MAX-PLANCK-INSTITUT
FUR
INFORMATIK

An Optimal Construetion Method for

Generalized Convex Layers

Hans-Peier Lenhof Michiel Smid

MPI-I-91-112 August 1981

~INFORMATIE

Im Stadtwald
W BAOO Baarbiriloken
Charmany

1

We consider the following problesm: Let P be a sét of n poicts in the Enclidean plane and
Iet ' be a convex figuze- Preprocess P such that for any query point g, the points of Pin

An Optimal Construction Method
for Generalized Convex Layers

Hans-Peter Lenbof Michiel Smid*
Mas- Plangk-Tnatitat j5r Jaformatik
D-6600 Saorbrdcken, Germany

August 13, 1991

Abstract

Lat P be a set of n points in the Euclidean plane and let © be 2 convex Bgure. In
1985, Chaselle and Edelsbranner presented an algorithm, which prepracesses P such that
for any query paint g, the points of P in the translate € + g can be retvieved efficiently,
Assuming that conslant time suffices for deciding the inclasion of & polnt in ©, they
provided a space and query time optimal solution. Their algerithm uses CHn) space.
A query with output size k caz be solved in Oflogn + &) time. The preprocessing step of
their algorithm, hawever, has time complexity O[n?]. We shaw that the ussge of a new
constraction method for layers reduces the preprocessing time to Qrlogn). W thus
paovide the first space, query time and preprocessing time optimal solstion for this class
af point tetrieval problems. Besides, we present twa new dynsusic data structures for
these problems. The first dynamic data structure allows on-line insertions and delstions
of points in O((logn)?) time. In this dynamic data strecture, o query with sutpst sise &
can be sobved in O(logn + kilogn)?) time. The second dymamic data strocture, which
allows ogly semi-caline updates, has Of(log n)?) amortised update time and Oflogn+ k)
query time.

Introduction

the tranalate & + g can be retrleved efficiently.

In 1885, Chagelle and Edelsbrunner [&] provided a space and query time optimal solution
for this class of point retrieval problems. Their solution wses Ofn) space. A guery with
output size k can be solved in Oflogn + k) time. The preprocessing step, hawever, has time

complexity &{nt).

“This auther was supparted by the ESPRIT II Busic Research Actions Progesm, ander conteact No. 3078

In a few spocial cases alternative soluticns have been devaloped:

» Dynamic fixed polygenal windowing problem: In this case the boundary of the figure
€ ie & polygen. In 1986, Klsin et al. [9] presented an optimal dynamic solution for
figures with a constant number of boundary edges. Their dynamic data structures use
Oin) space. Insertions and deletions can be carried out kn O(logn) time. A query with

output siee k can be done in Oflogn + &) time.

(posject ALCOM).

» Fixed radius neighbor problem: In this case © is a disk. The previously best known
salusions to this problem are:

& | query space
6] | Ofnilogn) {loglogn)) | Ollogn « k) | O(nllognloglogn)’) |
—“—og‘(nh,n; T O Fleg)T Olnlogn) i
3 | Bllogn + k Oln{lognl*)
'{j O[ni) Dilogn + k Oin]
i pelya. time Oflogn + F Olnlogn)
prob. [Olnflogn)’) | Ollogn+ k Ginlogn)

The algorithms in [1] and [5] also handle queries with non-fived radius,

As mentioned above, Chezelle and Edelsbrunner pnoemed the first space and query
time optimal solution. The prep ing step of their however, takes @(n?)
tims. During this ing step the Euclidean plane is into cells. Thea,
for every non-empty cell, ie., a cell that contains points of P, a family of so-called layers is
constructed, In the worst case, the layers construction method of Chazelle and Edelsbrunner
requires fi{n?) time.

In this paper, we introduce a kind of “dual or mirror layers™ with respect to the luyers,
which Chazells and Edelsbrunner use to baild their query data stroctures. A family of thess
“dual lyers" can be constructed in O(nlogn) time. By walking acrass the "dual layers™
of such a family, we can determine a family of layers in O(n) time. Hence the whole layer
computation takes O(nlogn} time. This new construction method for lower and wpper
envelopes only works in the case of curves, which are translates of a convex corve.

‘We thus provide the first space, query time and preprocessing time optimal solution for
this class of point retrieval problems. We want to emphasize that all these problems can
now be solved optimally by one general technique. Besides, this layer constroction method
gives new dynamic data structures for the above class of paint retrieval problems. The data
structure, which we use to determine the “dupl layers”, can also be uwsed to retrieve the
points that are contained in the translate & + g. Oo-line insestions and deletions in this
query data structure can be carried out in 0{{lagn)?) time. A query with output size & can
be solvad in O{logn + Hloga)®) time.

This update time i¢ improved for so-called semi-online wpdates, as introduced by Dobkin
and Suri [8], (See also [12].) A sequence of updates is called sermi-online, if the nesrtions are
on-line, but with esch inserted point p, we get an integes d which says that p will be deleted
d updates from the moment of insertion. In case d = 20, paint p will never be deleted.

In [8, 12], the following s shown. Let D be n static data structure for a decomposable
searching problem. Let S(n), P(n) and Q(n) denote the site, the building time and the
query time of D, respectively. Then, thers exists a dymamic data structure for the same
query problem, that allows semi-online updates. This data structure has size O(5(n)}, 8
query time of O(Q{n)logn) and an amortized update time of O{(P(n}/n}logn) per semi-
online update, This dynamic data structure is a generalization of the one that is obtained by
applying Bentley's logarithmic method. see (2], It maintains o collection of Oflogn) static
structures,

I we apply this result to our static data structurs, we get a guery time of O((logn)? + k)
and an amortized update time of O({logn)?). Using fractional cascading [7], the query time
is improved to O(legn + k).

In Section %, we describe the algorithm of Chazelle and Edelsbrunner. The new construc-
ticn mathod for layers will be explained in Section 3. As part of a few concluding remarks
in Section 4, we present some applications of the point retrieval algorithm in computer
simulations of molecule docking. In these interactive motion planning problems disks with
fized radius appear as projections of the spherical stoms. Besides, we present the results
coneerning seeni-online updates.

2 The algorithm of Chazelle and Edelsbrunner

In this section we explain the algorithm given in [6}. First we introduce in Subsection 2.1
vant ic noth d ize the ional ions. In Subsection 2.2

we describe the way the Euclidean plane is divided into cells. In Subsection 2.3 we discuss

the gquery data structure for & cell. Subsections 2.1, 2.7 and 2.3 sumemarize Sections 2, 3 and

A4 of J6].

2.1 Geometric notions and computational azsumptions

The Euclidean plane is denoted by E®. Let A € R, v = (o, 5w = {w,,) € B, and

A, B F. We use the following notation:

e{A) := closwe of A

convex hull of A

1= {1t + wa, wy +) Av =g, Ay)
Ayi=Atv={atvlac A} A+B:={attlacAbe B}

Throughout this paper, C is & bounded convex clossd figure in EY. Let L {resp. 8] denote

the point in bd(C) with minimal (sesp. mazimal) 5 coordinate (If L (resp.) is not unigue,

we take the point with maximal [resp. minimal} y-coordinate.). For two different points

v.w £ E? we define

Ho,w):= baf(-Ch) 1 b -Cha).

whars (=) = {~¢|e € C}. The intersection I{r,w) consists of at most two line segments
[see Figure 1). Hence [{v, w) can be represented in a constant amount of space.

Definition 1 The conver closed figure O i5 called computabls, f

1. constont time suffices to test for any point p € E* whether or not p is contained in O,
and

b=

. comstant time suffices to compute I(v,uw) for any two (potentiolly infinitesimal close|
points ¢ and w in E.

Lemuma 1 ([6]] of & € is computeble, then L and B can be determined in constant ime.
8] Let C Be computable, p o point ia E? gnd [o vertical line through p. Constont time
suffices to decide whether (1) C is o the right of § or (5] C is to the left of 1 or (3] C111 2 8
and p is sbove © or p is contained in C or p s below C.

We now define the so-called silos and rotated silos as substitutes for () and O

Deofinition 2 Let v be a point, ro(v) the vertical ray with v as lower endpoint and ralv)
the vertical ray with v as wpper endpoint. We call S(v) i= —C + ru(v) the #ilo of v and
RS (u):= © + ry(x) the rolated silo of v.

(~Chs

(=)

[}
Tiwywh =gy U convigs, us)

Figure 1: Exampls of a convex computable figure O and the intersection of two translates
(=€) and (—C -

~R+w

Figure 2: Silo 5(v) and rotated silo BS{x),

Censider Figare 2. The sl 5{v} contains the set of paints g, such that C, intersects
ru{v). The boundary bd(S(v)} cansists af the two rags —R + re(6) and —L + ru(v) and
the lower part af 0d((—C).). The rotated silo RS(v) contains the set of points g, such that
(), imtersects rgfv). The beundary bl ES(v)) comsists of the twe vertical rays £+ rafv)
and L + rg(v) and the upper part of 5a({C),). The boundary of the intersection of the two
ailos 5{w) and S{w) (resp. rotated silos RS(v) and RS(w)) is either empty or consists of &
aingle point, a segment or a ray. This boundary can be computed in constant time.

2.2 How to divide the Euclidean plane into cells

In this section we describe how the Euclidean plane is divided into rectangles, such that any
sranslate O of O does net intersect mere than nine rectangles. We call the rectangles the
cells of the subdivision, For every cell OF, we construct four query dasa structures, in which
we store the points of Pog := PN CE.

Lat C be & computable figure with non-empty interior and extreme points L and £ We
ssgume that the sepment & = conv(8, L) is parallel to the r-avis of the coordinate system.
The segment # decomposes C into twoe computable figures C, and Gy, The figurs C, is the
upper part, and Cp i5 the lower part. We assume now that © s ©, and explain the query
algorithm for © = €. The query algorithm for €, works analogously.

Let M be a point on bd(C') that lies on o tangent § # ¥, pazalle] to ¥ (see Fig. 3). The
vertieal projection of M onto § 18 denoted by N. We now define two orthegonal vectors
F=1{R—I)and 7= L(M — N), whose lengths |7] and |51 fix the width and height of a
cell. We comsider the decomposition & = { €y} of the Euclidean plane £2 in calls
OB = {(pap) 111 < e < (i1 B0, 171 < py < (34 1) 151}, whese i and f range over the
integers. We determine the non-empty cells, sort them in lexicographical order. and store
them in a balanced binary search tree. It is easy to see that any translate O, intersects at
most nine calls Iying in three consecutive rows and columps. Given s translate Cp, we can
find the non-empty cells, which are intersected by ©,, in Oflogn) time.

Figure 3: Decomposing C and E¥,
We distinguish between the following kinds of intersection:

Definition 3 Let CF b o cell and let N = narth, E = east, § = south and W = west denote
the four edges of bd{ CE}. We say that €y is D-grosnded, if T, 11 D cquals the orthogonal

Bl

projection of €y N el{CE) onto D, for D € (N, 5, W, E}. € is anid to be grounded if it is
D-grounded for at least one assignment of D to N, 5 W or E.

Chagelle and Edelsbrunnes prove;

Lomma 3 ([6]) Let g be a point in E* and OF a ecll of @, such thot C, 11 CF £ #, Then
g 4 grounded with respect ts CE.

Given a query translate Oy and a cell CE, which is intersected by Cy, we can determine in
constant time, whether €, i N, §,W or E-grounded with respect o the cell CE (see [6]).

2.3 The algorithm of Chazelle and Edelsbrunner

Fur every non-empty csll OF we build four data strictures, ane for every assignment of D to
N,E,5,W, Since all four data structures are constructed in the same way, we only consider
the problam “C; is S-grounded with respect to CE" and show how the query dats structurs
for S-grounded gueries je built. Hence we assume for the rest of this section, that the guery
translates Oy are S-gronnded with respect to the non-empty cell CF. In such a query, we
wank to compute all points p £ Pos = P CF which lis in €,

Observation 1 Point p lies in €, fresp. BS(g)) if and only if g £ (~C), fresp. 1 € S(p)).
Using Obsarvation 1 we ¢an show the following lemma:
Lemma 3 ([6]) Let p be o point of Peg. Then, p is in C, if and only if g € (p).

Lemma 3 tells us, that we can compute all points p € Pz Ny in the fallowing way: Compute
all silos $(p) for p € Pgg which contain g. Note that these are exactly those silos, whose
boundaries are intersectad by the vertical ray from § towsrds y = —oo.

How can we fnd all these slos S(p]? We assume that the poiats Pos = {p1. -, p) are
sorted in ordes of Since the diffe of the of any
two poitts in Pog s less a]san 1k,

U stz
1gigm
ie comnected. The boundary L{Pes) = bd[U7), which we call the S-leyer of Pee, it an
unbounded, conneeted, x-monotons curve. Any vectical line intersects this S-layer in at
most ene point or ray. We call

& o= [E{Po) 0 b S{p) L) blS(ps))
1€5<i

the sdpe o; of p;. Since #; can be empty, not every point p € Peg contributes to s part af
L{Peg). If e is empty, then py is called redundant and we define

ext(Peg) == {p € Peg|p non-cedundant}).

Observation 2 ([8]) Let ey, .-, 4, be the sequence of non-empty edges of L{Peg) ordered
from left to right.

(i) For each 1 < § < =1, the mozimal s-covrdinate of bdiS(ps,)) 1 bl{ 5{p,,, 1) ¢ the
z-coardinate of the right endpoint of ey, and the left endpoint of ey,

(i) by < kjyy for 1 €854 =1, iie., the ordering of the edges uankoMMo{Pu

L}

Figure 4: Example for a family of S-layers

Chazelle and Edelshrunner use Observation 2 to devalap an 0(m) thne construction mathod
for L(Prg). But why do they campute L Peg)?

Lemma 4 ([6]) Lebey,,-- -, eq, be the sequence of non-cmpty edges of L{ Pog) ordered from
left to right, Lot €, be o transtats of € that 4s S-grounded with respect to CF, and v = ra(g)
the vertical rey with upper point g.

{i} The ray r intersests L{ Pog) if and enly if C) 1 Pog i nol emply

(8) If ax, (e £ B, then py, Bes in Cy and there are indices § and j, with i <1 < j, such that
CyMext(Peg) = {maii < e < 5}

The algorithm for finding all points of &, 1 Py warks as follows: First, we search for
the points of C, 1 ext{Pag). In order to find these points, we search for the edge e, that
intersects the ray r := ralq), (If there is no such edge then C, N Pog = 0 and the algorithm
stops.) Note that ey, can be fonsd in O(logt) time. Then we stast at e and walk along
L{Pgg) to the left, until we find an odge ey,_, such that ¢ € S{pe._,). Analogoudly, we
walk to the right, Again starting at ex,. unkil we find an edge ey,,, snch that g & S(pa,,).
Thuring these walks, we report all paints py,, Ba, oo Fry e In this way, we have determined
the points of © Next| Peg) in O(logt + €, 0 ezt Poc)|) time,

Lat Plp := Poz and Phy i= Pl \ext(PL') for i > 1 Suppose we have constracted the
S-layers L{PLg), for i 2 1. 16 Cy Mext(PLg) # ¥, we search for all points p € Cy N ext(Piz)
by testing, if the ray r intersects L{ PEg). If r intersects the second S-layer, we walk across
L{P}g) in the same way as described shove. We continue to test the 5-layers, until we
find an S-layer, which is not intersected by the ray v, or until we have checked all nom-
wmpty 5-layers. Since the family Ls(Peg) = [L(Plg),- -+, L{Phy)) of non-smpty S-layers is
nested, an S-layer which lies above a non-intersected S-layer, cannot be intersected by the
ray r. Hence, no point repressnted by such an S-ayer, can e in Cy,

All kg points p € ©,11 Pog are reported in O |visited 5-layers| logm + kop) time. Since
we have found at least one point in every S-layer, with exception of the last visited, the
query time is (O{kcplogm). By spplying Chaselle’s hive graph [4] to Lz Pzg), the ey
time can be improved to O(logm+ keg). The hive graph connects L PLg) with L{FEE) in
sach a way that the knowledge of the edge in L{Phz) that intersects r, allows us ta o the
intarsecting edge in L{ FLY] in constazit time, O[m) space suffices to store the hive graph of
Lg{Peg). The hive graph can be constructed in Ofm] time (see [4]). Hence the cost of the
preprocessing step is dominated by the @{m?) operations required to construct the family
of S-layers. {Note that there are at most m 5-layers, each of which is constructed in G{m)
time.)

We can now cite the main result of [6]:

Theorem 1 Let P be o set of n points in the Buclidean plane £* and € & conver computable
figure. There exists a dota strecture, such thot Ok +logn] time suffices to retrieve all &
points of P lying in a gquery tronslote Op. The dafe sfructure hoe size Ofn} and can be
comstructed in O(n?) time.

3 Fast construction method for S-layers

Let Pop = P CE = {p1.-++,pu} be the sequence of points in cell CE, sorted in order
of increasing x-coordinates. We assume that there are no two points in Pog with the same
z-coordinate. (In Section 4 we show how degenerate cases can be handled.) We consider
again only S-grounded queries. In this section we describe a method to construct the family
of §-layers for the point set Peg with respect to the fixed convex computable figure €, which
takes O{mlogm) time. In Subsection 3.1 we present a new gecmetric concept for convex
curves, the so-called dual or mirror 5-layers. Then we show that the family of 5-layers
can be constructed from the family of dual S-layers, in O{m) time. In Subsection 3.2 we
describe an O(mi{logm)®) time dual 5:layer which is & mod

of Overmars and van Lesuwen's convex layers constriction anmnhm (see [10]). Besides, we
show that this dual 5-laper construction method gives new dynamic query data structures
for the investigated class of paint retrieval problems. In Subsection 3.3 we discuss a modified
veralon of Chazelle's comvex Laysrs construction algorithm [3] and we show that this algorithm
enables the construction of the dual §-layers with anly ©{mlogm) operations.

3.1 Dual S-layers

We now define minimal representations for the S-layer L{Feg). Hecall that the points of
Peg = {P1. *+ P} are surted by their x-coordinates.

Definition 4 o) A sequence R(Peg) =< py,,+.Ps, >C Pop, which satisfies the following
properties, is called o representabion system or r-system of the S-layer L{ Pex):

o k< bigy foralliml, - =1
o bl)0 L Pog) # 0 foralli= 1,00t
o L{Pcg) C Ubay bl Sipa).

b} An rosystem B{Pgg) =< pu,ooo oy, > of the Slager L Pog) with minimal length ¢ is
ealled @ ménfmal r-system of the S-layer I{Fox).

In order to prevent the number of varinbles becoming toc lurge, we redefine the edges
ey, and sets PLo If B(Ppp) =< o, o« Py, > b5 & minimal r-system for L{Pcg), then the
S-layer L[Pcg) can be represented by the unicn

LiPog) = |Jew of the sdges e i= [Z(Pox) bl Sipe) L) belS(m,))
1gici

=t

Wa say that edge ex represents point py,. Let Ply = Ppg and PLp o= P\ Ry,
where Ry 1= R{Pg') is & minimal r-system of the S-ayer L(Fig'), Furthermore let
BslPoz) = (Ry,oo, By) be a family of minimal r-systems defined recarsively in the above
way, such that every peint p of Prg e contained ln one Phy forsame 1 £ 45 2. [t is easy to
see, that the assertions of Lemma 4 are also valid for cach S-layer L{Phg) defined as above,
Furthermore eack family of S-layers that is constructed in the above way, consists of nestsd
S-layers. Homes, if we know such & family of minimal r-systems for L{Peg), we can construct
the guery data structures used in [6] in Ofm) time.

We need some more notions: Let o and © be two points in cell CF with different
s-coordinates (we assume 6; < b,). If the silos S{a) and 5(4) intersect each other, we
eall the point in the ntersection bd{${a}) 1 bd{S(8)} having the smallest x-coordinate the
si-point of @ and b and the point baving the largest x-coordinate the ST-peint of o and . We
use the notations si(a, b} and 5/(a,§) for these interssction points, If the intersection bs &
unique poin, then #i(a,b) = §7(a,4). Purthermare we define int,(a,b) := int{ RS(si(a, 8)]),
nt*(a,B) 1= int{ BS(SI{a,b})) and insgi{a, 4] := int{ RS(si{a. b))} U int(RS(51(a,b))). The
Entersection

efa,b) :m bl RS(SI(0,0))) 0 {p = (paupy) 8= < p= < b}
will be ealled the duai-edge or d-edge of a and b, The d-edge of a and b is T-menotons and
connects a and b. If we would cse the boundary bd{ BS(v)), whare + is an arbitrary point in
the intersection of the silos @ and b, instoad of bd| BS{S1{a,4)}) in the d-edge dafinition, we
would get the same set. The region

regle,b) = {p = (po, py}laz < pe < bo A p lies {strictly) above efa, 8]}
will be ealled the regien of a and b (see Figure 3}

Lemma 5 Let a,b,c be three points in cell OF with different z-coordingtes.
Then bd{S{c}) ri bd{ S{a) w S(B}) = @ if and enly if ¢ € regla.b).

Proofi “=": Since ,b,c s in the ssme cell, every paiz of the silos S(a), 5(8),5(c) has a
¥ boundary | A ing wlog @, < b, we show that ¢ € regla, b) implies
B[S(=)) '\hﬂ[s{a] LS(B)) # 0. I ¢ < . ar be < ¢, it bs obvious that bd{S(c)) bl S{a) L
5(B)) i B Dtherwise a < e, < b, and ¢ Lns balow or on e[a, b). Then, ¢ & RS{51{a, b)) (s2e
Fig. 5). Observation 1 implies then 51{a,b) € 5(c). Hence bd(5{c)) n#d{S{a) (b)) # 0.
“e=": We assume that a, < b.. Since ¢ € reg(e,b), Observation 1 kmplies ST{a,b) & 5(e).
Furthermore the convexity of the sillos and she fact that o, < ¢, < b,, guarantee that (1)
left of $1{a,b) the boundary bd[(c)) es {strictly) above bi{S(a)) and (2} right of ST{a,b)
the boundary bd[5(<]) liss (strictly) shove bl 5(B]). Hence ba{S(c)) r4d{5(a) L 5(b)) = 0.0

We now define a kind of “dual laywr” to the S-layer L(Pes):
Definition 5
) Let DI{Pcz) be the lower envelope of the set of deedges {elp(,p3)lpp; € Peg}. We call

g

! e
H sifa,b) = 51{a,b)

§ RS{aila, b)) = RS(5I{a, 4]}

Figure 5t §l-point, d-edge and region of two pointe @ sud b,

DI{Pcs) the dusl S-layer or dS-layer of Peg.
b) A aequence DR(Pog) =< pa, -, Po, >C Prg, which satisfies the following propertice, is
called o dual representation system or dr.system of DI Pegl:

o ki< ks foralli=1. 0 -1
® elpe . Pr,,) © DL Peg) for alli=1,--- 1 -1
Uizt elpm prys) = DL Pez).

€] A drsystem DR{Pog) =< py o px, > of DE(Pos) with minimal length ¢ is called o
rainimal dr-syaberns of the d5-layer DL{Prg).

The d5-layer is an x-monotone cucve. All points p € Pop, which can be element in & min-
irmal dr-system of DL{ Peg) or has to be an elernent in all minimal dr-systems of DL{ Peg),
lie on the dS-layer DI{ Pex). Using Lemma 5 we can easily show, that < p, o pg, > 058
minimal de-system for DL{ Pog) if and only if < py, -+, py, > is o minimal r-systern for the
Sudayer L{ Pozg).

Lot Phy i= Pox and Phg = Piyt) DBi_y, where DR,y = DR(PE') is a minimal
dr-gystem for DL{Pi'). By computing a family DLs(Peg) = (DL{Phg), -, DI{Pg)) of
dS-layers resp. a corresponding minimal dr-system DRe(Pog) = (DRy. -, DR,), we get a

family Rs{Pez) = DRs(Peg) of minimal r-systems, which snables s to build the query
data structure for S-grounded queries in O(m) time.

3.2 Convex layers and dS-lavers

In this subsecticn we show that there are important similarities betwesn lower convex hulls
and dS-layers. These aimilarities enable e to construct d3-layers with the same methods
ehat are used to construct Jower convex bulls.

Figure & S-layer and dS-layer of & point set Pop = {pro+ pe}. In the above shtnation
{P1.p4,ps} is the minimal de-systems for DL{Pog).

The dS-layer conslsts of curves, which connect peints of the corresponding paint set, All
poines of thie point set e on ar above the dS-layer. Given two dS-layers, whers all points of
the first dS-layer are to the left of all points of the second d5-layer, there is exactly one new
deedge on the d5-layer of all paints, which connects the two dS-layers and shares only atart-
and endpoint with them.

Before going on with the above considerations, we transfer the terms concawe, refler and
supporting from the thecry of convex hulls to the theory of d5-layers: Let P"'l' ={p.-m}
and P2k = {pucy, - B} with

(p)e < lpals <00 < mnde < (Paiade €2 < (Bl

be & partition of Peg. Let DR(PHy) =< #l.-— ¢ > be a minimal drsystem of DL P}
and DR(PEL) =< pf, -0} > a minimal de-system of DL[PEL). Let the indices uand v be
such that g, = p, and g} = p,. The d-edge e(pl, 5]} is ealled

» si-supporting in pf, i for all £ € {1, b}, pr & intuls] 5],

* si-supporting in 57, i for all g € {A+ 1, ;m}, gy & intalpl Pl

« si-comceve in pl. If there is a point py € fatu(p,pf), where f & {u+ 1--- k)
=1}

* si-concave in g, if there iz a point py € inty{pl7}) where g€ {h 4 1,
o si-reflez in pl, if there bs & poiut py € inty(ph.p}), where f € {1,--- u—1}.

o si-reflezin g7, if there is a point py € inty(p), p5), whese g € {v + 1,7+, m}.

11

d we define 57-supporting, SI and 51.reflez, by replacing ind,
int"(pl, p7) in the above definition. Note that ps,pe € intu(p, p3), where f € {1,
and f' € {w+1,-.- &}, is oot possible, because in this cass the d-edge ¢(py, pp) would
lie below the d,«zgu ¢[pf w) e(phip,). But this would contradict the assumption, that
DR(Fllz) is a dr-system for DL{ 1"J Therefore, the three cases supporting, concave and
reflex are mutually exclusive, The ﬂ.redg: ez, p]) is called a supporting d-edge for DL(Piy)
and DE(PSE), if for all £ € {1,+-.m}, py 2 it (725 Eance the d-adge sud #) i s
supporting d-edge if and only if e[pl, p7) is si-supporting and ST-supp b dp
7 and §}. The endpoints gt and §} of a supporting d-edge are called supporting left and
right andpoint.

Note that every d-edge e(Fe,. Pa,,)o which belongs to twa neighboring points pu,, Py,
of & minimal dr-system, is & supparting d-edge with respect to the corresponding point set.

In crder to compate » minimal dr-system of DL Pop), we have to determine the “longest”
supporting d-edge for DL{ PR} and DL{PEL). I we know a supporting d-edge e(p), 57}, we
can determine the “longest” supporting d-edge resp. & minimal dr-systam of DL{PmJ with
the following procedure:

Case 1: Welpl_; ¢} is o supporting d-edge, set DR{Prp) i=< g, by Bl 8] 35
Case 2t Welpd_;. 5.,) 18 not & supporting d-edge and e{pl_;. 25}, elph. 25,) are supporting
dredges, then set DR Pog) im< plo- o Phog Pl oo >, or st
DR(Poz) =< g hPjarr - 2 74

Case 3: We(ph.,, 95). elpioy 1) are not supporting d-ediges and ¢(pl, 5.) s » supporting
deedgs, then set DR{Peg) =< #),o 5l Flag,o o8l =5

Case 41 Wefply 5,). elph Py) are not supporting doedges and g{p{_ P} is a supporting
d-edge, then set DR{Peg) s=< pl,o o Boy.phe ol >

Case 5 I e(pl_y. 641), elpl . 2}) and efg], b},) are not sapporting d-edges, set
DR(Pep) =< gl gl >

Before we show how a supporting d-edge can be computed eficiently, we prove that we
can determine in constant time, if a d-edge e{pl, 5]) is si-supporting, si-concave or s refiex
(resp. Sl-supporting, Sl-concave o7 SP-reflex).

Lemma 6 o) 4 d-edge e(p],5]) is

» ei-supporting in pl, f pl_y Hay & intulel 2

o sisupparting in g%, f Loy phey € inte(phaf)

s comcate fa g i s € intilshp)

» sivconcase in g, i Fly € intyi(ph o)

o sirefes in g, i 5Ly € it ulpher)

» sireflez in g, i By € intu(pl6])

b) Jf we replace i'u..'(pé.ﬂ] Ey a'nl"{p';.p;] o), we get anologous conditions for the prop-
ertics SF-wupporting; ST-consuve und Slorefles:

12

Proof: a) Let pl = p,. We only have to show the for property si

because all other statements follow by definition. We prove the first statement for prop-
ety i i The second can be shown S0, assume that
Phoypliy € intlplph). We assume that & point py € intul(phpf) with f < u exists.
Since intfi(pl_,,pl) containe the part of int,i(p},p]), which lies to the left of the vertical
line through pl, the point py liss in intZi(p_,.5!). But this is & contradiction to the fact,
that e[pl_;,pt) is & supporting d-sdge in DL{PSg). Therefore a point py € int,(ph, p}) with
f < u does not exist, A similar asgiment impliss, that there 4 no point gy € intylpd, 5
with f > w. Henco the d-sdge e(p}, p}) is si-supposting in 7},

b) Analogous to a). B

Lemma § implics thut we can determine in constast time, if a given dredge e{p, #]) is
& supporting d-edge. In the following lemma we show how we ean determine a wppor!:n‘
d-edge for the dS-layers mplgg] and DL[PCH} eficiently. Using this lemma, the dS-layer
DL{ Peg) can be dbya

Lemma T
Given the two minimal de-systems DR PRy) =< g, and DR(PEL) =< plo--- 9} >,
we can compuls s supporting d-edge of the cor ing df-layers in Oﬂuga+ lagt) time.

Proof: We assume that the two de-systems are stored in two sreays, Let 1 < ¢ < 5 and
1£j7 <t We consider the d-edge z{p;'.p;]. Ea:hod’xhatmpoh;epfmdpjcm he
claasified (1) as cither si-refiex or si-supperting or si-concave and (2] as either SP-reflex or
Sl-supporting or SI-concave with respect to the d-edge a(yﬁ.p}}. As in the case of ordinary
convex hull construction we claselfy nine possible esses, which are schematically ustrated
In Pigure 7.

Py

#

si-concaved

sh-gupp.

si-reflex

Figure T: The nine possible cases.

In all cases, in which we have not found a supporting d-edge, we can redoce the number

13

of eandidates for the left or right endpoints od'thg supporting d- edga 'Thn dashed parts of the
d5-layers are those, which can be elimi om farther ! ining a sup-
porting paint. If +i(ph 05} # sr{#.,p,]. we wﬂry the d-edge «(pl, %) \mh respact to both
intersection endpelnts and eliminate the parts of the S-layers glven by the two classificatbons.
For both intersection endpaints we have nine possible cases, which are illustrated in Figure 7
for si-classification. Since the tabls for S7-classification is the same as for si-classification and
since the dashed parts of the dS-layers, which esn be elimi d from further

are also the same, we only consider the si-classification.

(Fh.F}) = (si-concave, si-supparting): In this case the set {e(p}, Fj)If <in1Sg <t} of
d-edges cannot contain a supparting d-sdge, becanse e{pl, p7) lies below or on thess d-edges in
the range spanned by the x.coordinates of the dS-layer DL{ ;) and, hence, all the d-edges
in the above set are alio si-concave in the left endpoint. Therefors the poiat set {_p}lf £}
can he remaved from the candidate list of left supporting points.

(PhF5) = (si-supporting, si-comcave): In this case the same argument as in the case
{#i-concave, si-supporting) kmplies, that we can remove the poine set {p}lg = j} from the
candidate set of right supporting points.

(Fh#}) = (si-concave, si-refiex): The fact that the d-edge e(pl, #]) is si-roflex in p}, implies
25y € BS(silz),27)). Hence all points of the point set {#7]g < 1} maust lie outside the rotated
silo BS{si{pl,p})). For any d-sdge elp},p}), where f € {1,-- s} and g < j, there exists
always a part of this d-edge, which lies stricsly above «(pl,p}). Therefors no d-sdge of this
set can ba supporting. Hence we can remove the point set {p}|y < s} from the candidate
List of right supporting points.

(¥, 55) = [si-refiex, si-concave): The same argument &5 in the case (si-concave, sl-reflex)
implies that we can remove the point set {g}|f * i} from the candidate list of lft supporting

oints.,
¥ (2,2} = (si-reflex, si-reflex): Using again the same argument as in the last two cases,
we can remove the point set {p| £ > i} from the candidate list of left supporting points and
the polnt set {pflg < j} from the candidate st of right sapporting peinta.

[?LP’;,} = (si-supporting, si-reflex): We can remove the point set {p}lg < j} from the
candidate list of right supporting points,

(2h.25) = (sbreflex, si-supporting): We can remove the point set {Flf > i} from the
candidate list of left supporting points.

{#l. 55} = (si-concave, si-coneave): This is the difficult case. Let I, !z be the vertical lines
with (I} = (5 }o and {l3)y = (7). Let further

A = b RS($1 (el pds 1) 1 b RS(silp)0 5N
‘There are three different cases:
o Caseli A =4

w Case 2: A ={A, A isa point or a vertical line segment .
® Case 3: A s a line segmment with stastpeint ¢ = (oz, b) and endpaint b= (ba, &)
(g < by).
Cage 1: & = 0, Consider Figurs 8, Lrnd[nsts:{s‘..pé,,,m dons not intersect line iy, any
rotated sile, whos= boundary contains a point of the set {_p |f < 1} and whase interior doss

not contain a point of the set P, lies om the left side of 1, Hence the boundary of such
& rotated silo does not touch the shaded right region, which containe all points of the st

14

s

Figure 81 A possible situation in Case 1.

Figure 8: Example for Cass Zh.

PcHg. Therefore the sst {,p‘flf £ 4} cannot contain s left endpoint of a supporting d-edge.
1 bol{ RS{ai(z}_,.p}))) does not intersect &y, we can eliminate the set {|y > j} from the
candidate list of right “supporting points”,

Case 2 & = (A,.A,) is a point or a vertical line segment with x-coordinate &,. We
distinguish three subeases:

Case 2a: If Ay £ (fi}a, an argument similia to Case 1 implies, that the set {p}|f < i}
cannot contain a beft endpoint of a supporting d-edge.

Case 2h: See Figurs 9. I (h)e < As < (h)e, the set {p]f < i} does not contain a left
supporting point and the set {plg > j} does aot contain a right supparting point.

15

Case 2c: I A, 2 (f), then the set {plig = } does not contain a right supporting point.,

Cage 3: If Cases 1 and 2 do not apply, then A is 2 ling segment with startpoint & = (62, 8,)

1 &y

Figure 10: Exumple for Case 3¢,

and endpaint b= (be, b,), whers 0, < bo. We distinguish again three subcases:
Case Ja: If b, < (I}, then the set {p}|g > j} does not contain a right supporting poist.
Case 3b: If oz > Iz, then the set {#}|f < i} does not contain s left supporting peint,
Case 3¢: b 2 (h). and a_ < (I).. Assume e[p},p;] with g > j is a supporting d-edge.
Since {pl,p7) = (si-concave, si-comcave), pf st lie outside the rotated silo RS (si(g]_y,77)).
Therefore, the pact of bdl RS(si(p}_,,p}))) lying to the laft of the vertical line through a is
contained in int{ RS(SI(zl,pl,,))). Henee the index f must be grester ar sgual to § and gfy
muast lie on that past of the line segment from @ to b, that is to the left of I {see Figure
10}, The fact that all rotated silos are translates of convex figure, implies the following
statement: Comsider any rotated silo, whose interior does not contain a point of the set P
and whose boundary contains the point pf. The part of the boundary of such & rotated
silo, lying to the left of the vertical line through pf_, , is contained in int{ BS(silp]_, .2})}}.
Hence the beundary of such & silo does not touch the shaded left region, in which all paints
af the left dr-aystem lie, Thus pf cannot be the right endpoint of 5 supporting d-edge and
we get a contradiction. Therefors we can eliminate the set {pflg > j} from the candidate
List of right supporting points. The same argument implies, that the set {pf;lf < i} dees nat
contain a beft supporting peist.

In all cases, in which we do not find o supparting d-edge, a portion of one or both
dr-systems can be eliminated. By testing always a palr of paints lying in the “middie” of
the remaining chains, we can find a supporting d-edge in Olog s + logt) time. B

We are now able to describe the whale d5-Jay ion algerithm, whick is a slightly
medified version of the (lower) convex layer construction algorithm of Owermars and van
Leeuwen [10]. We store the point set Pop = {p.- - pm} in the leaves of an sugmented
balanced binary search tree T, sorted by their x-conrdinates. This tree T i identical to the

16

dynamic data structure nsed in [10]. Let u denote & node of T with left son v and right son w.
Let P{v) (resp. P(w)} be the points of P stored in the subtree rooted at v {resp. w). During
the construction of tree T we determine s minimal de-system of DL{Plu}), We assume that
a concatenable guens §, 18 associated to node v, in which the chain of a minimal dr-system
of DL{P(v)) is stored, and that o concatenable quene Qy, is associated to node w, in which
the chain of & minimal dr-system of DI{P(w)) is stored. The concatenshle queves enable us
to carry out the following operations in Oflogm) time:

» to locate the supporting pointe using Lemma 7,

» tosphit the chaing associsted to v [or w) in the fragment, which belongs to the chain
of u, and the remaining subchain,

» to concatenate the fragments of left and right minimal dr-system to the concatenahle
quaus, which belongs to the computed minimal dr-syatem DR(P{u)).

The concatenable queve, which belongs to the minimal dr-system DR(P{u)}, is assovinted
ta the node u. Farthermore we store information about t]m ‘lmdge o which connects the
two criginal parts of the quene. The remai are jated to v
and w. Besides we store the bridge betwesn che two fragmente of Q, in node v and the
beldge between the two fragments of Q. in node w. For detalls about information stored in
the nodes of tree T, see [10]. The tree T ases O(m) space.

dS-layer construction ithm

(1) Construct the augmented tres T
(2) = 2= | Pesl;
(3) Py := Peg;
{4) while (= # 0} do
Determine and store the minimal draystem DR(Pr) associated to
roat{T):
Remove the points representad by DR{Pr) cne by ons from T
==z —[DR(Fr);
Fr :m Pr '\, DE(Fr)

ad

The tree construction in Step 1 takes O(mlogm) time, Determing the minimal dr-system
and storing this minimal dr-system can be dene in Of| DE{ Py)|) time, Removing the points
represented by DE(Pr) casts Of|DR{ Pr)|(logm}?) time. Thus the whole whils-loop can be
carried out in O(m{logm}®) time. Hence the whole dS-layers construction for cell CF with
[Pagl = m can be done in Ofmilogm)?) time.

We summmarize now:

Theorem 2 Let P be o set of 0 points in the Euelidesn plane E°, There exiats o data
structure of size Ofn}, such that G{logn + k) time suffices to retrieve all k points of F lying
inside a query tranalote O, of & conver computable figure . The date structure con be
constructed in Ofnilagn)®) time.

Proof: Decomposing the Euclidean plane into cells, Gistributing the points of P in theis
corresponding cells and storing the nop-empty colls in sorted order in & binary search tree

17

can be done in O(nlogn) time, Then we have to construct the four guery data structures
far every non-empty eell CE. I |Pog| = m, the construction of & family of ds-layers
{x £ {N,50,W}) costs O{m(logm)?) tirme, Building the four query dats structures for cell
CE with the help of these dual layer families can be done in O(m) operations. Hence the
preprocessing for all non-empty cells can be carried out in O{njlogn)®) time.

Since the new dats structures, which we use to construct the dual layers, has size O(n),
all data stractures together use O{n) space, The query time by the same as In [5), becanse
we use the same query data structure. 0

It is worthwhile to mention that we ales get dynamic dsia structures for this class of retrieval
problems, becaise we can use the dynamic data structure T Lo search for all polnts of cell CF
in & query translate O, which is S-grounded with respect to CF. Insertions and deletions in
the dynarmic data structure T can be done in @{(log| Pri}®) tkome, where Pr is the point sst
stared in T (ses [10]). We describe now a simple way to find all points stored in T, which Lis
in the query translate Cy: Search the edge of the S-layer L(Pr), which lies below or above
the query paint g. This search can be carcied out in the concatenable quens sssociated to
the root of T with O(log |Py|) operations. If the point p, which belongs to the above edgs,
does not lie in ©,, we are ready in this cell. If the paint lies in €y, we store p in a quene
called REMEMBER, delete p from T and search again, W continue to do this until we have
found all poknts p £ C stored in the original tree T, Afterwards we restore T by inserting all
paints p € REMEMBER in T again. This retrieval operation takes Olog |Pr| + k{log | Br{)
time, where k is the number of points stored in Pr, which lie in &g,

Thearem $ Let P be a sct of n points in 57 and © a conves computable figure. There exists
o dynomdc data structure which atores the potnt sl P oand which wees O(n) spoce, such that
Oflegn + k(logn]?) time suflces to retriese all k points q.rr Iying inside o query tranalote
Cy. The deta structwre con be d) cost of Of(logn)*)
per insertion and deletion.

5.3 Ani d d5-1 t z leorith

Let Pog = P GE = {ps, -+, P} be the sequence of points in cell €F, sorted in order
of inereasing x-coordinates. We assume wlog that there are no two peints in Pog with the
eame x-coordinate. We consider again only S-grounded querfes,

In the last subsection we saw that we can comstruct the augmented balanced binary
search tree T for Pog in O(mlogm) time. In Step 4 of the dS-layer construction algorithen,
we delete points from T, Each deletion casts Of{lagm)®) time. Hence all deletions together
can be done in O[m{logm)?) time. Chazelle showed in [3] that the deletions involved in
the computation of the eomver layers can be batched togetbier, such that all delstions can
be dene in O(mlogm) time. We prove now, that we can use a slightly modified version of
Chagelle’s convex layer construction algorithen to reduce the preprocessing time for our data
structure to Ofm logm).

Wa store the points Py, + -, Pra in the leaves of the balenced binary search tree T presented
in the last subsection. The subeet of points stored at the lesves of & subtres T{u] with
oot u, is denoted by Plu). Let DL{P{u}} be the d5-laper of P{u) and DR(P(u}) a minimal
dr-systam of DL P(w)). Connecting Poe by the set

£g= | {ela.b)la, b neighhoring points in DR{P(u))}
uwel

o S

Fis

Fignre 11: Dual §-layers of 16 points {py, -, pe}. The corresponding figure © bt & disk.

af d-edges, we get o planar embedding of the graph & = (V, £} with nodes V' = Ppg and
edges £ = {{a,8)]e(a,b) & £}. The connected acyclic planar graph G is called the d5-graph
of Pz, We use the notation G also for the two-dimensional embedding of the graph. The
d-edges of (7 are in one-to-cne correspondence with the nodes of the tree T (see Figure 12).
Each node u £ T corrasponds to the “longest” supporting d-edge of G, which connects the
dS-layers of node u's children. Assume v and w are the childeen of node w € T, then u

21 Pii

Figure 12: Tree T and the d5-graph for the point set of Figure 11

corresponds to the “longest” sapporting d-edge of DL{P{e)} and DL{ P{w]).

The dS-graph & ir represented by an adfacency list structure, We endow ench vertex
p & Pge with a list V(p), which contains the names of the adjacent vertices. Each Hst
V(p) comsists of tws sublisss VI{p) and VE(p), defined as follows: VI{p) (resp. VE(p))
contains the vertices adjacent to p, which have smaller [resp. larger) x-coordinates than po
The points in VE{p) and VR{p) ace sorted with respect to the corresponding d-edges from
bottom d-edge to top d-edge. Each vertex p has a pointer to the bottom d-edge of Vi{p)

139

and a pointer to the bottam d-edge of VAR(p) (see Figure 13). The sorting of the d-edges in
Tr’L[yJ and VR(p) can be carried out by considering the intersection points of the d-edges
with vertical lines near vertes p. If we have d-edges #(a,p) and e(b,p), which deliver the
same intersection point with the selected wortical line, we sort these d-odges by considering
the x-eoordinates of the corresponding points o and b,

ViI{p) VRig)

bottom-d-adges

Figare 13: Adjacency list structure for vertex p and the bottom d-edges.

First we describe one simple way to compute the d5-graph G in O(mlogm) time. We
assume that we know the dS-graphs of {py,« . Pimszi} and {Plmsjes, P} Using the
extra pointers to the bottom d-sdges, we can easfly run scroes the chains
{pl.--- i} af the computed dr-systems. In order ta compute a “longest” supporting d-edge
&, for the two dS-layers, we go ahead as follows: We set &, = e(p,p5) for = 1,2, until
we get a d-edge (), 57, w]ﬂd: i :uppm-lmgm -].{‘:fp{ #;} is also supporting i.npﬂ.
wo use the d in 5 2.E % ime the “longest”
d-siige and add this d-edge to the ﬂ.S—pkp‘n G. Tithe dadga «[pl, ¥} i not supparting in p),
we meove the first endpoint ol to pl, ph---, until we find a paint g, sach that e(gl, 5]} is
supporting in p. The d-edge <[z}, 57) is now supporting in 5f, but in genersl not in g}, If
the d-edge is net supporting In p7, we move again the right endpoint pf to pioy plaa - In
this way we move both endpoints around their d5-layers until we find a “longest" supporting
d-edge &,, Sinee this construction method requires O(m) operations for every level of the
tree T, the whole dS-graph can be constructed in O(mlogm) time.

Starting in the leftmeost or rightmost vertex of the dS-graph G and following the extra
pointers 1o the bettom d-edges, we can flad s minimal dr-systems DR(Ppg) for DL[Pez).
Wa store this dr-system and then we remave all points p &€ DR Poz) from the d5-graph 6.

Before we describe in detail how points will be deleted from &, we briafly introduce the
geometrical concept, on which Chazelie’s deletion method is based, In order to remaove the
vertex p from & and in arder to reshape the d5-graph 3, we mave the vertex p = By, p,) on
the vertical ray & i= {{p=, plly = py} towards y = 0. By moving the point towaeds v = o2,
the d-edges adjacent to p will be pulled up and will be removed one by one. The desdges
adjacent to p have to be considered in the order in which they appear as supporting d-edges
in the path fram leal p to the root of T (sse Figurs 14),

The dedetion of & fiatat p lykog on the current dSlayer will aow be described in detail’ Tet

0

3,---,w be the nodes of T, which lie on the path from leaf p to the root of T, Every nade
W spoads to a “longest” Ing d-edge of two dS-layers. Since p lies in the current
d5-Jayer of all paints present in G, p lies on one of these two dS-layers. Let wy,-- -, wy be the
subsequence of vy,- oy, that carresponds to supperting d-edges with p as an endpoint [sse
Figure 14). We distingnish batwesn p-left supporting d-adgee o(tw:,p), whare wy € VIip),

Figurs 14: Leaf-to-roat path for paint py of Figure 11 and the corresponding d-edges in the
a5-graph.

and peright supporiing d-edges efp. wj), whees w; £ VR(p). Let e, - ez, be the sequence
of supparting d-edges corresponding to the sequence wy, -~ w, of nodes. Since the d-sdges
with endpoint p have to be removed in this “lesf-to-raot™ order, we have to mesge the lists
VE(p) and VR(p), This merging can be dons in Of1) steps,

For any node w; lot Gluy) dencte the dSsubgraph of G, that belongs to the subtree
of T rooted at w;. In order to remove g from &, we have to update the sequence of
a5-graphs Glw;), -, G{my) in this order. Wa assume that we have already remaved p from
the dS-graphs Glwy), ++, G{w;.y) and we want to update Gw;}. Furthermore we assume
wlag, that the supporting d-edge e{p, ¢} corresponding to wy is a pright supporting d-adge.
Let ¢(a,p) and e(p,b) be the last p-left supposting d-edge and the last poright supporting
d-sdge, which we have pulled up. Without loss of generality we can assume, that efa,p)
and e(p,) exist. In this situation the new part of G{wy_,) Lies betwesn o and & above the
composed curve (e(a,p),e(p,8}) (ser Figure 15).

Let efo;a"),---, (¥, b) be the sequence of d-edges berween o and b, which lie on the
a-Jayer of all points represented in G{w,_y). Hence o' is the vertex of the currsnt d5-lsyer
DI Pluwi-z)) following & in countarclockwiss arder and 8 is the vertex following b in clockwise
order. Let ¢ denote the vertex of the right 45-subgraph following ¢ in clockwise order (see

a1

#{a.p}

Gl

Figure 15: Schematical illustration of the delation process.

Figure 15). Updating Glw) means pulling up the vertex p until it disappesss from the
S-layer DL{P{uy)). During this process we stop at every point on the vertical line 1, whers
supparting d-sdge has to be exchanged by ancther “longest” supporting d-edge, and change
the dS-graph.

Let I'5;, 5, IS, be the intersection peiats of the vertical line from p towards p = oc with
the three boundaries b RS{51(a,a"))), bl R5(si(8", b))} and b RS(ai(<, c})). (We consider
SI{,), if both points lie ta the left of L, and si[, }, if both points lie to the right of I, If
one point lies to the left and the other to the right of L, we can choose sif, } ar 8I{,).
I the intersection 13 & line segment, we choose the point with maximal y-coordinate) The
first placement for p, whers a supporting d-edge has to be exchanged, is that paint of these
thres intersection points, which has minimal y-coordinate. Therefore we compute the three
Interssction points and sort them in order of Incressing y-coordinates. IF for example 15,
is the intersection poiot with smallest y-coordinate, the poiot p reaches first I5. on his
way towards ¥ = oco. At this point we have to replace the d-edge e(p.¢) by the d-edge
(p,) in the dS-graph, Hence we replace ¢ by o', compute the intersection point IS of the

Figara 16: Determing the naxt placement for point p.

wertical line through p with the boundary 8d{ 85(si(c', "))} and insert the new Interssction
point in the sorted sequence of insersestion points [see Figure 14). The first element in this

2

sorted sequence always the next for p. At every pl of p with
cerresponding endpoints a,b,c we have to tost, if e{a,¢) or e[}, c] is a supporting d-edge for
the two dS-layers, If we have found & “longest™ supporting d-edge, we change the dS-graph
G} aad start to remove p from Glwis). In this way we handle all supporting d-sdes
with endpoint p. If w € {a;,---,u}, then p is not an endpaint of the supporting d-edge
associated to ;. Thersfore this supporting d-edge dess not changs, snd no additional work
is roquired.

In this way we remove all points p € DR{ Pag) from the dS-graph G, Then we determine
& minimal dr-system DR{PL;) of the dS.Jayer DL{FL;), where PE; = For | DR{Peg).
This can be done by running scrces the path of the cusrent d5-graph &, which starts in
the leftmost or rightmost vertex, and following the extra pointers to the bottom d-sdges.
After we have determined and stored DR{P2.), we remave all points in DR(PLg) from the
dS-graph G, Then wa determine & minimal dr-systam DR{Plg) of the d5-Iayer DL{Piz),
where P3y 1= Phy | DR{Plg). We continue in this way, until we get Pt =8,

1t can easily Be seen that the above deletion procedure and the whale dS-layer construe-
tion algorithim work correctly. We leave out here the complexity analysis, because it is almost
identical to that given in (3],

We summarize now:
Lemma 8 A famly of minimal dr-syatems for the set Pog with |Pog| = m can be computed
in Ofmlogm) time vaing Olm) space.

Lemms 8 implies that the whele preprocessing for the entire data stracture requires
Ofnlogn) aperations. Hence, we get the main result of this paper:
Theorem 4 Let P be o sot of n points in B and © a conves computoble figure. There
erists o duto sirvcture thet stores the point set P, such thot Oflogn + k) time suffices to
retrieve all B points lying inside o query translale Cg. The dots structure has size On) and
con e comstructed in O(nlogn) Hme.

Wa close this subsection with a few examples of convex computable figures C.
In the ease O is o disk, we don't need to decompose © into upper and lower parts, becanss
both parts Jead to the same decosmposition of B2,

Corollary 1 Let P be a set of 5 points in the Enelidean plone E? and let © be o disk. In
Ofnlogn) time we can preprocess P as that for any query point g, all b poiats of P, which
lie in the guery translate Gy, can be retrigved in Oflogn + k) time. The guery date structure
hae gize Ofn).

Other shapes which & may assume, ara for example triangles, rectangles, eilipses or hybrid
copvex figures bounded by a constant sumber of analytic curves.

Our method also works for non-bounded comvex computable figures. In such cases we
only have to modify the decomposition of the Euclidean plans. If O is a hyberbola for
example, we only have one single cell: the whole Euclidean plano. After a suitable basis
transformation we need enly ome single query data structure, for example the guery data
structure for S-grounded quesies.

1 € is & convex megom, the primitive jons like i i ing and paint-

inside-or-cutside-test can be dons in O(logm) time,
Corollary 2 Let P be ¢ set of 0 pointe in the Euclidean plane and let O be @ conves m-gon,
In Ofnlognlogm + mlogm) time we ean preprocess P s that for any querp point g, ol k
points of P, which lic in the guery translate Oy, con be retricved in Oflogn + (k + 1)logm)
time, The guery date sfructure bae eite O(n + m).

23

The algerithm uses only O{n + m) space, because vertices of the dS-graph only contain
pointers to their adjacent verticss, and not to the sequence of polygon edges. A similar result
was given by Klein ot al.[8], Their query algovithm, however, has ranmning time Omlog n+ k),

4 Some concluding remarks

1) How to handle points with the same x-coordinate?

If ther= are pokats with the same x-coordinate, we soct thess polints in order of inereas-
ing y-coardinates and store the soried sequence of poimts in a queus. Hemee, for every
z-coordinate, there is ome queas, When we stact the computation of the family of dS-layers
for S-grounded queries, we take the first polnt from every queve and start the construction
with this point set P*. Whenever a point p &€ P* has become an element of a computed min-
trnal dr-gystem, we remove p from P, we pick up the next point of the queue (if the queue
is aot empty) ta which p bas belonged, and we inchude this poiat iato P*. Here, including
into P° means that we insert this point in the data used in the

Thess additinnal sorting, inserting and delsting operations do not change space or pre-
processing time bounds.

2} Faster dynamie data structures

The static data stracture of Theoren 4 has a building time Pin) = Ofnlogn), size $(n) =
Ofn}, and & query time §(n] = G(logn+ k). Since the point retrieval problem is a decompas-
able ssarching problem, we can apply the :edm.l.qm af Dobkin and Suri (8], and Smid [12].
This gives data that can hand! lire upd. i O(B—llup:] Of{logn)®)
ameortized tims, These data structurs still have & building time of O(nlogn} and a size of
Ofn). The query time becomes 0{Q(n)logn) = Of{logn}* + k}, which is better than that
of Theorem 3.

Using fractional caseading, the query thne can be improved to Oflogn + k): The data
structure consists of Oflagn) static structuzes for sets of sizes O(2), i = 0,1,... logn. To
ADEWer B query, we query each static structure separately. Each such query starts with a
hinary search in the outermost layer. Since for sach binary mrd.\ |J:e query point fs the
BAE, We ¢an comnect thess Layers using i Maore precisely,
we copy elemnents from s structure for O[2°) peints to 8 structure for O(2°*) points, for
i=logm,...,1. The search starts in the structure for O[2%) paints. Once we have locatsd
the query point in the (i — 1)-th structure we use the fractional cascading information ta
locate the point in the i-th structure. (See [7] for details.)

During an updase, we rebuild static structures for sets of sives 2°,. ., 2, for same I. This
rebuilding takes time 0{2'log2’). Then we copy elements from the i-th structure to the
(#=1)-th structure, for i = {4 13,1,...,1, and construce the fractional cascading infarmation
for thes= new static structures. This takes only ©(2') time. Hence, the amortized update
time for this improved structare remains bounded by O{{logn)?).

3] Colllsion tests for molecules

We give an application of our result in the field of
chemistry. Testing whether and when & molecule A in motion collides w:th ancther fixed
molecale B are two important probloms, which arise in molecular modelling or docking
simulation. Especially the following problems are of interast:

s Trans{d, B): Given a translation direction for melecule A, test whether molecule 4
callides with the fixed molecule . If A collides with B, then determine, when the
eollision takes place.

« Rot(4, B): Given arotation axe and a [rotation) direction for molecais 4, test whether
molecule A collides with the fixed molecule B. If A collides with B, then determine,
when the collision takes place,

We use the following “atom medel™: Each atom o of a molecule is a sphere with ceater
ela) = (ag,0y,8,} and radius ro, whers rg is the van der Waals radius of atom 4. Lot A
and B be two malecules, which consists of n and m atoms resp. We assume for dmplicity
that all n atoms of molecule A have radius r4 and all m atoms of molecule & have radius
ry. Furthermore we assume that the shapes of the molecules are fived. {Hence we dom't
allow distorsions of the shapes, our model supports only docking simlation based on the
iock-and-key model. It would be desirable of course, to have molecular dynamics tocls,
which could carry out energy minimization and could determine possible new shapes for
the molecules, if the molecules are so close to each other, that they influence each other.
The best tool would be an algorithm, thas carries out the docking process with fisting of the
shapes sutomatically. The user has to place the meleculss, such that the possible active sites
are close together. Then the algorithm guides the molecules in a local energy minimum, in
which perhaps molecule A has docked at the active side of molesule B, Such an algorithm
would also suppert the induced fit modsl). Since there are lower bounds for the minimal
distance between to differant atoms, a sphere with fized radius can contain enly a constant
number of stoms or atombe nucleil.

W= now consider the problem T'rans{ A, B). Instend of detesming collision between atoms
in 4 and B, we test for collisions between the centers of all n atoms in 4 and the spheres,
which we obtaln, by blowing up every atom in B to s sphere with radius rg + ra.

Let pr be the projection parallel to the lation direction into s fixed plane, which is
orthegonal to the translation direction, In order to test for collision, we carry out & space
swesp in the transation dicection with a plane I, which is erthogonal to the translation
direction. First we sort all atoms of A and B with respect to the following order <™ a < 3,
if the swesp plane resches the center of atom a before it renches the center of & We move
the plane in the translation direction and we stop, when the plane reaches o center of sy
atom. If we stop at the center of an stom a € A, we Insert pric(a}) in the dynamic point
retrieval query structure of Theorem 3, where we take for & & disk with radins ry +rp, If
we stop at the center of an atom b € H, we do the following test: We test whether there is &
paint in the dynamic data structuse, which lies in the circle with radius =4 + rg and center
pr{e(B}). If we find & point, which lies in this circle, malecule A will collide with melecale B,

Sorting the peints in the translation direction takes O({n + m]log(n + m}) operations.
The space sweep and the construction of the query dats structure costs O{n{log n)f+mlegn)
time. Hence the whole collision test takes Gin{logn)® + [n + m)log(n + m]) time.

If we want to determine when 4 ¢ollides with B, we have to modify the above algorithm
slightly. Wheneves we stop at a center of an atom b £ B during the sweep, we have to
rotriavn all atoms A, of A, whose projected centess lie in the sphere with radivs ry +rg
and center pr(c(b)). For all these atoms of A we determine, when they collide with atom b
Besides we have to determine the eollision points (if existing) of all pairs (a, "), where @ € 4y
and §* € By == {b & Bjle{b) — c(b)| < 2{ry + rp)}. We compare avery computed collision
point with the mirimal one we have found until now, If we find a new minlmum, we store
the corresponding collision atom pair and the new minimum, After all thess tests have been
dane, we remove the point et corresponding to Ay from the query data structure and go to
the next atom in the sweep direction.

Note that there are only & constant number of atoms in By, Hence, if we know the set
By, the whole operation for atemm b can be doas in O |4u|{logn)?) time. If we assume that

25

we know the sets B for all b £ B, the space sweep can be carried out In O{n(logn)® + (n+
m)log{n + m)) time. (W only have to compute the sets B, cnce. Computing the distances
hetwesn all pairs of aboms in B and determing a neighbor list for each atorn is the simplest
way to get the sets By, But there are a fow more efficient methods to determine the sets
By,

].\'Mz that the collision detecticn for rotations can be handled in the same way and that
we get the same npper bounds as in the case of translations. If we carry out a collision
test for & rotation, we choose & sweep plans, which contains the rotation axe, and rotate
this plane around this axe. The centers are sorted according to the rotation angles, when
the rotated plane hits the centers. In this case the projection pr is the rotation arcund the
rotation axe in a fxed plane, which contains the rotation axe.

References

[1] A Aggarwal, M. Hansen and T. Leighton, Solving Query-Retricval Problems by Com.
pacting Veronoi Diagroms. PROC. OF THE 16TH ANNUAL SYMP. OF THEORY OF
COMPUTING [1990), pp. 331-340.

[2] 1. L. Bentley. Decomposable Searching Problems, INFORM. PROC, LETT. wol &
(1878), pp. 244-251,

[3] B. Chazelle, On the Convez Layers of @ Plonar Set. IEEE TRANSACTIONS ON IN-
FORMATION THEORY, vol. 31, no. 4 (1885), pp. 508-517.

[4] B. Chagelle. Filtering Search: A New Approseh to Query-Answering. SIAM J. OF
COMP. vol 15 {1986}, pp. T03-T24.

|5] B. Chazelle, R Cole, F.P. Preparata and C. Yap. New Upper Bounds for Neighbor
Searching. INFORMATION AND CONTROL, vol. 58 {1086), pp. 105-124.

[6] B. Chazelle and H. Edelsbrunner, Optimal Solutions for o Class of Point Retrieval
Probleme. J. SYMBOLIC COMPUTATION, vel. 1 (1985), pp. 47-56.

[7] B. Chazelle and L. Guibas. Fractional Caseading: [, A Dota Structuring Technique; I,
Applications. ALGORITHMICA, val. 1 (1886), pp. 133181,

8] D. Dobkin and 5. Susi. Maintenance of Geometric Extrema. JOURNAL OF THE ACM,
vol. 38 (1991), pp. 275-298,

(8] R. Elein, 0. Nurmi, T. Ottmann and D. Wood. 4 Dynamic Fized Windowing Problem.
ALGORITHMICA, vol. 4 {1989}, pp. 635-550,

[10] M.H. Overmars and J. van Lesuwen. Maintengnee of Configurations in the Plone. J.
COMPUT. SYST. SCL wol. 23 (1681), pp. 166-204.

[11] F.P. Prepasata and M.L Shames. C: isnal y: an Introduction. Springer-
Verlag New York-Berlin-Heidelberg- Tokyo (1885).

[12] M. Smid. Algorithms for Semi-online Updates on Decomposable Problems. PROC. 2ND
CANADIAN CONF. ON COMPUTATIONAL GEOMETRY, 1900, pp. 347-350.

