 1-level problem, which results in a recursive algorithm.
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This algorithm uses an approximation algorithm for the single level problem and
has a better approximation ratio, but only for instances with small k. Using our
new (1.67736,1.37374)-approximation algorithm instead of the JMS algorithm
within this framework improves approximation for each level. In particular, in
the limit as k tends to ∞ we get 3.236-approximation which is the best possible
for this construction.

By a slightly different method, Zhang [17] obtained a 1.77-approximation
algorithm for the 2-level problem. By reducing to a problem with smaller number
of levels, he obtained 2.5231 and 2.81 approximation algorithms for the 3-level
and the 4-level version of the problem. If we modiffy the algorithm by Zhang for
the 3-level problem, and use the new (1.67736,1.37374)-approximation algorithm
for the single level part, we obtain a 2.492-approximation, which improves on
the previously best known approximation by Zhang. Note, that for k > 4 the
best known approximation factor is still due to Aardal et al. [1].

7 Concluding Remarks

The presented algorithm was described as a procedure of rounding a particu-
lar fractional solution to the LP relaxation of the problem. In the presented
analysis we compared the cost of the obtained solution with the cost of the
starting fractional solution. If we appropriately scale the cost function in the LP
relaxation before solving the relaxation, we easily obtain an algorithm with a
bifactor approximation guaranty in a stronger sense. Namely, we get a compar-
ison of the produced solution with any feasible solution to the LP relaxation of
the problem. Such a stronger guaranty was, however, not necessary to construct
the 1.5-approximation algorithm for the metric UFL problem.

With the 1.52-approximation algorithm of Mahdian et al. it was not clear for
the authors if a better analysis of the algorithm could close the gap with the ap-
proximation lower bound of 1.463 by Guha and Khuler. Byrka and Aardal [3] have
recently given a negative answer to this question by constructing instances that
are hard for the MYZ algorithm. Similarly, we now do not know if our new al-
gorithm A1(γ) could be analyzed better to close the gap. Construction of hard
instances for our algorithm remains an open problem.

The technique described in Section 2.3 enables to move the bifactor approx-
imation guaranty of an algorithm along the approximability lower bound of
Jain et al. (see Figure 1) towards higher facility opening costs. If we developed
a technique to move the analysis in the opposite direction, together with our
new algorithm, it would imply closing the approximability gap for the metric
UFL problem. It seems that with such an approach we would have to face the
difficulty of analyzing an algorithm that closes some of the previously opened
facilities.

1 This value deviates slightly from the value 2.51 given in the paper. The original
argument contained a minor calculation error.
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