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Abstract

We develop an optimal cache-oblivious priority queue data structure, supporting insertion,
deletion, and delete-min operations in O(% logy/ 5 %) amortized memory transfers, where M
and B are the memory and block transfer sizes of any two consecutive levels of a multilevel
memory hierarchy. In a cache-oblivious data structure, M and B are not used in the description
of the structure. Our structure is as efficient as several previously developed external memory
(cache-aware) priority queue data structures, which all rely crucially on knowledge about M and
B. Priority queues are a critical component in many of the best known external memory graph
algorithms, and using our cache-oblivious priority queue we develop several cache-oblivious
graph algorithms.

1 Introduction

As the memory systems of modern computers become more complex, it is increasingly important to
design algorithms that are sensitive to the structure of memory. One of the characteristic features
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of modern memory systems is that they are made up of a hierarchy of several levels of cache,
main memory, and disk. While traditional theoretical computational models have assumed a “flat”
memory with uniform access time, the access times of different levels of memory can vary by several
orders of magnitude in current machines. Thus algorithms for hierarchical memory has received
considerable attention in recent years. Very recently, the cache-oblivious model was introduced
as a way of achieving algorithms that are efficient in arbitrary memory hierarchies without use
of complicated multilevel memory models. In this paper we develop an optimal cache-oblivious
priority queue and use it to develop several cache-oblivious graph algorithms.

1.1 Background and previous results

Traditionally, most algorithmic work has been done in the Random Access Machine (RAM) model of
computation, which models a “flat” memory with uniform access time. Recently, some attention has
turned to the development of theoretical models and algorithms for modern complicated hierarchical
memory systems; refer e.g. to [3, 4, 5, 7, 54, 60]. Developing models that are both simple and
realistic is a challenging task since a memory hierarchy is described by many parameters. A typical
hierarchy consists of a number of memory levels, with memory level ¢ having size M, and being
composed of My/By blocks of size By. In any memory transfer from level £ to £ — 1, an entire block
is moved atomically. Each memory level also has an associated replacement strategy, which is used
to decide what block to remove in order to make room for a new block being brought into that level
of the hierarchy. Further complications are the limited associativity of some levels of the hierarchy,
meaning that a given block can only be loaded into a limited number of memory positions, as well
as the complicated prefetching strategies employed by many memory systems. In order to avoid
the complications of multilevel memory models, a body of work has focused on two-level memory
hierarchies. Most of this work has been done in the context of problems involving massive datasets,
because the extremely long access times of disks compared to the other levels of the hierarchy
means that I/O between main memory and disk often is the bottleneck in such problems.

1.1.1 Two-level I/O model

In the two-level I/O model (or external memory model) introduced by Aggarwal and Vitter [6],
the memory hierarchy consists of an internal memory of size M, and an arbitrarily large external
memory partitioned into blocks of size B. The efficiency of an algorithm in this model (a so-
called I/O or external memory algorithm) is measured in terms of the number of block transfers
it performs between these two levels (here called memory transfers). An algorithm has complete
control over the placement of blocks in main memory and on disk. The simplicity of the I/O model
has resulted in the development of a large number of external memory algorithms and techniques.
See e.g. [10, 60] for recent surveys.

The number of memory transfers needed to read N contiguous elements from disk is scan(N) =
©(L&) (the linear or scanning bound). Aggarwal and Vitter[6] showed that ©( % log,, /B &) memory
transfers are necessary and sufficient to sort N elements. In this paper, we use sort(/N) to denote
% log /B % (the sorting bound). The number of memory transfers needed to search for an element
among a set of N elements is Q(logg N) (the searching bound) and this bound is matched by the
B-tree, which also supports updates in O(log g N) memory transfers [18, 37, 41, 40]. An important
consequence of these bounds is that, unlike in the RAM model, one cannot sort optimally with
a search tree—inserting N elements in a B-tree takes O(N logz N) memory transfers, which is a



factor of (Blogg N)/(logys/ %) from optimal. Finally, permuting NV elements according to a given
permutation takes ©(min{N,sort(N)}) memory transfers and for all practical values of N, M and
B this is O(sort(/V)) [6]. This represents another fundamental difference between the RAM and
I/O model, since N elements can be permuted in O(N) time in the RAM model.

The I/O model can also be used to model the two-level hierarchy between cache and main
memory; refer e.g. to [55, 43, 45, 16, 51, 53]|. Some of the main shortcomings of the I/O model on
this level is the lack of explicit application control of placement of data in the cache and the low
associativity of many caches. However, as demonstrated by Sen et al. [55], I/O model results can
often be used to obtain results in more realistic two-level cache main memory models. Algorithms
that are efficient on the two-level cache main memory levels have also been considered by e.g.
LaMarca and Ladner [43, 44].

1.1.2 Cache-oblivious model

One of the main disadvantages of two-level memory models is that they force the algorithm designer
to focus on a particular level of the hierarchy. Nevertheless, the I/O model has been widely used
because it is convenient to consider only two levels of the hierarchy. Very recently, a new model
that combines the simplicity of the I/O mode with the realism of more complicated hierarchical
models was introduced by Frigo et al. [39]. The idea in the cache-oblivious model is to design and
analyze algorithms in the I/O model but without using the parameters M and B in the algorithm
description. It is assumed that when an algorithm accesses an element that is not stored in main
memory, the relevant block is automatically fetched into memory with a memory transfer. If the
main memory is full, the ideal block in main memory is elected for replacement based on the future
characteristics of the algorithm, that is, an optimal offline paging strategy is assumed. While this
model may seem unrealistic, Frigo et al. [39] showed that it can be simulated by essentially any
memory system with only a small constant-factor overhead. For example, the least-recently-used
(LRU) block-replacement strategy approximates the omniscient strategy within a constant factor,
given a cache larger by a constant factor [39, 56]. The main advantage of the cache-oblivious model
is that it allows us to reason about a simple two-level memory model, but prove results about an
unknown, multilevel memory hierarchy; because an analysis of an algorithm in the two-level model
holds for any block and main memory size, it holds for any level of the memory hierarchy. As
a consequence, if the algorithm is optimal in the two-level model, it is optimal on all levels of a
multilevel memory hierarchy.

Frigo et al. [39] developed optimal cache-oblivious algorithms for matrix multiplication, matrix
transposition, Fast Fourier Transform, and sorting. Subsequently, several authors developed dy-
namic cache-oblivious B-trees with a search and update cost of O(log g N) matching the standard
(cache-aware) B-tree [22, 28, 23, 50, 21]. Recently, several further results have been obtained,
e.g. [24, 58, 25, 26, 27, 19, 2, 14, 17, 20, 29, 34]. See also the survey in [13]. Some of these results
assume that M > B? (the tall-cache assumption), and we will also make the assumption in this
paper. Brodal and Fagerberg [27] showed that an assumption of this type (actually M = Q(B1+¢)
for some € > 0) is necessary to obtain the I/O-model sorting bound in the cache-oblivious model.

1.1.3 Priority queues

A priority queue maintains a set of elements each with a priority (or key) under insert and delete-
min operations, where a delete-min operation finds and deletes the element with the minimum



key in the queue. Sometimes delete of an arbitrary element is also supported, often, as in this
paper, assuming that the key of the element to be deleted is known. The heap is a standard
implementation of a priority queue and a balanced search tree can, of course, also easily be used to
implement a priority queue. In the I/O model, a priority queue based on a B-tree would support all
operations in O(logz N) memory transfers. The standard heap can also be easily modified (to have
fanout B) so that all operations are supported in the same bound (see e.g. [45]). The existence of a
cache-oblivious B-tree immediately implies the existence of an O(log g N) cache-oblivious priority
queue.

As discussed in Section 1.1.1, the use of an O(logg N) search tree (or priority queue) to sort
N elements results in an I/O model algorithm that is a factor of (Blogpg N)/(log p(N/B))
from optimal. To sort optimally we need a data structure supporting the relevant operations
in O(% logas/p %) memory transfers. Note that for reasonable values of N, M, and B, this bound
is less than 1 and we can, therefore, only obtain it in an amortized sense. To obtain such a bound,
Arge developed the buffer tree technique [11] and showed how it can be used on a B-tree to obtain a
priority queue supporting all operations in O(% logyr/ %) amortized memory transfers [11]. This
structure seems hard to make cache-oblivious since it involves periodically finding the ©(M) small-
est key elements in the structure and storing them in internal memory. Efficient I/O model priority
queues have also been obtained by using the buffer tree technique on heap structures [38, 42]: The
heap structure by Fadel et al. [38] seems hard to make cache-oblivious because it requires collecting
©(M) insertions and performing them all on the structure at the same time. The structure by Ku-
mar and Schwabe [42] avoids this by using the buffer technique on a tournament tree data structure.
However, they only obtained O(% log, N) bounds, mainly because their structure was designed to
also support an update operation. Finally, Brodal and Katajainen [30] developed a priority queue
structure based on a M/B-way merging scheme. Very recently, and after the appearance of the
conference version of this paper, Brodal and Fagerberg [26] managed to develop a similar merging
based cache-oblivious priority queue based on ideas they developed in [25]. Brodal et al. [29], as
well as Chowdhuey and Ramachandran [34], have also developed cache-oblivious priority queues
that support updates in the same bound as the I/O-efficient structure of Kumar and Schwabe [42].

1.1.4 I/0O model graph algorithms

The super-linear lower bound on permutation in the I/O model has important consequences for
the I/O-complexity of graph algorithms, because the solution of almost any graph problem involves
somehow permuting the V' vertices or E edges of the graph. Thus Q(min{V,sort(V)}) is in general
a lower bound on the number of memory transfers needed to solve most graph problems. Refer
to [9, 32, 47]. As mentioned in Section 1.1.1, this bound is Q(sort(V')) in all practical cases. Still,
even though a large number of I/O model graph algorithms have been developed (see [60, 61] and
references therein), not many algorithms match this bound. Below we review the results most
relevant to our work.

Like for PRAM graph algorithms [52], list ranking—the problem of ranking the elements in a
linked list stored as an unordered sequence in memory—is the most fundamental I/O model graph
problem. Using PRAM techniques, Chiang et al. [32] developed the first efficient I/O model list
ranking algorithm. Using an I/O-efficient priority queue, Arge [11] showed how to solve the problem
in O(sort(V)) memory transfers. The list ranking algorithm and PRAM techniques can be used in
the development of O(sort(V')) algorithms for many problems on trees, such as computing an Euler
Tour, Breadth-First-Search (BFS), Depth-First-Search (DFS), and centroid decomposition [32].



The best known DFS and BFS algorithms for general directed graphs use O(V + £¥) [32] or
O((V + E/B)logy V + sort(E)) [31] memory transfers. For undirected graphs, improved O(V +

sort(E)) and O(y/ Y + sort(E)) BFS algorithms have been developed [47, 46]. The best known
algorithms for computing the connected components and the minimum spanning forest of a general
undirected graph both use O(sort(E) - logy logy(¥2)) or O(V + sort(E)) memory transfers [47, 15].

1.2 Our results

The main result of this paper is an optimal cache-oblivious priority queue. Our structure sup-
ports insert, delete, and delete-min operations in O(% log /B %) amortized memory transfers and
O(log N) amortized computation time; it is described in Section 2. The structure is based on a
combination of several new ideas with ideas used in previous recursively defined cache-oblivious
algorithms and data structures [39, 22|, the buffer technique of Arge [11, 42], and the M/B-way
merging scheme utilized by Brodal and Katajainen [30]. When the conference version of this paper
appeared, our structure was the only cache-oblivious priority queue to obtain the same bounds as
in the cache-aware case.

In the second part of the paper, Section 3, we use our priority queue to develop several cache-
oblivious graph algorithms. We first show how to solve the list ranking problem in O(sort(V))
memory transfers. Using this result we develop O(sort(V')) algorithms for fundamental problems
on trees, such as the Euler Tour, BFS, and DFS problems. The complexity of all of these al-
gorithms matches the complexity of the best known cache-aware algorithms. Next we consider
DFS and BFS on general graphs. Using modified versions of the data structures used in the
O((V + E/B)log, V + sort(F)) DFS and BFS algorithms for directed graphs [31], we make these
algorithms cache-oblivious. We also discuss how the O(V + sort(F)) BFS algorithm for undirected
graphs [47] can be made cache-oblivious. Very recently, and after the appearance of the confer-
ence version of this paper, Brodal et al. [29] developed two other cache-oblivious algorithms for
undirected BFS based on the ideas in [46]. Finally, we develop two cache-oblivious algorithms for
computing a minimum spanning forest (MSF), and thus also for computing connected components,
of an undirected graph using O(sort(E)-log, log, V') and O(V +sort(E)) memory transfers, respec-

| Problem || Our cache-oblivious result | Best cache-aware result
1 N 1 N

Priority queue O(5108u/5 ) O(5 logr/s ) [11]
List ranking O(sort(V)) O(sort(V)) 32, 11]
Tree algorithms O(sort(V)) O(sort(V)) [32]
Directed BFS and DFS O((V + E/B)log, V +sort(E)) | O((V + E/B)log, V + sort(E)) [31]
OV + %17 32]
Undirected BFS O(V + sort(E)) O(V + sort(E)) [47]
O(y/ 5 + sort(E)) 146]
Minimum spanning forest O(sort(E) - logy logy V) O(sort(E) - log, log, %) [15]
O(V + sort(F)) O(V + sort(E)) [15]

Table 1: Summary of our results (priority queue bounds are amortized).



tively. The two algorithms can be combined to compute the MSF in O(sort(E) - log, logsy % + V)
memory transfers for any V' independent of B and M. Table 1 summarizes our results. Note

that recently, cache-oblivious algorithm for undirected shortest path computation have also been
developed [29, 34].

2 Priority Queue

In this section we describe our optimal cache-oblivious priority queue. In Section 2.1 we define the
data structure and in Section 2.2 we describe the supported operations.

2.1 Structure

2.1.1 Levels

Our priority queue data structure containing N elements consists of ©(loglog Ng) levels whose
sizes vary from Ny = O(NN) to some small size ¢ beneath a constant threshold ¢;. The size of a
level corresponds (asymptotically) to the number of elements that can be stored within it. The ith

level from above has size NéQ/ 3 and for convenience we refer to the levels by their size. Thus
the levels from largest to smallest are level Ny, level Ng/ 3, level Né/ 9, .., level X974, level X3/2
level X, level X2/3 level X%9, ... level ¢°/%, level ¢3/2, and level c. Intuitively, smaller levels

store elements with smaller keys or elements that were recently inserted. In particular, the element
with minimum key and the most recently inserted element in the structure are in the smallest
(lowest) level c. Both insertions and deletions are initially performed on the smallest level and may
propagate up through the levels.

2.1.2 Buffers

A level stores elements in a number of buffers, which are also used to transfer elements between
levels. Refer to Figure 1. Level X3/2 consists of one up buffer uX*"* and at most [X1/2] +1 down
buffers d{(m, - ,dfg?ﬁg} 41 The up buffer can store up to | X 3/ 2| elements and the first down
buffer can store up to 2| X | — 1 elements, while each of the other down buffers can store between

| X | and 2| X | — 1 elements. We refer to the maximum possible number of elements that can be

| i |

level X9/*
| ! ] ! |

—

‘ ~<— up buffer of size | X%/2]
‘ v H v ‘ ~<— at most [X /2] down buffers of size ©(X) each and one of size O(X)

level X —=— up buffer of size | X |

-- ~— at most [X /3] down buffers of size ©(X?/3) each and one of size O(X?/3)

level X3/?

Figure 1: Levels X, X3/2, and X9 of the priority queue data structure.



stored in a buffer or level as its size; we refer to the number of elements currently in a buffer or
level as the occupancy. Thus the size of level X3/2 is ©(X3/2). Note that the size of a down buffer
at one level matches the size (up to a constant factor) of the up buffer one level down.

We maintain three invariants about the relationships between the elements in buffers of various
levels:
Invariant 1 At level X3/2, elements are sorted among the down buffers, that is, elements in dix3/2
have smaller keys than elements in dfflm, but the elements within dZXB/2 are unordered.

The element with largest key in each down buffer d:* %% is called a pivot element. Pivot elements
mark the boundaries between the ranges of the keys of elements in down buffers.

Invariant 2 At level X3/2, elements in the down buffers have smaller keys than the elements in
the up buffer w2,

Invariant 3 The elements in the down buffers at level X3/% have smaller keys than the elements
in the down buffers at the next higher level X 9/4.

The three invariants ensure that the keys of the elements in the down buffers get larger as
we go from smaller to larger levels of the structure. Furthermore, there is an order between the
buffers on one level; keys of elements in the up buffer are larger than keys of elements in down
buffers. Therefore, down buffers are drawn below up buffers in Figure 1. However, the keys of the
elements in an up buffer are unordered relative to the keys of the elements in down buffers one level
up. Intuitively, up buffers store elements that are “on their way up”, that is, they have yet to be
resolved as belonging to a particular down buffer in the next (or higher) level. Analogously, down
buffers store elements that are “on their way down”—these elements are partitioned into several
clusters so that we can quickly find the cluster of elements with smallest keys of size roughly equal
to the next level down. In particular, the element with overall minimum key is in the first down
buffer at level c.

2.1.3 Layout

We store the priority queue in a linear array as follows. The levels are stored consecutively from
smallest to largest with each level occupying a single region of memory. For level X3/2 we reserve
space for the up buffers of size | X*/2] and for [ X/2]+41 possible down buffers of size 2| X |. The up
buffer is stored first, followed by the down buffers stored in an arbitrary order but linked together

to form an ordered linked list. Thus the total size of the array is Zi(fgm foge No O(NéQ/B’)i) = O(Ny).

2.2 Operations

To implement the priority queue operations we will use two general operations, push and pull.
Push inserts | X | elements (with larger keys than all elements in the down buffers of level X)) into
level X3/2, and pull removes and returns the | X | elements with smallest keys from level X3/2 (and
above). Generally, whenever an up buffer on level X overflows we push the | X | elements in the
buffer into level X3/2, and whenever the down buffers on level X become too empty we pull | X |
elements from level X3/2,



2.2.1 Push

We push | X| elements (with larger keys than all elements in the down buffers of level X) into
level X3/2 as follows: We first sort the elements. Then we distribute them into the down buffers
of level X3/2 by scanning through the sorted list and simultaneously visiting the down buffers in
(linked) order. More precisely, we append elements to the end of the current down buffer dZX 3/2, and
advance to the next down buffer di)fl/ * as soon as we encounter an element with larger key than the
pivot of dX *?  Elements with larger keys than the pivot of the last down buffer are inserted in the
up buffer uX 2 During the distribution of elements a down buffer may become overfull, that is,
contain 2| X | elements. In this case, we split the buffer into two down buffers each containing | X |
elements. If the level has at most [ X 1/ 2] 41 down buffers after the split, we place the new buffer in
any free down-buffer spot for the level and update the linked list accordingly. Otherwise, we first
remove the last down buffer by moving its at most 2| X | — 1 elements into the up buffer; then we
place the new buffer in the free down-buffer spot and update the linked list. If the up buffer runs
full during the process, that is, contains more than | X3/2| elements, we recursively push | X3/2]
elements into level X/ (the next level up), leaving at most | X3/2] elements in the up buffer.

The invariants are all maintained during a push of | X| elements into level X3/2. Because we
sort the elements to distribute them among the down buffers, it is clear we maintain Invariant
1. Only elements with keys larger than the pivot of the last down buffer are placed in the up
buffer, so Invariant 2 is also maintained. Finally, Invariant 3 is maintained since (by definition) the
| X | elements all have keys larger than the elements in the down buffers of level X, and since by
Invariant 2 all recursively pushed elements have keys larger than all elements in the down buffers
(as required to perform the recursive push).

Ignoring the cost of recursive push operations, a push of |X| elements into level X 3/2 can
be performed cache-obliviously in O(Z log M/B %) memory transfers and O(X log, X) time using
O(M) of main memory. First note that since M = (B?) (the tall-cache assumption), all levels of
size less than B? (of total size O(B?)) fit in memory. If all these levels are kept in main memory
at all times, all push costs associated with them would be eliminated. The optimal paging strategy
is able to do so. Thus we only need to consider push costs when X3/2 > B2, that is, when
X > B*3 (note that in that case % > 1). When performing the push operation, the initial sort of
the | X | elements can then be performed cache-obliviously using O(% logar/B %) memory transfers
and O(X logy X) time [39]. The scan of the elements in the distribution step then takes O(X/B)
memory transfers and O(X) time. However, even though we do not insert elements in every down
buffer, we still might perform a memory transfer for each of the [ X 1/ 2] 41 possible buffers; a block
of each buffer may have to be loaded and written back without transferring a full block of elements
into the buffer. If X > B? we trivially have that [X/2] +1 = O(%). If, on the other hand,
BY3 < X < B2 the [X'/?] + 1 term can dominate the memory transfer bound and we have to
analyze the cost more carefully. In this case we are working on a level X3/2 where B2 < X3/2 < B3,
There is only one such level and because X/2 < B and M = Q(B?) (the tall-cache assumption),
a block for each of its down buffers can fit into main memory. Consequently, if a fraction of the
main memory is used to keep a partially filled block of each buffer of level X 3/2 (B2< X 3/2 < B3)
in memory at all times, and full blocks are written to disk, the X1/2 + 1 cost is eliminated at this
level. The optimal paging strategy is able to do so. Thus the total cost of distributing the | X |
elements is O(X/B) memory transfers and O(X + X1/2) = O(X) time.

The split of an overfull down buffer during the distribution, that is, split of a buffer of occu-
pancy 2| X |, can be performed in O(X/B) memory transfers and O(X) time by first finding the



median of the elements in the buffer in O(X/B) transfers and O(X) time [39], and then partition-
ing the elements into the two new buffers of occupancy | X | in a simple scan. Since we maintain
that any new down buffer has occupancy |X|, and thus that [ X | elements have to be inserted
it it before it splits, the amortized splitting cost per element is O(1/B) transfers and O(1) time.
Thus in total, the amortized number of memory transfers and time used on splitting buffers while
distributing the | X | elements are O(X/B) and O(X), respectively.

Lemma 1 Using O(M) main memory, a push of | X| elements into level X3/ can be performed
in O(% logar/ %) memory transfers and O(X logy X)) amortized time, not counting the cost of any
recursive push operations, while maintaining Invariants 1-3.

2.2.2 Pull

To pull the | X | elements with smallest keys from level X?/2? (and above), we consider three different
cases.

If the occupancy of the first down buffer of level X3/2 is Y > | X, we sort the Y < 2| X|
elements in the down buffer, remove the | X | elements with smallest keys, and leave the remaining
Y — | X | elements in the buffer. We return the | X | removed elements, since by Invariants 1-3 they
are the elements with smallest keys in level X3/2 (and above). It is easy to see that Invariants 1-3
are maintained is this case.

If the occupancy of the first down buffer of level X3/2 is Y < | X |, but level X3/2 has at least
one other down buffer, we first remove the Y elements in the first buffer. Next we sort the between
| X' | and 2| X' | —1 elements in the new first down buffer, remove the | X | =Y elements with smallest
keys, and leave the remaining elements in the buffer. We return the | X | removed elements, since
by Invariants 1-3 they are the elements with smallest keys in level X3/2. As in the first case, it is
easy to see that Invariants 1-3 are maintained.

Finally, if the occupancy of the first down buffer of level X3/2is Y < | X | and level X3/2 has no
other down buffers, we remove the Y elements and then we recursively pull the | X ®/2] elements with
smallest keys from level X4 (and above). Because these | X%/2| elements do not necessarily have
smaller keys than the U elements in the up buffer uXS/Q, we then sort all the | X%/2| +U < 2| X3/2|
elements, insert the U elements with largest keys in the up buffer, and remove the | X | —Y elements
with smallest keys. Finally, we distribute the remaining | X3/2] +Y — | X| < [ X3/?] < X - X'/2 <
(IX]+1)- X2 = |X]| - X2 4 X2 <|X]| - [X'?] 4 |X] elements into one down buffer with
occupancy between 1 and | X | and at most [X /2] down buffers of occupancy | X | each. As in the
first two cases, we return the | X | removed elements, since Invariant 1 and sorting the recursively
pulled elements and the U elements in the up buffer ensures that they are the elements with the
smallest keys in level X3/2 and above. As in the first two cases, it is easy to see that Invariants 1-3
are also maintained in this case.

To analyze a pull operation we assume, as in the push case, that all levels of size O(B?2) are kept
in main memory (so that we only need to consider levels X 3/2 with X3/2 > B2, that is, the case
where X > BY/ 3). The first two cases are both performed by sorting and scanning O(X) elements
using O(% logar/ L) + O(%) memory transfers and O(X log, X) + O(X) time. In the third case
we also sort and scan (distribute) O(X?/2) elements. However, the cost of doing so is dominated
by the cost of the recursive pull operation itself. Thus, ignoring these costs (charging them to the
recursive pull), we have the following:



Lemma 2 Using O(M) main memory, a pull of | X| elements from level X3/? can be performed
in O(% logar/ %) memory transfers and O(X logy X) amortized time, not counting the cost of any
recursive pull operations, while maintaining Invariants 1-3.

2.2.3 Insert and Delete-Min

To support insert and delete-min operations using push and pull on our structure we (or rather,
the optimal paging strategy) maintain an insertion and a deletion buffer of at most Lc2/ 3| elements
each in main memory. The deletion buffer contains elements that have smaller keys than all other
elements in the structure, while intuitively the insertion buffer contains the most recently inserted
elements. We perform an insertion simply by comparing the key of the element to be inserted with
the maximal key of an element in the deletion buffer: if the key of the new element is largest,
we simply insert it into the insertion buffer; otherwise we instead insert it into the deletion buffer
and move the element with largest key from the deletion buffer to the insertion buffer. In both
cases, the occupancy of the insertion buffer is increased by one, and if it runs full we empty it
by pushing its LCQ/ 3| elements into level c. Similarly, we perform a delete-min by deleting and
returning the element with smallest key in the deletion buffer; if the deletion buffer becomes empty
we pull [¢?/3] elements from level ¢ and fill up the deletion buffer with the [¢?/3] smallest of these
elements and the elements in the insertion buffer (without changing the occupancy of the insertion
buffer). The correctness of the insert and delete-min operations follow directly from Invariants 1-3
and the definition of the push and pull operations.

Except for the possible push and pull operations on level ¢, which may require recursive pushes or
pulls on higher levels, the insert and delete-min operations are performed in constant time without
incurring any memory transfers. Below we will use a credit argument to prove that including all
push and pull operations the amortized cost of an insert or delete-min is O(% log s/ %) memory
transfers; then we will argue that the operations take O(logy Np) amortized computation time.

We define a level-X push coin and a level-X3/2 pull coin to be worth @(% logpr/p %) memory
transfers each, that is, | X | level-X push coins can pay for a push of | X | elements into level X 3/2,
and | X| level-X3/2 coins can pay for a pull of | X | elements from level X3/2. We maintain the
following coin invariants:

Invariant 4 On level X?/2, each element in the first half of a down buffer has a pull coin for level
X3/2 and each level below.

Invariant 5 On level X3/2, each element in the second half of a down buffer and in the up buffer
has a push coin for level X3/% and each level above, as well as pull coins for all levels.

Invariant 6 FEach element in the insertion buffer has a push and a pull coin for each level.

Intuitively, the first two coin invariants mean that an element in the first half of a down buffer
can pay for being pulled down through all lower levels, while elements in the second half of a down
buffer and in an up buffer can pay for being pushed up through all higher levels and pulled down
through all levels.

To fulfill Invariant 6, we simply have to give each inserted element a push and a pull coin for
each level, since an insert operation increases the occupancy of the insertion buffer by one and a
delete-min does not change the occupancy. We will show that we can then pay for all recursive push
and pull operations with released coins while maintaining Invariants 4 and 5. Thus a delete-min is
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free amortized and an insertion costs O(}52, % logM/B(N(EQ/?’)Z/B)) =0(% log /B o) amortized
memory transfers.

First consider an insertion that results in a sequence of push operations. We will show that we
can maintain the coin invariants while paying for each push operation with released coins, if we
require that when pushing | X | elements into level X 3/2 each of the pushed elements has a push
coin for level X and each level above, as well as a pull coin for all levels (the push requirement).
Note that Invariants 5 and 6 ensure that the push requirement is fulfilled, since the pushed elements
come from the insertion buffer or the up buffer of level X.

When performing a push on level X3/2 we first distribute the | X | elements into the down and
the up buffers. In the worst case (when all elements are placed in the second half of a down buffer
or in the up buffer) each element needs a push coin for level X 3/2 and each level above and pull
coins for all levels to fulfill Invariants 4 and 5. Since they have a push coin for level X and each
level above and pull coins for all levels, this leaves us with | X | level-X push coins, which we can
use to pay the O(Z log M/B %) push cost (Lemma 1). If a down buffer of occupancy 2| X| splits
into two buffers of occupancy |X | during the distribution process, | X | push coins for level X 3/2
and each level above and | X | pull coins for level X4 and each level above are released, since the
| X | elements in the second half of the full buffer must fulfill Invariant 5 before the split but only
Invariant 4 after the split. On the other hand, if splitting a down buffer results in the movement
of the elements in the last down buffer to the up buffer, the at most | X | elements in the second
half of the down buffer needs | X | push coins for level X3/2 and each level above and | X| pull
coins for level X9/% and each level above, since they must fulfill Invariant 5 after the move but only
Invariant 4 before the move. Since we never move elements from a down buffer to the up buffer
without having split a down buffer, we can reestablish Invariant 4 and 5 with the released coins.
Finally, as mentioned above, if the up buffer runs full and we perform a recursive push of | X 3/ 2]
elements into level X4, each of the pushed elements has a push coin for level X3/2 and each level
above, as well as pull coins for all levels, as required (Invariant 5).

Next consider a delete-min that results in a sequence of pull operations. We will show that
we can maintain the coin invariants while paying for each pull operation with released coins, if
we require that when pulling | X | elements from level X 3/2 down to level X, each of the pulled
elements has a pull coin for level X and each level below (the pull requirement).

When performing a pull on level X3/2 with at least | X | elements in the down buffers (the first
two cases), we effectively remove the | X | smallest elements from the first two down buffers. It is
straightforward to see that the remaining elements still fulfill Invariants 4 and 5. From Invariant
4 and 5 we know that each of the removed (pulled) elements (at least) has a pull coin for level
X3/2 and each level below. Thus, since they only need a pull coin for level X and each level
below to fulfill the pull requirement, this leaves us with | X | level-X 3/2 pull coins, which we can
use to pay the O(% logar/ %) pull cost (Lemma 2). If, on the other hand, level X3/2 contains
Y < |X] elements in the down buffers (the third case), we perform a recursive pull of | X3/2]
elements from level X4, and effectively remove the | X | elements with smallest keys among the
| X| +Y elements. Before the recursive pull, level X?/2 has one down buffer with ¥ elements and
an up buffer with U elements; after the recursive pull and removal of the | X | elements, it has one
down buffer with less than | X | elements, at most [X /2] down buffers with | X | elements, and an
up buffer with U elements. The coins on the U elements in the up buffer before the recursive pull
can be used to fulfill Invariant 5 for the U elements in the up buffer after the recursive pull. By the
pull requirement, each of the | X 3/ 2| pulled elements has a pull coin for level X 3/2 and each level
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below. The same is true for each of the Y original elements (Invariant 4). Thus we have enough
coins for all the elements in the down buffers after the pull, since each down buffer contains at most
| X | elements and each element therefore only needs to fulfill Invariant 4. Similarly, since each of
the | X | removed (pulled) elements only needs a pull coin for level X and each level below to fulfill
the pull requirement, the pull cost can (as in the first two cases) be payed by the remaining | X |
level-X3/2 pull coins.

The above argument shows that all push and pulls can be paid if each inserted element is given
a push and a pull coin for each level of the structure, that is, that a delete-min is free amortized
and an insertion costs O(% logar/B %) amortized memory transfers. By a completely analogous

argument, it is easy to see that the operations are performed in O(>:2,, log2(N(§2/3)i )) = O(logy Np)

amortized time.

Finally, to maintain that Ny = ©(NN) we completely rebuild the structure bottom-up after
every No/4 operations (often referred to as global rebuilding [48]). We choose the size Ny of the
largest level to be 2N and compute the largest value ¢ < ¢; such that ¢/ 2
integer 7. Then we construct levels c, 32 ,Ng/ % such that all up buffers are empty and such
that cach level-X3/2 has exactly [X'/2] down buffers of size | X|. The remaining elements are
placed in level Ny such that it has at most [Nol/ 3] down buffers of size exactly LNO2/ 3J and one
of size less than LNg/ 3J. We can easily perform the rebuilding in a sorting and a scanning step
using a total of O(%log M/B %) memory transfers. At the same time, we can place pull coins
on the elements in order to fulfill Invariant 4 (no elements need to fulfill Invariant 5), for a total
cost of O( ?iO(N(SQ/?’)Z/B)logM/B(NSQ/g)Z/B)) = O(%logM/B 2o) memory transfers. Thus the
rebuilding adds only O(% logar/p %) amortized transfers to the cost of an insert or delete-min
operation. In the same way we can argue that it adds only O(log, Ny) amortized time per operation.

Since the up buffer of level Ny is of size |2N| = 2N after the rebuilding, we will not need
further levels during the next No/4 = N/2 operations (insertions). At the same time, the size Ny
of the largest level remains ©(N) during the next N/2 operations (deletions). Thus the size of our
structure remains linear in N and it supports insert and delete-min operations in O(% log /B %)
amortized memory transfers and O(log, V) amortized computation time.

= 2N for some

Lemma 3 Using O(M) main memory, a set of N elements can be maintained in a linear-space
cache-oblivious priority queue data structure supporting each insert and delete-min operation in
O(% lognr/ XY amortized memory transfers and O(logy N) amortized computation time.

2.2.4 Delete

Using ideas from [11, 42] we can easily support a delete operation in O(%logM/B %) memory
transfers and O(logy N) amortized time, provided that we are given the key of the element to be
deleted. To perform a deletion, we simply insert a special element in the priority queue, with key
equal to the element to be deleted. At some point during the sorts performed during a push, pull, or
rebuild, this special element and the element to be deleted will be compared, as they have the same
key. When this happens, we remove both elements from the structure. Note that the structure
cannot contain more than a constant fraction of special elements or elements to be deleted, as all
such elements will be compared and removed when we rebuild the structure.

To analyze a delete operation, we first note that it behaves exactly like an insertion, except
that the special delete element and the element to be deleted are both removed when they “meet”.
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We incur the standard insertion cost when inserting a special delete element in the structures. The
removal of the two elements on a level X eventually contributes to a pull operation being performed
on level X3/2; the cost incurred by the two deletions is upper bounded by the cost of two delete-min
operations. Thus in total we have obtained the following:

Theorem 1 Using O(M) main memory, a set of N elements can be maintained in a linear-space
cache-oblivious priority queue data structure supporting each insert, delete-min, and delete opera-
tion in O(% log /B %) amortized memory transfers and O(logy N) amortized computation time.

3 Graph Algorithms

In this section we discuss how our cache-oblivious priority-queue can be used to develop several
cache-oblivious graph algorithms. We first consider the simple list ranking problem and algorithms
on trees, and then we go on and consider BFS, DFS and minimum spanning forest algorithms for
general graphs.

3.1 List ranking

In the list ranking problem we are given a linked list of V' nodes stored as an unordered sequence.
More precisely, we have an array with V' nodes, each containing the position of the next node in
the list (an edge). The goal is to determine the rank of each node v, that is, the number of edges
from v to the end of the list. In a more general version of the problem, each edge has a weight and
the goal is to find for each node v the sum of the weights of edges from v to the end of the list.
Refer to Figure 2.

NN N
N

Figure 2: List ranking problem. An independent set of size 4 is marked. There are two forward
lists (on top) and two backwards lists (on bottom).

Based on ideas from efficient PRAM algorithms [8, 35], Chiang et al. [32] designed an O(sort(V))
I/O model list ranking algorithm. The main idea in the algorithm is as follows. An independent
set of ©(V') nodes (nodes without edges to each other) is found, nodes in the independent set are
“bridged out” (edges incident to nodes in this set are contracted), the remaining list is recursively
ranked, and finally the contracted nodes are reintegrated into the list (their ranks are computed).
The main innovation in the algorithm by Chiang et al. [32] was an O(sort(V)) memory transfer
algorithm for computing an independent set of size V/c for some constant ¢ > 0. The rest of the
non-recursive steps of the algorithm can easily be performed in O(sort(V')) memory transfers using
a few scans and sorts of the nodes of the list as follows: To bridge out the nodes in the independent
set, we first identify nodes with a successor in the independent set. We do so by creating a copy of
the list of nodes, sorting it by successor position, and simultaneously scanning the two lists. During
this process, we can also mark each predecessor of an independent set node v with the position of
the successor w of v, as well as with the weight of the edge (v, w). Next, in a simple scan, we create
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a new list where the two edges incident to each independent set node v have been replaced with
an edge from the predecessor of v to the successor of v. The new edge has weight equal to the sum
of that of the two old edges. Finally, we create the list to be ranked recursively by removing the
independent set nodes and “compressing” the remaining nodes, that is, storing them in an array
of size V(1 — 1/c¢). We do so by scanning through the list, while creating a list of the nodes not
in the independent set, as well as a list that indicates the old and new position of each node (that
is, the position of each node in the old and new array). Then we update the successor fields of
the first list by sorting it by successor position, and simultaneously scanning it and the list of new
positions. After having ranked the compressed list recursively, we reintegrate the removed nodes,
while computing their ranks. The rank of an independent set node v is simply the rank of its
successor w minus the weight of edge (v, w). The reintegration of the independent set nodes can be
performed in a few scans and sorts similar to the way we bridged out the independent set. Overall,
not counting the independent set computation, the number of memory transfers used to rank a V'
node list is T'(V)) = O(sort(V)) + T'(V/c) = O(sort(V)).

Since we only use scans and sorts in the above algorithm, all that remains in order to obtain
a cache-oblivious list ranking algorithm is to develop a cache-oblivious independent set algorithm.
Under different assumptions about the memory and block size, Chiang et al. [32] developed several
independent set algorithms based on 3-coloring; in a 3-coloring every node is colored with one of
three colors such that adjacent nodes have different colors. The independent set (of size at least
V/3) then consists of the set of nodes with the most popular color. Arge [11] and Kumar and
Schwabe [42] later removed the main memory and block assumptions.

One way of computing a 3-coloring is as follows [11, 32]: We call an edge (v, w) a forward edge
if v appears before w in the (unordered) sequence of nodes—otherwise it is called a backward edge.
First we imagine splitting the list into two sets consisting of forward running segments (forward
lists) and backward running segments (backward lists). Each node is included in at least one of
these sets, and nodes at the head or tail of a segment (nodes at which there is a reversal of the
direction) will be in both sets. Refer to Figure 2. Next we color the nodes in the forward lists red
or blue by coloring the head nodes red and the other nodes alternately blue and red. Similarly, the
nodes in the backward lists are colored green and blue, with the head nodes being colored green.
In total, every node is colored with one color, except for the heads/tails, which have two colors. It
is easy to see that we obtain a 3-coloring if we color each head/tail node the color it was colored
as the head of a list [32].

In the above 3-coloring algorithm we can cache-obliviously color the forward lists as follows (the
backwards lists can be colored similarly). In a single sort and scan we identify the head nodes and
for each such node v we insert a red element in a cache-oblivious priority queue with key equal to
the position of v in the unordered list. We then repeatedly extract the minimal key element e from
the queue. If e corresponds to a node v, we access v in the list, color it the same color as e, and
insert an element corresponding to its successor in the queue. We color the inserted element in the
opposite color of e. After processing all elements in the queue we have colored all forward lists.
The initial sort and scan is performed cache-obliviously in O(sort(V)) memory transfers, and since
we use a cache-oblivious priority queue we can also perform the O(V') priority queue operations
in O(sort(V')) memory transfers. Apart from this, we also perform what appears to be random
accesses to the O(V') nodes in the list. However, since we only process the forward list nodes in
position order, the accesses overall end up corresponding to a scan of the list. Thus they only
require O(V/B) transfers. Therefore we can compute a 3-coloring cache-obliviously in O(sort(V))
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memory transfers, and thus overall we obtain the following.

Theorem 2 The list ranking problem on a V' node list can be solved cache-obliviously in O(sort(V))
memory transfers.

3.2 Algorithms on trees

Many efficient PRAM algorithms on undirected trees use Euler tour techniques [57, 59]. An Euler
tour of a graph is a cycle that traverses each edge exactly once. Not every graph has an Euler tour
but a tree where each undirected edge has been replaced with two directed edges does (Refer to
Figure 3). When, in the following, we refer to an Euler tour of an undirected tree, we mean a tour
in the graph obtained by replacing each edge in the tree with two directed edges.

To cache-obliviously compute an Euler tour of an undirected tree, that is, to compute an ordered
list of the edges along the tour, we use ideas from similar PRAM algorithms. Consider imposing a
(any) cyclic order on the nodes adjacent to each node v in the tree. In [52] it is shown that an Euler
tour is obtained if we traverse the tree such that a visit to v from u (through the incoming edge
(u,v)) is followed by a visit to the node w following w in the cyclic order (through the outgoing
edge (v,w)). Thus we can compute the successor edge of each edge e, that is, the edge following
e in the Euler tour, as follows: We first construct a list of incoming edges to each node v sorted
according to the cyclic order. If two edges (u,v) and (w, v) are stored next to each other in this list,
the successor edge for the (incoming) edge (u,v) is simply the (outgoing) edge (v, w). Therefore we
can compute all successor edges in a scan of the list. Given a list of all edges augmented with their
successor edge, we can then compute the Euler tour simply by ranking the list and the sorting the
edges by their rank. Thus overall we compute an Euler tour of an undirected tree using a few sorts
and scans and a list ranking step, that is, using O(sort(V')) memory transfers.

Using our cache-oblivious Euler tour algorithm, we can easily compute a depth-first search
(DFS) numbering of the nodes of a tree starting at a source node s [52]. First note that if we start
a walk of the Euler tour in the source node s it is actually a DFS tour of the tree. To compute the
numbering, we therefore first classify each edge as being either a forward or a backward edge; an
edge is a forward edge if it is traversed before its reverse in the tour. After numbering the edges
along the tour and sorting the list of edges such that reverse edges appear consecutively, we can
classify each edge in a simple scan of the list. Then we assign each forward edge weight 1 and each
backward edge weight 0. The DFS number of a node v is then simply the sum of the weights on
the edges from s to v. Thus we can obtain the DFS numbering by solving the general version of
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Figure 3: An undirected tree and an Euler tour of the corresponding directed graph.
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list ranking. Since we only use Euler tours computation, list ranking, sorting, and scanning, we
compute the DFS numbering cache-obliviously in a total of O(sort(V)) memory transfers.

Using an Euler tour, list ranking, and sorting, we can also compute a breadth-first search
(BFS) numbering of the nodes of a tree cache-obliviously in O(sort(V)) memory transfers in a
similar way [52]. Using standard PRAM ideas, and the tools developed here, we can also e.g.
compute the centroid decomposition of a tree in O(sort(V)) memory transfers [57, 59, 32]. The
centroid of a tree is the node that, if removed, minimizes the size of the largest of the remaining
subtrees. The centroid decomposition of a tree is a recursive partition of a tree into subtrees around
the centroid.

Theorem 3 The FEuler tour, BFS, DFS, and centroid decomposition problems on a tree with V
nodes can be solved cache-obliviously in O(sort(V')) memory transfers.

3.3 DFS and BFS

We now consider the DFS and BFS numbering problems for general graphs. We first describe
a cache-oblivious DFS algorithm for directed graphs and then we modify it to compute a BFS
numbering. Finally we develop an improved BFS algorithm for undirected graphs.

3.3.1 Depth-First Search

In the RAM model, directed DFS can be solved in linear time using a stack S containing vertices v
that have not yet been visited but have an edge (w,v) incident to a visited vertex w, as well as an
array A containing an element for each vertex v, indicating if v has been visited or not. The top
vertex v of S is repeatedly popped and A is accessed to determine if v has already been visited. If v
has not yet been visited, it is marked as visited in A and all vertices adjacent to v are pushed onto
S. It is easy to realize that if the stack S is implemented using a doubling array then a push or pop
requires O(1/B) amortized cache-oblivious memory transfers, since the optimal paging strategy can
always keep the last block of the array (accessed by both push and pop) in main memory. However,
each access to A may require a separate memory transfer resulting in Q(E) memory transfers in
total.

In the I/O model, Chiang et al. [32] modified the above algorithm to obtain an O(V + £1)
algorithm. In their algorithm all visited vertices (marked vertices in array A) are stored in main
memory. Every time the number of visited vertices grows larger than the main memory, all visited
vertices and all their incident edges are removed from the graph. Since this algorithm relies crucially
on knowledge of the main memory size, it seems hard to make it cache-oblivious. Buchsbaum et
al. [31] described another O((V + £)log, V + sort(E)) I/O model algorithm. In the following
we describe how to make it cache-oblivious. The algorithm uses a number of data structures: V
priority queues, a stack, and a so-called buffered repository tree. As discussed above, a stack can
trivially be made cache-oblivious. Below we first describe how to make the buffered repository tree
cache-oblivious. Next we describe what we call a buffered priority tree that we use in the algorithm
rather than our cache-oblivious priority queue; we cannot simply use our priority queue since it
requires O (M) space. Finally, we describe the algorithm by Buchsbaum et al. [31] and how the use
of the cache-oblivious structures leads to a cache-oblivious version of it.
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Buffered repository tree. A buffered repository tree (BRT) maintains O(FE) elements with
keys in the range [1..V] under operations insert and extract. The insert operation inserts a new
element, while the extract operation reports and deletes all elements with a certain key.

Our cache-oblivious version of the BRT consists of a static binary tree with the keys 1 through
V in sorted order in the leaves. A buffer is associated with each node and leaf of the tree. The buffer
of a leaf v contains elements with key v and the buffers of the internal nodes are used to perform
insertions in a batched manner. We perform an insertion simply by inserting the new element into
the root buffer. To perform an extraction of elements with key v we traverse the path from the
root to the leaf containing v. At each node 1 on this path we scan the associated buffer and report
and delete elements with key v. During the scan we also distribute the remaining elements among
the two buffers associated with the children of u; we distribute an element with key w to the buffer
of the child of p on the path to w. We place elements inserted in a buffer during the same scan
consecutively in memory (but not necessarily right after the other elements in the buffer). This
way the buffer of a node p can be viewed as consisting of a linked list of buckets of elements in
consecutive memory locations, with the number of buckets being bounded by the number of times
the buffer of p’s parent buffer has been emptied since the last time p’s buffer was emptied. To avoid
performing a memory transfer on each insertion, we implement the root buffer slightly different,
namely as a doubling array (like a stack). Since only the root buffer is implemented this way, the
optimal paging strategy can keep the last block of the array in main memory and we obtain an
O(1/B) amortized root buffer insertion bound. Refer to Figure 4 for an illustration of a BRT.

Figure 4: Buffered repository tree (BRT). Each non-root node has a buffer of elements stored as a
linked list of buckets. The root node buffer is implemented using a doubling array.

Lemma 4 A cache-oblivious buffered repository tree uses ©(B) main memory space and supports
insert and extract operations in O(% logy V') and O(logy V') amortized memory transfers, respec-
tively.

Proof: As discussed, an insertion in the root buffer requires O(1/B) amortized memory transfers.
During an extract operation, we use O(X/B + K) memory transfers to empty the buffer of a node
w containing X elements in K buckets (since we access each element and each bucket). We charge
the X/B-term to the insert operations that inserted the X elements in the BRT. Since each element
is charged at most once on each level of the tree, an insert is charged O(% log, V') transfers. We
charge the K-term to the extract operations that created the K buckets. Since an extract operation
creates two buckets on each level of the tree, it is charged a total of O(logy V') memory transfers. O

Buffered Priority Tree. A buffered priority tree is constructed on E, elements with E, distinct
keys, and maintains these elements under buffered delete operations. Given E’ elements, all of which

17



are currently stored in the structure, a buffered delete operation first deletes the E’ elements and
then deletes and reports the minimal key element among the remaining elements in the structure.
The buffered priority tree is implemented similarly to the buffered repository tree. It consists of
a static binary tree with the F, keys in sorted order in the leaves, where a buffer is associated with
each node. Initially, the F, elements are stored in the leaves containing their keys. The buffers are
used to store elements intended to be deleted from the structure, and with each node v we maintain
a counter storing the number of (undeleted) elements stored in the tree rooted in v. To perform
a buffered delete we first insert the E’ elements in the buffer of the root and update its counter.
Next we traverse the path from the root to the leaf [ containing the minimal key elements (among
the undeleted elements), while emptying the buffers associated with the encountered nodes: At
the root, we scan the buffer and distribute the elements among the two buffers associated with the
children (exactly as in the buffered repository tree). During the distribution, we also update the
counters in the two children. If the counter of the left child v; is still greater than zero, i.e. the
minimal element is in the tree rooted in v;, we then recursively visit v;. Otherwise we visit the right
child v,. (Note that when reaching leaf [ it has an empty buffer). After finding [, we report and
delete the element stored in /. Finally we decrement the counters on the path from the root to [.

Lemma 5 Using no permanent main memory, a cache-oblivious buffered priority tree supports
buffered deletes of E' elements in O((% + 1)logy V') amortized memory transfers. It can be con-
structed in O(sort(E,)) memory transfers.

Proof: The number of transfers needed to construct the tree is dominated by the O(sort(E,))
memory transfers needed to sort the F, elements and construct the leaves; after that, the tree can
be constructed in O(E,/B) transfers level-by-level bottom-up. The amortized cost of a buffered
delete is equal to the cost of inserting E’ elements into a BRT, plus the cost of extracting an element
from a BRT, that is, O((% + 1) log, V') memory transfers. a

DF'S algorithm. As mentioned, the directed DFS numbering algorithm by Buchsbaum et al. [31]
utilizes a number of data structures: A stack S containing vertices on the path from the root of
the DFS tree to the current vertex, a priority queue P(v) for each vertex v containing edges (v, w)
connecting v with a possibly unvisited vertex w, as well as one buffered repository tree D containing
edges (v, w) incident to a vertex w that has already been visited but where (v,w) is still present in
P(v). The key of an edge (v,w) is v in D and w in P(v). For the priority queues P(v) we use our
buffered priority tree.

Initially each P(v) is constructed on the E, edges (v,w) incident to v, the source vertex is
placed on the stack S, and the BRT D is empty. To compute a DFS numbering, the vertex u on
the top of the stack is repeatedly considered. All edges in D of the form (u,w) are extracted and
deleted from P(u) using a buffered delete operation. If P(u) is now empty, so that no minimal
element (edge (u,v)) is returned, all neighbors of u have already been visited and w is popped off
S. Otherwise, if edge (u,v)) is returned, vertex v is visited next: It is numbered and pushed on
S, and all edges (w,v) (with w # u) incident to it are inserted in D. In [31] it is shown that this
algorithm correctly computes a DFS numbering.

To analyze the above algorithm, we first note that each vertex is considered on the top of S
a number of times equal to one greater than its number of children in the DFS tree. Thus the
total number of times we consider a vertex on top of S is 2V — 1. When considering a vertex u we
first perform a stack operation on S, an extract operation on D, and a buffered delete operation
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on P(u). The stack operation requires O(1/B) memory transfers and the extraction O(log, V')
transfers, since the optimal paging strategy can keep the relevant O(1) blocks of S and D in main
memory at all times. Thus overall these costs add up to O(V log, V). The buffered delete operation
requires O((1+ %) log, V) memory transfers if E’ is the number of deleted elements (edges). Each
edge is deleted once, so overall the buffered deletes costs add up to O((V + £)log, V). Next we
insert the, say E”, edges incident to v in D. This requires O(1 + %ﬂ log, V) memory transfers, or
oWV + % log, V') transfers over the whole algorithm. (Note that the E” edges are not immediately
deleted directly from the relevant P(w)’s since that could cost a memory transfer per edge). In
addition, the initial construction of the buffered priority trees requires O(sort(E)) memory transfers.
Thus overall the algorithm uses O((V + £)log, V + sort(E)) memory transfers.

3.3.2 Breadth-First Search

The DFS algorithm described above can be modified to perform a breadth-first search simply by
replacing the stack S with a queue. Queues, like stacks, can be implemented using a doubling
array, and the optimal paging strategy can keep the two partial blocks in use by the enqueue and
dequeue operations in memory, such that each queue operation requires O(1/B) amortized memory
transfers. Thus we also obtain an O((V + £)log, V) directed BFS numbering algorithm.

Our directed DFS and BFS algorithms can of course also be used on undirected graphs. For
undirected graphs, improved O(V + sort(E)) and O(y/%E + sort(E)) 1/0 model algorithms have
been developed [47, 46]. The idea in the algorithm by Munagala and Ranade [47], which can
immediately be made cache-oblivious, is to visit the vertices in “layers” of vertices of equal distance
from the source vertex s. The algorithm utilizes that in an undirected graph any vertex adjacent
to a vertex in layer 7 is either in layer ¢ — 1, layer ¢, or layer ¢ + 1. It maintains two sorted lists of
vertices in the last two layers ¢ and ¢ — 1. To create a sorted list of vertices in layer ¢ + 1, a list
of possible layer i + 1 vertices is first produced by collecting all vertices with a neighbor in level
i (using a scan of the adjacency lists of layer i vertices). Then this list is sorted, and in a scan
of the list and the (sorted) lists of vertices in level ¢ and ¢ — 1 all previously visited vertices are
removed. Apart from the sorting steps, overall this algorithm uses O(V + E/B) memory transfers
to access the edge lists for all vertices, as well as O(E/B) transfers to scan the lists. Since each
vertex is included in a sort once for each of its incident edges, the total cost of all sorting steps
is O(sort(E)). Thus in total the algorithm uses O(V + sort(F)) memory transfers. Since it only
uses scans and sorts, it is cache-oblivious without modification. Refer to [47] for full details. As
mentioned in the introduction, Brodal et al. [29] have developed other undirected BFS algorithms
based on the ideas in [46].

Theorem 4 The DFS or BFS numbering of a directed graph can be computed cache-obliviously in
O((V + £)log, V + sort(E)) memory transfers. The BFS numbering of an undirected graph can be
computed cache-obliviously in O(V + sort(E)) memory transfers.

3.4 Minimum Spanning Forest

In this section we consider algorithms for computing the minimum spanning forest (MSF) of an
undirected weighted graph. Without loss of generality, we assume that all edge weights are distinct.
In the I/O model, a sequence of algorithms have been developed for the problem [32, 1, 42, 15],
culminating in an algorithm using O(sort(E) - logy logQ(V—;)) memory transfers developed by Arge

19



et al. [15]. This algorithm consists of two phases. In the first phase, an edge contraction algorithm
inspired by PRAM algorithms [33, 36] is used to reduce the number of vertices to O(E/B). In the
second phase, a modified version of Prim’s algorithm [49] is used to complete the MSF computation.
Using our cache-oblivious priority queue we can relatively easily modify both of the phases to
work cache-obliviously. However, since we cannot decide cache-obliviously when the first phase has
reduced the number of vertices to O(E/B), we are not able to combine the two phases as effectively
as in the I/O model. Below we first describe how to make the algorithms used in the two phases
cache-oblivious. Then we discuss their combination.

3.4.1 Phase 1l

The basic edge contraction based MSF algorithm proceeds in stages [33, 32, 42]. In each stage the
minimum weight edge incident to each vertex is selected and output as part of the MSF, and the
vertices connected by the selected edges are contracted into super-vertices (that is, the connected
components of the graph of selected edges are contracted). See e.g. [15] for a proof that the selected
edges along with the edges in a MSF of the contracted graph constitute a MSF for the original
graph.

In the following we sketch how we can perform a contraction stage on a graph G cache-obliviously
in O(sort(F)) memory transfers as in [15]. We can easily select the minimum weight edges in
O(sort(F)) memory transfers using a few scans and sorts. To perform the contraction, we select
a leader verter in each connected component of the graph G; of selected edges, and replace every
edge (u,v) in G with the edge (leader(u),leader(v)). To select the leaders, we use the fact that
the connected components of G are trees, except that one edge in each component (namely the
minimal weight edge) appears twice [15]. In each component, we simply use one of the vertices
incident to the edge appearing twice as leader. This way we can easily identify all the leaders
in O(sort(FE)) memory transfers using a few sorts and scans (by identifying all edges that appear
twice). We can then use our cache-oblivious tree algorithms developed in Section 3.2 to distribute
the identity of the leader to each vertex in each component in O(sort(V)) memory transfers: We
add an edge between each leader in G4 and a pseudo root vertex s and perform a DFS numbering
of the resulting tree starting in s; since all vertices in the same connected component (tree) will
have consecutive DFS numbers, we can then mark each vertex with its leader using a few sorts and
scans. Finally, after marking each vertex v with leader(v), we can easily replace each edge (u,v)
in G with (leader(u),leader(v)) in O(sort(E)) memory transfers using a few sort and scan steps
on the vertices and edges.

Since each contraction stage reduces the number of vertices by a factor of two, and since a stage
is performed in O(sort(E)) memory transfers, we can reduce the number of vertices to V'’ = V/2¢ in
O(sort(E) - logy(V/V')) memory transfers by performing i stages after each other. Thus we obtain
an O(sort(E)-logy V') algorithm by continuing the contraction until we are left with a single vertex.
In the I/O model, Arge et al. [15] showed how to improve this bound to O(sort(E) - logylog, V')
by grouping the stages into “super-stages” and working only on a subset of the edges of G in each
super-stage. The extra steps involved in their improvement are all sorting or scanning of the edges
and vertices, and therefore the improvement is immediately cache-oblivious.

Lemma 6 The minimum spanning forest of an undirected weighted graph can be computed cache-
obliviously in O(sort(E) - logs logy V') memory transfers.
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3.4.2 Phase 2

Prim’s algorithm [49] grows a minimum spanning tree (MST) of a connected graph iteratively from
a source vertex using a priority queue P on the vertices not already included in the MST. The key
of a vertex v in P is equal to the weight of the minimal weight edge connecting v to the current
MST. In each step of the algorithm a delete-min is used to obtain the next vertex u to add to the
MST, and the keys of all neighbors of w in P are (possibly) updated. A standard implementation
of this algorithm uses Q(F) memory transfers, since a transfer is needed to obtain the current key
of each neighbor vertex. In the I/O model, Arge et al. [15] showed how to modify the algorithm to
use O(V + sort(E)) memory transfers by storing edges rather than vertices in the priority queue.
Below we describe this algorithm in order to show that it can be implemented cache-obliviously.

Like Prim’s algorithm, the algorithm by Arge et al. [15] grows the MST iteratively. We maintain
a priority queue P containing (at least) all edges connecting vertices in the current MST with
vertices not in the tree; P can also contain edges between two vertices in the MST. Initially it
contains all edges incident to the source vertex. In each step of the algorithm we extract the
minimum weight edge (u,v) from P. If v is already in the MST we discard the edge; otherwise we
include v in the MST and insert all edges incident to v, except (v,u), in the priority queue. We
can efficiently determine if v is already in the MST, since if © and v are both already in the MST
then (u,v) must be in the priority queue twice; thus if the next edge we extract from P is (v, u)
then v is already in the MST.

The correctness of the above algorithm follows immediately from the correctness of Prim’s
algorithm. During the algorithm we access the edges in the adjacency list of each vertex v once
(when v is included in the MST) for a total of O(V + E/B) memory transfers. We also perform
O(F) priority queue operations, for a total of O(sort(E)) memory transfers. Thus the algorithm
uses O(V + sort(F)) memory transfers. All of the above can easily be modified to compute a MSF
for an unconnected graph rather than a MST for a connected graph. Thus we have obtained the
following.

Lemma 7 The minimum spanning forest of an undirected weighted graph can be computed cache-
obliviously in O(V + sort(E)) memory transfers.

3.4.3 Combined algorithm

In the I/O model, an O(sort(E) - log, logy(Y2)) MSF algorithm can be obtained by running the
phase 1 algorithm until the number of vertices has been reduced to V/ = E/B using O((sort(FE) -
logy logy (Y2)) memory transfers, and then finishing the MSF in O(V’ + sort(E)) = O(sort(E))
memory transfers using the phase 2 algorithm. As mentioned, we cannot combine the two phases
as effectively in the cache-oblivious model. In general however, we can combine the two algorithms
to obtain an O(sort(F) - logs logy(V/V') + V') algorithm for any V' independent of B and M.

Theorem 5 The minimum spanning forest of an undirected weighted graph can be computed cache-

obliviously in O(sort(E) -logy logs(V/V') + V') memory transfers for any V' independent of B and
M.
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4 Conclusions

In this paper, we presented an optimal cache-oblivious priority queue and used it to develop effi-
cient cache-oblivious algorithms for several graph problems. We believe the ideas utilized in the
development of the priority queue and our graph algorithms will prove useful in the development
of other cache-oblivious data structures.

Many important problems still remain open in the area of cache-oblivious algorithms and data
structures. In the area of graph algorithms, for example, it remains open to develop a cache-
oblivious MSF algorithm with complexity matching the best known cache-aware algorithm.
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