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ABSTRACT

A continuous state space model for the problem of dynamic routing in

data communication networks has been recently proposed. In this paper

we present an algorithm for finding the feedback solution to the associated

linear optimal.. control problem with linear state and control variable

inequality constraints when the inputs are assumed to be constant in time.

The Constructive Dynamic Programming Algorithm, as it is called, employs

a combination of necessary conditions, dynamic programming and linear

programming to construct a set of convex polyhedral cones which cover

the admissible state space with optimal controls. Due to several com-

plicating features which appear in the general case the algorithm is

presented in a conceptual form which may serve as a framework for the

development of numerical schemes for special situations. In this vain

the authors present in a forthcoming paper the case of single destination

network problems with all equal weightings in the cost functional.
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I. INTRODUCTION

A data communication network is a facility which interconnects a

number of data devices, such as computers and terminals, by communication

channels for the purpose of transmission of data between them. Each

device can use the network to access some or all of the resources avail-

able throughout the network. These resources consist primarily of

computational power, memory capacity, data bases and specialized hard-

ware and software. With the rapidly expanding role being played by data

processing in today's society it is clear that the sharing of costly

computer resources is an eventual, if not current, desirability. In

recognition of this fact, research in data communication networks began

in the early 1960's and has blossomed into a sizeable effort in the

1970's. A variety of data networks have been designed, constructed and

implemented with encouraging success.

We begin our discussion with a brief description of the basic com-

ponents of a data communication network and their respective functions.

For more detail, refer to [1]. Fundamentally, what is known as the

communication subnetwork consists of a collection of nodes which exchange

data with each other through a set of connective links. Each node

essentially consists of a minicomputer and associated devices which may

possess data storage capability and which serve the function of directing

data which passes through the node. The links are data transmission

channels of a given rate capacity. The data devices which utilize the

service of the communication subnetwork, known as users, insert data



-2 -

into and receive data from the subnetwork through the nodes.

The data traveling through the network is organized into messages,

which are collections of bits which convey some information. In this

paper we shall be concerned with the class of networks which contain

message storage capability at the nodes, known as store-and-forward

networks. The method by which messages are sent through the network

from node of origin to node of destination is according to the technique

known as message switching, in which only one link at a time is used

for the transmission of a given message. Starting at the source node,

the message is stored at the node until its time comes to be transmitted

on an outgoing link to a neighboring node. Having arrived at that node

it is once again stored in its entirity until being transmitted to the

next node. The message continues in-this fashion to traverse links and

wait at nodes until it finally reaches its destination node. At that

point it leaves the communication subnetwork by being immediately trans-

mitted to the appropriate user.

Frequent use is made of a special type of message switching known as

packet switching. This is fundamentally the same as message switching,

except that a message is decomposed into smaller pieces of maximum length

called packets. These packets are properly identified and work their way

through the network in the fashion of message switching. Once all of the

packets belonging to a given message arrive at the destination node, the

message is reassembled and delivered to the appropriate user. Hence-

forth, any mention of message or message switching will apply equally as
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well to packets or packet switching.

The problems of routing messages through the network from their nodes

of origin to their nodes of destination is one of the fundamental issues

involved in the operation of networks. As such, it has received consid-

erable attention in the data communication network literature. It is

clear that the efficiency with which messages are sent to their destin-

ations determines to a great extent the desirability of networking data

devices. The subjective term "efficient" may be interpreted mathemat-

ically in many ways, depending on the specific goals of the networks for

which the routing procedure is being designed. For example, one may wish

to minimize total message delay, maximize message throughput, etc.

In this paper we shall restrict attention to the minimum delay message

routing problem.

In order to arrive at a routing procedure for a data-communication

network one must begin with some representation of the system in the form

of a mathematical model. As is always the case, there are a number of

important considerations which enter into the choice of an appropriate

model. Firstly, one wishes the model to resemble the nature of the actual

system as closely as possible - for instance, if the system is dynamic

the model should be capable of simulating its motions. Secondly, the

model should describe the system's behavior directly at the level in which

one is interested - not too specific or not too general. Finally, the

model should be of some use in analyzing or controlling the ultimate

behavior of the system.



These issues pose challenging problems in the formulation of models

which are to be used as a basis for the design of message routing procedures

for data communications networks. The.basic problem is that there is no

natural model which describes the phenomenon of data flow in such a

network since the nature of this flow is largely dpendent upon the char-

acter of the routing procedure to be developed.

In this paper we do not confront the question of modelling message

flow but rather base our analysis on a model proposed by A. Segall in [2].

This model, which is a continuous dynamical state space description of

message flow, was formulated in order to overcome some basic deficiencies

in previous models which are based upon queue-irC theory. The fundamental

advantages of this model with respect to previous models are discussed in

detail in [2] and are presented here briefly. Firstly, the model may

accommodate compZetely dynamic strategies (continual changing of routes

as a function of time) whereas previous techniques have been addressed

primarily to static strategies (fixed routes in time) and quasi-static

strategies (routes changing with intervals of time that are long compared

to the time constants of the system). Next, the model can handle closed-

loop strategies, where the routes are a function of the message congestion

in the network, in contrast to the open-loop strategies of static proced-

ures, in which the routes are functions only of the various parameters of

the system. Finally, the independence assumot-io-r regarding message

statistics, which is required in order to derive routing procedures based

upon queueing theory, is not required to derive procedures based upon the



model under consideration. On the other hand, dynamic and closed-loop

procedures possess several drawbacks, such as difficulty in computation

of the routing algorithm and implementation in the network.

In [2], the minimum delay dynamic routing problem is expressed as

a linear optimal control problem with linear state and control variable

inequality constraints. The inputs are assumed to be deterministic

functions of time and a feedback solution is sought which drives all of

the state variables to zero at the final time.

Little thoeretical or computational attention has been paid to the

class of control problems with state variable inequality constraints

and the control appearing linearly in the dynamics and performance index.

In this case, the control is of the bang-bang variety and the costates

may be characterized by a high degree of nonuniqueness. In [3] the

necessary conditions associated with this problem are examined when the

control and state constraints are both scalars, and an interesting analogy

is presented between the junction conditions associated with state boundary

arcs and those associated with singular control arcs. However, no comp-

utational algorithm is presented.

Perhaps the most intersting computational approach presented for the

all linear problem is the mathematical programming oriented cutting

plane algorithm presented in [4]. The basic algorithm consists of solving

a sequence of succeedingly higher dimensional optimal control problems

without state space constraints. The drawbacks to this approach are that
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the dimension of the augmented problem may grow unreasonably large and

that even unconstrained state linear optimal control problems may be

difficult to solve efficiently. In the same paper, an alternative

technique is suggested whereby the problem is formulated as a large

linear program via time discretization of the dynamics and the constraints.

However, this technique also encounters the problem of high dimensionality

when the time discretization is sufficiently fine to assure a good approx-

imation to the continuous problem. Besides, neither of the above tech-

niques provide explicitly for feedback solutions.

In [2] an approach is suggested, by way of a simple example, for

constructing the feedback solution to the linear optimal control problem

associated with message routing when all the inputs to the network are

assumed to be zero. The purpose of this paper is to elaborate upon this

approach by extending it to the general class of network problems with

inputs which are constant in time. An algorithm is presented for the

construction of the feedback solution which exploits the special struc-

ture of the problem.

We begin by presenting in Section II the model of [21 and the

associated optimal control problem for closed-loop minimum delay dynamic

routing.

The necessary conditions of optimality for general deterministic

inputs are developed in Section III and shown to be sufficient. It is

immediately seen that the costate variables may experience jumps when the

associated state variables are on their boundaries and that the costates
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are possibly nonunique. Also, the optimal control is of the bang-bang

variety and may also exhibit nonuniqueness. We subsequently restrict

consideration to the case in which the inputs are constant in time and

present a controllability condition for this situation. A special prop-

erty regarding the final value of the costates is also presented.

In Section IV we define special subsets of the state space known

as feedback control regions. Associated with each such region, in

principle, is a set of controls which are optimal for all the states

of the given region. Feedback control regions are shown to be convex

polyhedral cones, and the goal is to construct enough of these regions

to fill up the entire admissible state space. We demonstrate in

Section V how this may be achieved for two simple examples, and generalize

the notion in Section VI into the constructive dynamic programming

concept. The basic idea is to utilize a certain comprehensive set of

optimal trajectories fashioned backward in time from the necessary cond-

itions in order to construct the feedback control regions. An algorithm

is then presented, in conceptual form, for the realization of the

constructive dynamic programming concept. Several of the basic comput-

ational techniques associated with the algorithm are presented in Appendices

A and B. Discussion and conclusions are found in Section VII.

Several complicating features of the algorithm render it too dif-

ficult to compute numerically for general network problems. In [5] and

a forthcoming paper by the authors it is shown that for a class of problems

involving single destination networks these complicating features disappear.

For this case it is possible to formulate the algorithm in a form suitable

for numerical computation.
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II. THE MODEL FOR DYNAMIC ROUTING IN DATA COMMUNICATION NETWORKS

We now describe the model presented in [2]. For a network of N nodes

let N denote the set of nodes and L the set of links. All links are

taken to be simplex and; (i,k) denotes the link connecting node i to

node k with capacity Cik (in units of traffic/unit time). Attention

is restricted to the case in which all the inputs to the network are

deterministic functions of time. The message flow dynamics are given by:

xJ(t) = ai(t) - uj (t) + uJi(t) (1)
kEE(i) , EiT (i)

kij ij E N, j J i

where

xJ(t) = continuous state variable which approximates the amount of

data traffic (measured in messages, packets, bits, etc.)

at node i at time t whose destination is node j, i j.

aJ(t) = instantaneous rate of traffic input at node i at time t

with destination j.

uJ k (t) = control variable which represents that portion of Cik

used at time t for messages with destination j.

E(i) = collection of nodes k such that (i,k) E L.

I(i) = collection of nodes k such that (i,i) E L.

We have the positivity constraints

xj (t) > O (2)

uJ (t) (3)



and the link capacity constraints are

uj k(t) Cik, (i,;) E L, j EN . (4)

The goal is to empty the network of its current message

storage in the presence of inputs in such a fashion as to minimize

the total delay experienced by all the messages traveling through

the network. Consider the cost functional

tf

J = [f a cx (t)]dt (5)

t ijEN
o jfi

where tf is such that

xJ(tf) = 0 i,j E N, j # i . (6)

It is demonstrated in [2] that when aJ = 1 Vi,j E N, j # i, expression

(5) is exactly equal to the total delay. Priorities may be incorporated

by taking the weightings aJ to be unequal.

For convenience we define the column vectors x, u, a, C and a to

be consistently ordered concatenations of the state variables, control

variables, inputs, link capacities and weightings respectively. In

this paper we shall not be concerned with the particular ordering.

Denote n = dim(x) = dim(a) = dim(a); m = dim(u) and r = dim(C).

Equation (1)-(6) may then be expressed in the vector form:
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Dynamics (t) B u(t) + a(t) (7)

Boundary Conditions x_(t ) = xo ; x (tf) = (8)

State Constraints x(t) > 0 Vt E [to,tf] (9)

( D u(t) < C
Control Constraints U Vt E [t o,t] (10)

u(t) > 0

tf

Cost Functional J = f ctx(t)dt (11)

t
0

In (7) B is the nxm incidence matrix composed of O's, +1's and

-l's associated with the flow equations (1) and D is the rxm matrix

composed of O's and I's corresponding to (4). We now express the

linear optimal control problem with linear state and control variable

inequality constraints which represents the data communication network

closed-loop dynamic routing problem:

OptimaZ Control Problem

Find the set of controls u as a function of time and state

u(t) = u(t,x) t E [totf] (12)

that brings any initial condition x( to) = x to the final cond-

ition x(tf) = O and minimizes the cost fw-ctionaZ (11) subject



to the dynamics (7) and the state and control variable inequality

constraints (9)-(10).

Several assumptions have been made in order to facilitate the

modelling and solution. These are now discussed briefly.

(i) Continuous state variables. Strictly speaking, the state var-

iables are discrete with quantization level being the unit of traffic

selected. The assumption is justified by recognizing that any single

message contributes little to the overall behavior of the network;

therefore, it is unnecessary to look individually at each of the

messages and its length.

(ii) Deterministic inputs. Computer networks almost always operate in

a stochastic user demand environment. It is suggested in [2] that the

deterministic approach may take stochastic inputs into account approx-

imately by utilizing the ensemble average rates of the inputs to gen-

erate nominal trajectories. Also, valuable insight into the stochastic

situation may be gained by solving the more tractable deterministic

problem.

(iii) Centralized Controller. This is implied by the form of the

control law u(t) - u(t,x). This assumption may be valid in the case of

small networks. Also, obtaining the optimal strategy under this assumption

could prove extremely useful in determining the suboptimality of certain

decentralized schemes.
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(iv) Infinite capacity buffers. Message buffers are of course of

finite capacity. This may be taken into account by imposing upper

bounds on the state variables, but this is not done in the current

analysis.

(v) All state variables go to zero at tf. During normal network

operation the message backlogs at the nodes almost never go to zero.

Our assumption may correspond to the situation in which one

wishes to dispose of message backlogs for the purpose of temporarily

relieving congestion locally in time.
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III. FEEDBACK SOLUTION FUNDAMENTALS

We begin by presenting the necessary conditions of optimality

for the general deterministic inputs case.

Theorem 1 (Necessary Conditions)

Let the scalar functional h be defined as follows:

AT T
h(u(t), X(t)) A T(t)x(t) = XT(t)[B u(t) + a(2)]. (13)

A necessary condition for the control law u*(-) E U to be optimal

for problem (7) - (12) is that it minimize h pointwise in time,

namely

x (t)B u*(t) < A (t)B u(t) (14)

Vu(t) E U Vt E [to,tf ]

The costate A(t) is possibly a discontinuous function which satisfies

the following differential equation

-dX(t) = adt + dn(t), t E [tot f] (15)o' f~~~~~~~(5
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wnrre componentwise dn(T) satisfies the following complementary

slackness

xJ(t)drn(t) = 0 Vt E [t tf] (16)

dnoe(t) < I i,j E N, j # i. (17)

The terminal boundary condition for the costate differential

equation is

A(tf) = v free (18)

and the transversality condition is

X_(tf)x(tf) = 0. (19)

Finally, the function h is everywhere continuous, i.e.

h(u(t-), A(t-)) = h(u(t ),X(t )) Vt E [totf]. (20)

Proof: In [6] a generalized Kuhn-Tucker theorem in a Banach space

for the minimization of a differentiable function subject to inequality

constraints is presented. For our problem, it calls for the formation

of the Lagrangian
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tf tf

J a + Tx(T)dT + T(r) [B u_(T) + a(T) - x(T)]dT

t t
o 0

tf (21)

+ dn (T)x(T) + vTx(tf

t
o

where n is an nxl vector adjoining the state constraints which

satisfies the complementary slackness condition at optimality:

tf

j dnT(T)x(T) = 0 (22)

t
o

dn.(T) O 0 VT E [totf]. (23)

The vector v which adjoins the final condition is an nxl vector

of arbitrary constants.

For u*(-) to be optimal T must be minimized at u*(-), where

x(-), x(tf) and tf are unconstrained and u E U. Taking the

differential of T with respect to arbitrary variations of x(-),

x(tf) and tf we obtain

tf

dJ = aT6X(T)dT + aTx(tf)dtf

t o

tf tff ~f

X (T)6 X(T)dT + d(T)X() + Tdx(tf) (24)

t t
o o
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where 6x is the variation in x for time held fixed and

dx(tf) = 6x(tf) + X(tf)dtf (25)

is the total differential of X(tf). We next integrate the third

term of (24) by parts, substitute for dx(tf) from (25) and take

into account that 6x(to) O0 to obtain

tf

dJ [ (T)(adT + dn(T) + dX(T)1 + [vT - X (tf)]6x(tf) (26)

t
0

+ [cax(tf) + vTx(t f)dtf.

Now, in order for J to be stationary with respect to the free

variations 6x(r), 6x(tf) and dtf we must have

adT + dn(T) + dX(t) = 0 (27)

X(tf) = v v free (28)

vT~x~t .=X(t )x(tf) = -T(t f). (29)

Equations (22) and (23) together with the constraints x > 0 imply

dnJ(t)xJ(t) = O Vt E [totf] i,j E \, j # i (30)

~~ ~~~- -~~~~- - - - - - -~~~~~" -~~- -~
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tf

If we integrate the term J XT(T)x(T)dT by parts in equation

f
0

(21) and substitute equations (22) and (27)-(29) into (21) we obtain

tf

J = I AX(T) [B U(T) + a(T)]dt. (31)

t
0

In order for J to be minimized with respect to u(-) E U, the term

XT () B u(T) must clearly be minimized pointwise in time, that is

A(T) B u'T(T) < kT(T)B u(T) VU(T) E U, t E [totf]- (32)

Thus, we have accounted for Equation (14), leaving only (20) to be proven.

To this end, let us assume that we have an optimal state trajectory

x*(t) and associated costate trajectory X(t), t E [to,tf]. Then by the

principle of optimality, for any fixed T6 tf, the functions x*(t) and

A(t), t e [to, T], are optimal state and costate trajectories which carry

the state from x to x(T). Hence, all of our previous conditions-o

apply on [to, T] with x(tf) = x(T). Applying the transversality con-

dition (29 ) at tf = T, we obtain

AT(T)X(T) = -a X(T)o (33)

Since Equation (33) holds for all T E [tot f] and x(T) is everywhere

continuous, then XT(T)x(T) must be everywhere continuous. This proves

Equation (20).
[]
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We shall now describe the behavior of the costate variables as

functions of the corresponding state variables. We distinguish between

the case when xJ > 0 (xj is said to be on an interior arc) and when

xi = 0 (x.J is said to be on a boundary arc). When xj is on an
i '

interior arc Equation (16) implies dqJ = 0 and Equation (15) can

be differential with respect to time to obtain

-i t) = i . (34)

IWhen x. is on a boundary are its costate is possibly discont-
j j

inuous, depending upon the nature of At points for which n4 is

absolutely continuous we define PJ(t) - drn(t)/dt. Differentiating (15)

with respect to time and taking into account (16) and (17) we obtain:

-J-(t) = cJ + iJ(t) J(t) O. (35)

On the other hand, at times when nj experiences a jump of magnitude

AnO we have from Equations (15)-(17) that iJ experiences the jump

A?) = -An~ > 0. (36)

It is not difficult to see that the costate vector may be non-

unique for a given optimal trajectory - this is a fundamental charac-

teristic of the state constrained problem. Previous works such as [6]

have found this nonuniqueness to occur in costates corresponding to

state variables which are on boundary arcs. How,.ever, due to the fact



- 19 -

that in our case the pointwise minimization is a linear program, this

nonuniqueness may also be exhibited by costates corresponding to state

variables which are on interior arcs. This behavior is demonstrated in

Example 3.5 of [5], pages 186-189.

In general, any trajectory which satisfies a set of necessary

conditions is an extremal, and as such is merely a candidate for an

optimal trajectory. Fortunately, in our problem it turns out that any

such extremal trajectory is actually optimal, as is shown in the following

theorem.

Theorem 2 The necessary conditions of Theorem 1 are sufficient.

Proof. Let x*(t), u*(t), X(t) and n(t) satisfy (7)-(10) and the

necessary conditions of Theorem 1. Also let, x(t) and u(t) be any

state and control trajectory satisfying (7)-(10). If we consider

,J =J(x) - J(x*) we have

tf

6J f j T( () - x*())d. (37)

t
0

Substituting from (15) and expanding we obtain

tf

6J = (xT(T)d() - xT () dn() (38)

to
+ x*T(T)dX (T) + X* (T) dn()).
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From Equation (22)

tf

t x -T(T)dn(T) = 0. (39)

We now integrate the first and third terms on the right side of (38)

by parts, take into account x(to) - x*(t o) = X(tf) = xj*(tf) = O

and finally substitute from (7) to to obtain

tf tf

J X(T)B(u(T) - u*(T))dT - x (T)dn_(). (40)

t t
0 0

But by (14)

tf

tf x ;(T)d(T) -0 ( T) d 0(42)

t0

Therefore, 6J ŽO Vu(.) E U, x(-) > O

From inequality (14) of the necessary conditions we see that the

optimal control function u*(.) is given at every time X E [totf]

o

j xT(T)dU(T) <0.

by the solution to the following linear program with decision vector u(T):

u*(T) = ARG MIN [X T()B u(r)] . (43)
- (-r) EU
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This is a fortuitous situation, since much is known about charac-

terizing and finding solutions of linear programs in general. We know,

for instance, that optimal solutions always lie on the boundary of the

convex polyhedral constraint region U. However, for the special forms

of the matrices B and D which correspond to our network problem

we may proceed immediately to represent explicitly the solution of the

pointwise (in time) linear program. The minimization can actually be

performed by considering one link at a time. Consider the link (i,k)

and a possible set of associated controls:

1 2 i-1 i+l N
Uik, ik' ,u ik Uik , .. ,U ik

a given control variable may appear in one of the two following ways:

I) uik enters into exactly two state equations:

xJ(t)= -uik(t) +...+ a

(44)

k(t) = +u i (t) +... * akk ik k

2) uik enters into exactly one state equation:

k( = k k
x.(t) = -u. +...+ a.. (45)

Hence, all controls on link (i,k) contribute the following terms

to X B u :

f (XJ XkR)u (t) (46)

k ik
where Ak(t) = 0.
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The quantities which determine the optimal controls are the coef-

ficients of the form (hX(t) - (t)) which multiply the control Uj
~k ik'~~ik

The only situation is which it is optimal to have ujik strictly positive
kk

is if (Wk(t) - X(t)) < O. In terms of the network, this says that it

is optimal to send messages with destination j from node i to node k

at time t only if the costate associated with x. at time t is greater

than or equal to that associated with xi at time t. This suggests an

analogy between the frictionless flow of fluid in a network of pipes in

which flow occurs from areas of higher pressure to areas of lower pressure,

and the optimal flow of messages Lin a data communication network, in which

flow occurs from nodes of "higher costate" to nodes of "lower costate".

By way of analogy to pressure difference we refer to (Ak(t) - X (t)) as

the costate difference which exists at time t on link (i,k) and is

associated with destination j. Therefore, it is optimal to send

messages of a given destination only in the direc:tion of a negative (or zero)

costate difference.

If the costate difference on link (i,k) associated with destination

j is strictly negative and less then all the other costate differences on

this link, then the optimal control is uj = C and all other controlsIk ik and all other controls

are zero. However, when two or more costate differences on the same link

are non-positive and equal the associated optimal control will not be

uniquely determined. In such a situation the optimal solution set is in

fact infinitely large. The actual computation of the optimal control at

time t requires knowledge of X(t), which in turn requires knowledge of



- 23 -

the optimal state trajectory for time greater than or equal to t.

This is the central dilemma in the application of necessary conditions

in the determination of a feedback solution. In order to overcome this

difficulty, we shall subsequently be considering only the situation in

which all the inputs (a4i(t) Vi,j E N, j# i) are constant functions

of time over the interval of interest t E [to,tf]. From the network

operation point of view, one can conceive of situations in which the

inputs are regulated at constant values, such as the backlog emptying

procedure mentioned in Section 11. From the optimal control viewpoint,

constant inputs appear to provide us with the minimum amount of structure

required to characterize and construct the feedback solution with

reasonable effort.

We begin the feedback solution for the constant inputs case by

presenting a simple theorem which characterizes all those inputs which

allow the state to be driven to zero under given link rate capacity

constraints.

Theorem 3 (Controllability to zero, constant inputs).

All initial conditions of the system (7)-(10) are controllable to

zero under constant inputs if and only if

a E Int(5() (a E R, X c R )

where

X { x | -x : B u and u-E U} c Rn
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is the set of feasible flows attainable through the available controls.

Proof. See [51, pages 69-72.

We shall assume from herein that the controllability to zero condition

of Theorem 3 is satisfied. The following is an easy consequence of Theorem 1

and therefore the proof is omitted.

Corollary 1 (constant inputs) There always exists an optimal solution

for which the controls are piecewise constant in time and the state trajec-

tories have piecewise constant slopes.

The solution to the constant input problem is of the bang-bang

variety in that the optimal control switches intermittently among boundary

points of U. Also, in situations where one or more costate differences

are zero or several are negative and equal, the control is termed singular.

Under such circumstances, the optimal control is not determined uniquely.

In the solution technique to be presented, this non-uniqueness will play

a major role.

Owing to the bang-bang nature of the control, every optimal trajec-

tory may be characterized by a finite number of parameters. We now

present a compact set of notation for specifying these parameters:

Definition 1.

U(x) { Uo0U1'U2' '- f-l

and

T(x) A {t, tl', tf}
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are a sequence of optimal controls and associated control switch time

sequence which bring the state x optimally to O on t E [t ,tf],

where up is the optimal control on t E [tp,tp+l], p E [O,1,...,f-l].

An additional property of a given optimal trajectory that shall be

of interest is which state variables travel on boundary arcs and over

what periods of time. This information is summarized in the following

definitions:

Definition 2:

BpA = = 0 , T E [t ,t ) I pp p+l

is the set of state variables traveling on boundary arcs during the

application of u 
-p

Definition 3:

B(x) = {B B l , Bf_ 1 }

is the sequence of sets Bp corresponding to the application of U(x)

on T(x). B(x) is referred to as the boundary sequence.

In preparation for the development of the feedback solution we present

the following corollary to Theorem 1 which narrows down the freedom of the

costates at the final time indicated by necessary condition (18).

Corollary 2 (constant inputs)

kIf any state variable, say x i, is strictl'y iositive on the time
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interval [tf tf] of an optimal trajectory, then Xk(tf) = O.
f i-

k
Proof. Consider a specific state variable xi satisfying the hypothesis.

By Corollary 1 we have xk(t ) < 0 since x.(.) is constant for

T E [tf_ 1,tf]. Therefore, there must exist a directed chain of links

from node i to node k (arbitrarily denote them by {(i,i+l),(i+l,i+2),...

(k-l,k)}) carrying some messages with destination k, that is

u.,lk (t ) > 0,, k> Uklk(tf) > 0.
i,i+ l(tf) > Ui+l,i+2 f) > , . ukk(t, ) > 

We now recall that messages may only flow optimally in the direction

of a non-positive costate difference. The sequence of costate values

X(t (tf f) ... , Xk (tf)} must therefore be non-increasing from

k k
i to k-l and since X (tf) = we must have k (t) O. Consequently,

all members of the above costate sequence are non-negative.

We now proceed to show by contradiction that Xk(tf) = O. Suppose

; (tf) > 0. Then the transversality condition Z AT(tf 't ) mplies
[,j

that there must be at least one x.(t ) < O such that \t) < O. Butif I

the above reasoning applied to x. implies that K.(tf) 0. Hence ,

a contradiction.

[]
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IV. GEOMETRICAL CHARACTERIZATION OF THE FEEDBACK SPACE FOR CONSTANT INPUTS

Our solution to the feedback control problem shall be based upon

the construction of regions in the admissible state space to each of

which we associate a feasible control (controls) which is optimal within

that region. The set of such regions to be constructed will cover the

entire admissible state space, and therefore the set of associated optimal

controls will comprise the feedback solution. In order to assist in the

systematic construction of these regions, we focus attention on regions

with the following property: when we consider every point of a particular

region to be an initial condition of the optimal control problem, a common

optimal control sequence and a common associated boundary sequence apply

to all points within that region. Formally, we define the following

subset of IRn:

Definition 4: A set R,R c IRn, is said to be a feedback control region

with control set R,Q c U, if the following properties hold:

(i) Consider any two points x1, x2 E Int(R). Suppose U(x1)
= U with

associated switch time set T(x1). Then U(x2) = U for some switch

time set T(x2 ).

(ii) 8(x 1 ) = B(x 2 )

(iii) Any control u E Q that keeps the state inside R for a non-zero

interval of time is an optimal control and there exists at least one

such control.
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A fundamental geometrical characterization of feedback control

regions may be deduced directly from the necessary conditions. This

interesting characterization, which shall subsequently be shown to be

very useful, is given by the following theorem.

Theorem 4: The feedback control regions of Definition 4 are convex

polyhedral cones in IR.

Proof. See [5], page 114.

Note that Theorem 4 applies for arbitrary matrices B and D, not

only those special to our network model.
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V. EXAMPLES OF THE BACKWARD CONSTRUCTION OF THE FEEDBACK SPACE

A basic observation with regard to feedback control regions is that

they are functions of the entire future sequence of controls which carry

any member state optimally to zero. This general dependence of the current

policy upon the future is the basic dilemma in computing optimal controls.

This problem is often accommodated by the application of the principle

of dynamic programming, which seeks to determine the optimal control as

a function of the state by working backward from the final time. The

algorithm to be developed employs the spirit of dynamic programming to

enable construction of feedback control regions from an appropriate set of

optimal trajectories run backward in time. These trajectories are

fashioned to satisfy the necessary and sufficient conditions of Theorem 1,

as well as the costate boundary condition at tf given in Corollary 2.

We motivate the backward construction technique with several two

dimensional examples which introduce the basic principles involved.

Example 1 3

3
U133-. 23S1 .

/ 12 < 0.5

X x2

Figure 1. Simple Single Destination Network
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The network as pictured in Figure 1 has a single destination, node 3;

hence, we can omit the destination superscript "3" from the state and

control variables without confusion. For simplicity, we assume that the

inputs to the network are zero, so that the dynamics are:

X1(t) = -u1 3(t) - u12 (t) + u21 (t)

(47)
2(t) = -u23(t) + u12 (t) - u21(t)

with control constraints as indicated in Figure 1. The cost function is

the total delay

tf

D = {x1 (t) + x2(t)}dt. (48)

t
0

Let the vector notation be

u12

- (xi> U21

U2 3

We wish to find the optimal control which drives any state

x(t ) 0 to x(tf) = 0 while minimizing D.

As our intent is to work backward from the final time, we consider

all possible situations which may occur over the final time interval

[tf_ 1,tf] with respect to the state variables x1 and x2 :

(I) Xl(T) < 0, x2 (T) = X2 (T) = 0, T E [tf 1 tf .
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This situation is depicted in Figure 2. We begin by considering the

time period [tf-1ltf] in a general sense without actually fixing the

switching time tf_1 This is simply the time period corresponding to

the final bang-bang optimal control which brings the state to zero with

X1(tf) < 0 and X2(tf) = x2(tf ) = 0. We now set out to find if there

is a costate satisfying the necessary conditions for which this situation

is optimal; and if so, to find the value of the optimal control. The

linear program to be solved on T E [tf_1ltf] is

U'(T) = ARG MIN [X1()X (I) + X2(T)x2 ( T) 
uEU

= ARG MIN[ (X2 (T[) - X1 ([))u 1 2 (T) + (X1(I) - X2 (T))u 2 1 ( )

uEU

- l(T)u 13(T) - X2(T)U23(L)]. (49)

Now, the stipulation xl < 0 tells us from Corollary 2 that

1 (tf) = O (50)

and since x1 is on an interior arc, Equation (34) gives

() = 1 T E [t tf- t f (51)

This is shown in Figure 2. Now, since we specify x2 = 0 on this

interval, its costate equation is

-dx2(T) = 1 dT + dn2 (T) (52)

dn2(T-) < 0

X2(tf) V2 free T E [tft
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where 02 is a possibly discontinuous function. We now submit that

the costate value X2 (T) = )2(T) = 0, T E [tfltf], satisfies the

necessary conditions and is such that there exists an optimal solution

for which x1 < 0 and x2 = 0. Firstly, the final condition

X2 (tf) = 0 is acceptable since the necessary conditions leave X2(tf)

entirely free; also, the choice of dn2(T) = -dt gives X2 (T) = 0

through Equation (52). Now, the reader may readily verify that

X2(T) = 0, T E [tf-l tf] is the only possible value which allows x2(T) = O

optimally since X2(T) > 0 and X2(T) < 0 necessarily imply that

x2(T) < 0 and x2(T) > 0 respectively. With the costates so determined,

one solution to (49) is

u(T) = (0.5, 0, 1.0, .T5) (53)

X1(T) = 1.5 ; X2 (T) = O

T E [tf_1 tf].

We emphasize that the above solution is only one among an infinite

set of solutions to (49). However, it is the solution which we are

seeking. We now make an important observation regarding this solution.

Since X1(T) = -1 and A2(T) = 0 for T E [tf 1ltf], the control (53)

remains optimal on T E (-oo,tf]. But as tf_l _ - , x1(tfl ) -+ .

Thinking now in forward time, this implies that any initial condition

on the x1 - axis can be brought to zero optimally with the control

specified in (53). Therefore, the xl axis is a feedback control region
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in the sense of Definition 4 for which we have:

R = {x I x2 = 0}

where

U = {(0.5, O, 1.o, 0.5') T (54)

B= {{X 2}}

: = (0.5, 0, l., 0.5) 

We have therefore determined the optimal feedback control for all

points on the xl-axis. This is indicated in Figure 3.

Suppose now that we wish to consider a more general class of tra-

jectories associated with the end condition under discussion. What we

may do is to temporarily fix tf l and stipulate that the control on

[tf-2'tf_1) has x2 negative; that is, insist that x2 "leave the

boundary" backward in time. As before, the initial time tf_ 2 of the

segment [tf_ 2,tf 1) is left free. The program to be solved is (49)

with T E [tf f-2'tf1). Now, since xl is on an interior arc across

tf 1, by (34) its costate must be continuous across tf_1, that is

Xl(tf-) = l(t_1 ) = t f t 1 (55)

Since (52) allows for only positive jumps of X2 forward in time,

we have

2(tf-1) 2 (t 1) = . (56)

-··Is -------- 2 f---- 1 2 f---1--~ 
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x2

o oc

OL otD -- I* 0

o -x U 3= 1.0 u23= 1.0

,,"I , <0< U12 < 0.5 0 < U2 1 < 0.5

:X1 = -1-U12+ U21

2 =-1 +U 12 -U2 1

/ M~/U =(0.5,0, 1.0, 1.0)T

'v= -Ttx2 - 0-5
tf. 1

f-l , u = (0.5,, 1.0,0.5)

Figure 3 Feedback Solution for Example -.

Figure 3: Feedbock Solution for Example 1
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Also, since both x1 and x2 are on interior arcs on [f-t ftf1)

Equation (34) gives

T E [tf-2'tf_ 1) · (57)

X2(T) = -1

The resultant costate trajectory is depicted in Figure 2. We now

perform the minimization (49) for T E [tf 2,tf 1 ). Since

X1(T) > X2() > 0, T E [tf-2'tf 1), the solution is

u(T) = (0.5, 0, 1.0, 1.0)T (58)

so that

(T) = -1.5 ; x2(T) = - 0.5. (59)

Therefore, the optimal control gives x2(T) < 0, which is the

situation which we desire. Once again, we see that the control is

optimal for T E (-o,tfl]. Since x1/x2 = 3, upon leaving the x1

axis backward in time the state travels parallel to the line x1 - 3x2=0 

forever. Now, recall that tf- 1 is essentially free. Therefore, from

anywhere on the xl axis the state leaves parallel to x 1 -3x2=0 with

underlying optimal control (58). Thinking now in forward time, this

implies that any initial condition lying in the region between the line

x1 - 3x2 = 0 and the xl-axis (not including the xl-axis) may be

brought optimally to the xl-axis with the control (58). See Figure 3.

Once the state reaches the xl-axis, the optimal control which subsequently
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takes the state to zero is given by (53).

Based upon this logic we may now readily construct the following

feedback control region:

x
R= {x 0 < x2 < i

where

U = {(o.5, 0, 1.0, 1.0)T , (0.5, 0, 1.0, 0.5)T}

B = {{0}, {x2}}

i = (0.5, 0, 1.0, 1.0)T (60)

With the two feedback control regions just constructed we have

managed to fill out the region {x I 0 x2 < -- } with optimal controls.

(ii) X2 (T) < 0, X1(T) = X1(T) O, T [tf-ltf).

This situation is the same as (i) with the roles of x1 and x2

simply reversed. If we let x2 leave the boundary first backward in

time, we may construct a feedback control region consisting of the

x2-axis in a fashion analogous to that of (i). If we subsequently allow

X1 to leave the boundary backward in time, we may construct the feedback

x2
control region {x I 0 < xl -3 . These regions and associated optimal

controls are illustrated in Figure 3.

(iii) X1(T) < O, x2 (-) < O, T E [tfltf].
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We are considering the situation in which both states go to zero

at tf. Since x1 and x2 are on interior arcs over this time interval,

Corollary 2 gives

Xl(tf) = A2(tf) = 0 (61)

and from Equation (34)

X1 (T) = A2(T) = -1 T E [tfl tf]. (62)

Hence, the costates are always equal over this time interval. The sol-

ution to the linear program (49) on [tf-1 tf] is:

u13 (r) = 1.0 u23 () = 1.0 (63)

0 < u1 2(-) < 0.5 0 u2 1() 0.5

so that

1(T) = -1.0 - u1 2 (T) + u2 1 (T) (64)

X2 (T) = -1.0 + U1 2 (-) - U2 1 (T) 

In this situation we have encountered non-uniqueness of the optimal

control which we seek. The optimal values of u12 and u2 1 are com-

pletely arbitrary within their constraints. The optimal directions with

which the state leaves the origin backward in time at tf lie between

Xl/X 2 = 3 and x2/x1 = 3, that is, between the lines x1 -3x2 0

and x2 - 3x1=0. Moreover, for any r E ( o,tf] the entire set of
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controls and associated directions in the state space remain optimal.

As before, we now translate this information to forward time and recog-

nize that for any point lying between the lines x 1-3x 2 0 and

X2 - 3X1 = 0 (not including these lines) the complete set of controls

(63) is optimal. Therefore, we may construct the following feedback

control region (ui = [a,b] means that any value of u i between a

and b is optimal):

x2
R = {x - x 3x2 } (65)

where

u = {([o,0. 3, ,C L;;, ?., 

B = {{x ,x2}}

Q :={([0,.5,1[30.5 ?. .: .S .i;)T}

This region is illustrated in Figure 3.

Having completed all three cases in this fashion we have filled up

the entire state space with feedback control regions. The specification

of the ootimal feedback control is therefore complete.

C Example 1.

Example 2. The network is the same as for Example i, but the cost

functional is taken as the weighted delay

tf

J: J {2x(t) -+ x2(t)}dt. (66)

t
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As in Example 1, we take the approach of working backward from the

final time, beginning with the three possible situations which may occur

at that time.

(i) X1(T) < 0, X2(T) = x2 (r) 0, T E [tf 1 tf]

The linear program to be solved over the final time interval T E [tfl1,tf]

is (49) with 21(T) and X2(T) appropriately determined. The final

condition (50) applies, but since the weighting on x1 is a1 = 2,

the appropriate differential equation for Al is

Al(T) = -2 T E [tf_-1t f ] . (67)

Now, X2(T) is determined in the same fashion as in case (i) of

Example 1. That is, the value

X2(T) = X2(-) = = T E [tf-1'tf] (68)

allows the solution to (49) to be such that x2(T) = 0, T E [tf 1,tf].

Consequently, the optimal control (54) applies here. The feedback

control region on the xl-axis is therefore the same as (54). See Figure 4.

Let us now allow x2 to leave the boundary backward in time at

some time tf 1 In this case we have
f-16

f- 1 (tf- 1 = 2(tf - tf 1) (69)

X2 (tf_1) = A2 (t_ 1 ) = 0.

;~~---- ------ ----- 2 f -1 2 f _-1
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U = (0,0.5,1.0,1.0)T

D X , 0l1.1 = -0.5
X2

i2 1 = - 1.5

LO

L-O.- u (0.5,0,1.0,1.0 )T

o x

II

tf -1 /

u = (0.5, o,I.o, i.o )T
I, =-1.5

xz: -0.5

u (0.5,0,1.0,0.5 )T

= - 1.5

Figure 4 : Feedback Solution for Example 2
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Since both xl and x2 are on interior arcs over this interval, their

differential equations are

X1 (T) = -2

T E [tf-2atf_1) . (70)

X2 (T) = -1

Also, as before, all that matters in the solution of the linear program

is that X1(T) > X2 (T) > 0, T E [tf_2,tfl). Therefore, the solution
x

is given by (58) and the feedback control region {x 0 < x2 < }

is as specified in (60). See Figure 4.

(ii) x2 (1) < 0, x1(T) = X() = 0, T E [tf_,tf].

The details of this situation are depicted in Figure 5.

We know from Corollary 2 that

X2(tf) = 0 (71)

and from (34) that

2() -l [tfltf]. (72)

We now may find by the process of elimination that the only value of

Xi(l), X E [tf-ltf] for which x1 = 0 is optimal is:

1(-r) = A1 (l) = O T E [tf1, tf ] . (73)
;~(T = --- L-~- XI( T ) ~~1~""~"~1~~ =f0
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It is easily shown that Xi(t) as given in (73) satisfies the necessary

conditions. Therefore, the solution to (49) is the same as in Example 1,

case (ii), and the feedback control region on the x2-axis is assigned

in identical fashion. See Figure 4.

As the next step, we now stipulate that x1 leaves the boundary

backward in time at tf 1. Since x2(tf_1) > 0

X2(tf) X2(t ) = tf - tf (74)

Since costate jumps can only be positive in forward time, we must have

. (tf_l ) = 0. (75)

Also, since x1(T) > 0, x2 (T) > O, T E [tf_2,tfl)

A (T) - -2

T E [tf_2,tfl). (76)

A2() = -1 J

See Figure 5. We now notice a fundamental difference between this

and the previous situations. At some time before tf 1 the sign of

(Al(l) .- 2 (T)) changes, which imples that the solution to the Zinear

program changes at that time. Therefore, tf-2 is not allowed to run

to -O , but is actually the time at which the costates cross and the

control switches. The optimal controls and state velocities on either

side of the switch are:
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T E [tf_2 tfl):

u - (0, 0.5, 1.0, 1.0)o (77)

1 =-0.5 ; x2 = -1.5. (78)

T E [tf-3tf- 2)

u (0.5, 0, 1.0, (79)

x = -1.5 ; x2
= -0.5. (80)

The relationship between the states x1 and x2 at tf 2 may be

calculated as follows:

X1(tf-2) = ,(tf_1 ) + 2(tf 2 - tf 1l)

(81)

X2 (tf- 2) = 2 (tf-l) + (tf- 2 - tf-l)

but

1 (tf-l) C o

(82)

x2 (tf_-) = (tf-1 - tf)

The crossing condition X (t2) A2tf 2) imolies from (81) and (82)

that

tf 2 t tf tf (83)
f-2 f-I f-i f
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Now

Xl(tf_2) = Xl(tf-l) + 0.5(tf_2 - tf-1)

(84)

x2(tf-2) = 2 (t(f_1 ) + 1.5(tf 2 - tf-1)

but

xl(tf_1) = 3.0 (85)

(85)

X2 (tf-) = 1.5(tf1 - tf)

Finally, (83) and (84) give

x2 (tf_2) - 6x1(tf 2) = 0. (86)

That is, the switch of control corresponding to the time tf- 2 always

occurs when the state reaches the line (86). Therefore, backward in

time the state leaves from anywhere on the x2 axis with optimal

control (77) and associated rate (78). The direction of travel is

actually parallel to the line x2 - 3x1 = O. Upon reaching the line

X2 - 6x1 = 0, the optimal control switches to (79) and the state travels

parallel to the line x1 - 3x2 = 0 forever. This sequence is illus-

trated for a sampled trajectory whose portions are labeled 1 , 2 , 3

in Figures 4 and 5.

From these observations, the following may be inferred by thinking

in forward time: The control (77) is optimal anywhere within the region
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bounded by the x2-axis and the line x 2 - 6x1 = O, no- including the

x 2-axis (shaded in Figure 4). The control (79) is optimal anywhere

within the region bounded by the lines x2 - 6x1 = 0 and x1 - 3x2 = 0

not including the former line. This region is also indicated in Figure 4.

Therefore, we can construct the following two feedback control regions:

x

R {X 0 < xl < - ) (87)

whe re

= {(, 0.5, 1.0, 1.0)T, (0, 0.5, 0.5, 1.0)T}

B= {{ 0}, {x2}}

= (o, 0.5, 1.0, 1.O)T

and

R = {x i- < x 1 < 3x2 } (88)

whe re

T T T
U = {(0.5, , 1.0, 1. (0, 0.5, 1.0, 1.0), (0, 0.5, 0.5, 1.3)T }

B = {{0}, {0}, {x2}}

= (0.5, O, 1.0, 1.0)T

Since the entire state space has now been filled up with feedback

control regions, the specification of the feedback solution is now

complete.

- Example 2.
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We now summarize the contents of the preceding examples. By starting

at the final time tf we have allowed state variables to leave the

boundary x 0 backward in time and have computed the corresponding

optimal trajectories as time runs to minus infinity. In the instances

when the optimal control did not switch, we were able to construct one

feedback control region. When the optimal control did switch, as in

case (ii) of Example 2, two adjacent feecback control regions were

constructed. By considering enough cases we were able to fill up the

entire state space with feedback control regions, thus providing the

feedback solution.

Note that all we need for the final specification of the feedback

solution are the geometrical descriptions of the feedback control region

(R's) and their associated optimal control sets (O's). The sequences

of optimal controls (U's) and the boundary sequences (B's) are involved

in an intermediate fashion.
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VI. THE CONSTRUCTIVE DYNAMIC PROGRAMMING ALGORITHM

The examples of the previous section suggest an approach by which

the feedback solution to the constant inputs problem may be synthesized

in general:

The Constructive Dynamic Programmning Concept.

Construct a set of backward optimal trajectories, each starting

at the final time tf and running to t = --, among which all

possible sequences of state variables leaving the boundary backward

in time, both singly and in combination, are represented. Each

segment of every optimal trajectory (where a segment is that portion

which occurs on the time interval between two successive switch times

tp and tp+l not including tp+1 ) is utilized in the construction

of a feedback control region with associated optimal control set.

These feedback control regions are convex polyhedral cones, and the

union of all such regions is the entire acdrussible state space.

The conceptual structure of an algorithm which realizes the cons-

tructive dynamic programming concept is now presented. Due to several

complicating features the algorithm as it is presented here is not in a

form suitable for numerical computation. Instead, it serves as a frame-

work for the development of numerical schemes for special simplifying

situations. First, we present.some shorthand notation:
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Definition 5: I - {xJi I xJi(T) > 0, r E [ttp+ )} is the set ofP I I p p+l

state variables traveling on interior arcs on t ,t p).
p p+l

Definition 6: £ A Ix~ | xj E B and xj is designated to leave the
p I P I

boundary backward in time at tp1.

Definition 7: oa cardinality of I
P P

P cardinality of £
P P

Definition 8: R = the feedback control region constructed from the
P

optimal trajectories on the segment [tptp+l).

The algorithm is characterized by the recursive execution of a

basic step in which one or more feedback control regions are constructed

from a previously constructed feedback control region of lower dimension.

To describe a single recursive step of the algorithm we begin with the

feedback control region Rp which has been constructed in a previous

step. On the current backward optimal trajectories the state variables

of I are on interior arcs and those of B are on boundary arcs.
P Pa

Hence, R c IR P. where we assume that ao < n. The basic action

of each step of the algorithm is to allow a subset £P of state

variables in B to leave the boundary backward in time simultaneously;
P a

that is, allow the state trajectory to leave R c IR P and travel

directly into IR P+ P. The set of state variables which are subsequently

on interior arcs is I
D-1 



In order to formulate the algorithm we must make the following

assumption: it is optimal for aZZll of the state variabZes in Ip1

to remain off of the boundary as time runs to nr'rus infinity. This

is equivalent to assuming that once a state variable reaches the boundary

in forward time it is always optimal for it to remain on the boundary.

This assumption is certainly not always valid, and a counter-example is pre-

sented in Example 3.7 of (5], p.197. The most general class of problems

for which this assumption holds is not currently known. However, in [5],p.263,

it is shown to be valid for the specific class of single destination

network problems with all unity weightings in the cost functional.

We now provide the rule which stipulates the complete set of steps which

is to be executed with respect to R :

Consider aZZll of the subsets of BI whhic are combinations of its

elements taken 1,2,... ,n-a at a time. Steps are to be executed for

£p equal to each one of the subsets so deterrinred, or a total of

n-a
2 P - 1 steps.

We now describe a single step of the algorithm by choosing a particular

£ c B . Figure 6 is used to illustrate this description.
P P

STEP OF THE ALGORITHM

Operation 1 Partition R into subtaerions with respect to £.
p p

The definition of subregion is deferred until Operation 3 since notions

are required which are developed in the interim. Subregions, like feedback
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b+D- p
IR

If~~~~~~~~. R mP P-

4,,,

Ap- R p (.Cp)

Figure 6: Construction of Successive Feedback Control Regions
from Subregion R p (,C p)
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control regions, are convex polyhedral cones and the method by which

the partition may be performed is presented in [5I, p.165. For the present,

let us assume that R has been partitioned into s subregions and
p

denote them by R1 (p), R(£ p),..., Rp( p), where the dependence of

the partition on the set £Cp is indicated in parenthesis. We now

perform the subsequent operations of the step for each of the s sub-

regions taken one at a time.

- Operation 2 Consider the typical subregion R. (C ). We now call
p P

for the state variables in £ to leave backward in time from each
P

of a finite set of points of R (£ ) taken one at a time. This set of
P

points is denoted by Xp(.p) and as in the case of subregions the

definition is deferred until Operation 3. Let us now focus attention

on a typical such point x E X (.Cp). We assure that x has been
-p pp

reached through a backward optimal trajectory constructed from a sequence

of previous steps, and that the time at which x is reached along-p

this trajectory is tp. Associated with x at t is some possibly
p -p p

nonunique set of costate vectors. We are interested in only those

costate vectors which allow for the optimal departure of the state variables

in £p from the boundary backward in time at t , known appropriately
P P

as Zeave-the-boundary costates. This set may also be nonunique, in which

case it will in fact be infinite. It is shown in [5], p.189, that we need

only consider a certain finite subset of the total leave-the-boundary

costate set and a method for determining this particular set of costate
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vectors, or for showing that no such costate vectors exist, is presented,

We assume now that this set has been found and denote it by A
p

- Operation.3 Consider the typical leave-the-boundary costate

X E A. We now consider the situation in which the state variables in
-p P

£p leave the subregion Rp(Cp) backward in time from the point x .

We note that the set of state variables which are traveling on boundary

arcs backward in time subsequent to the departure of £J is
P

B = B I £ and the set on interior arcs is Ip- = I £ .
p-1 p p p p p

We must now solve the following problem:

Given the state x and the costate X at time tp, find aZZ

optimal trajectories backward in time on T E (-,tp) for which

x (T) = 0 for all xj E B or determine that no such point
i pI-1

trajectory exists.

According to assumption stated earlier in this section it is optimal

for all of the state variables of Ip_ 1 to remain off of the boundary

for the entire time interval T E (-o,tp). Therefore, by the necessary

conditions (which are also sufficient) we know that any (and all)

trajectories which solve the above problem must have a control which

satisfies the following, henceforth referred to as the global optimiz-

ation problem:

Find all

u*(T) = ARG MIN = ARG MIN AT(r) B u(T) (89)
u(T)EU- u(I)EU.-
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where

X(tp) =- A (90)

iJ(.) - E {I T (91)

-dX-e () - .dT + di,-! )

X- EB (92)
I p-1

dn4 (T) 0 O

Y E (-E t).

Our task is therefore to find all solutions to the global optimiz-

ation problem which satisfy the constraints xJ(T) = 0 for all

x. E B1 and all ' E (-",t ) or show that no such solution exists.
I p-1 P

To find solutions requires producing values of nrJ(T) such that xJ l)= O

is optimal for all xiE B and all T E (-=.t o). A method for

solving this problem is presented in Appendix A.

If it is shown that no solution exists we immediately terminate

this step. On the other hand assume that using the technique of Appendix A

we have arrived at a sequence of optimal switching times and optimal control

sets on T E (-O,tp). Suppose that q switches occur in the optimal

control over this interval and denote the times at which the switches occur

by tp q,...,tp 2,tp 1 where the control remians unchanged from time

t to minus infinity. All these switching times the backward optimal
p-q

trajectory intersects the hypersurfaces of various dimensions which separate
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adjacent feedback control regions. The points of intersection are

referred to as breakpoints and the hypersurfaces, which are convex

polyhedral cones of dimension op + pp- 1, are referred to as breakwai s.

We denote by w the breakwall which is encountered at the s-th
p-s

switch time t and denote the entire set of breakwalls encountered
p-s

on T E (-,tp) by

W a {Wpq... ,wp-2,WP- 1)

We shall show how to construct W later on in this operation.

Define ps to be the complete set of optimal controls on
p-s

X E [tp s5 tp s+l) which satisfy the constraints Ax(T) = 0 for all

xj E p' or formally

s {u* u* = ARG MIN X (-)B u() ,
p-s I UE.

uU(T)=O Vx()Bu_f-.= vxJ Ep-1

T E [tp ,St )p+1) where X(T) is determined by (90)-(92) and

X ranges over all members of A }.
-p P

Accordingly, the collection of optimal control sets on T E (-o,tp) is

denoted

A- , lp-q' p-2' p-1

where Q is the solution set which applies from time t to minus
-00 p -q
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infinity. We are now able to provide various details which have been

left unspecified until now. First, the definitions of subregion and the set

of points Xp(.(p) c Rp(£p) mentioned in Operations I and 2.

Definition 9: Suppose the set of state variables £ is designated to

leave the feedback control region R backward in time. Then a subregion
p

Rp(£p) of R is the set of all those points in R which have taken

as the point of departure of -£ result in a common Q and a common W.
p

Definition 10: If no control switches occur on T E (-o,tp) then Xp(£p)

consists of exactly one point, and this may be any point of R (£ ).

If one or more control switches occur (i.e., one or more breakwalls are

encountered) then Xp(1p) consists of exactly one point from each edge

of R (£p), where we may choose any point of a given edge.

Therefore, if no control switches occur we have exhausted Xp(£p)

by the consideration of the single point x . On the other hand, if one
-p

or more control switches occur then we must repeat Operations 2 and 3

for all of the remaining points of X (.1 ).
p (p

By the definition of subregion we shall obtain the same collection

of optimal control sets Q and encounter the same set of breakwalls W

for every point in Xp (p). However, the breakpoint corresponding to a

given breakwall will in general be different for optimal trajectories

emanating from different points of Xp(1p) or for different optimal

UB ~W ~ D I~r··I1BI~~ L--- ------ ·---pplra
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trajectories emanating from the same point. We may now specify how to

construct the breakwal ls from the breakpoints: Find the complete set of

breakpoints occuring at the s-th .sitch time which correspond to

extreme point solutions of w w-s where we consider trajectories eman-

ating from every point of X p(p ). zFrm' the set of rays in the state

space which pass through these breaksh:nts. Then wp_5 is the convex

huZZll of aZZ the rays.

- Operation 4 The sets Q and W obtained in the previous operation

are now utilized to construct feedback control regions. We consider the

two cases:

(i) q 0

In this case Q = {Qo} and W = {0}. Consider the linear

transformation v = -x = -B u - a and the convex polyhedral set

Y = {y I u E ~0} . For every extreme point of Y- form the ray

pa +p
in IR which passes through that extreme point. If there are w

extreme points then denote the set of rays by V_X = {v1, v2, ..., v } .

It is readily seen that each of these rays represents an extreme direction

of travel of the optimal trajectory in the state space. Now, let Co(-)

denote the convex hull function and from the convex polyhedral cone

R = Co(R (£Cp) U V )//Rp (£C)
pp -oo p p

It is proven in Appendix B that R , is an feedback control region with

associated optimal control set Q - in the sense of Definition 4.

We refer to R as a non-break fee£-ck control region.

~1--QO ------------
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(ii) q > O

In this case Q = { , p-q' pq . p-2 ,'Ql } and

W = {w , ... ,wp- 2,wp 1}. Form the sequence of q+1 adjacent convex

polyhedral cones

Rp 1 Co(Rp(p) U w 1)/Rp(p)

Rp-2 = Co(wp_l U Wp_2)/Wp_

R = Co(w U w )/w
p-q p-q+l p-q p-q+l

R = Co(w U V )/w
-CO ' 'p-q p-q

It is proven in [5], p.17 6, that R Rp .. ,Rp are feedback controlp-i p-2" ' p-q

regions with associated optimal control sets P. , Q2p-2 p-q

respectively. These are referred to as break feedback control regions.

Here R is the non-break feedback control region with associated
-CO

optimal control set Q%-. See Appendix B for proof.

a Step of Algorithm

Note that upon the completion of a single step q+l feedback

control regionshave been constructed: exactly one non-break feedback

control region and q break feedback control regions, 0 <q < a.

We may refer back to Example 2 to find simple examples of both type of

feedback control regions: the region specified in (87) is a break

feedback control region and that of (88) is of the non-break variety.
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Having detailed a single step we now discuss how the overall algor-

ithm operates. The procedure is initiated at tf with the first feed-

back control region Rf being the origin. Here the set Bf is composed

of all the state variables of the problem. We allow £f to range over

all possible 2 -1 non-empty subsets of Bf and perform a step of the

algorithm for each. To this end we know by Corollary 2 that the values

of the costates at tf corresponding to those state variables leaving

the boundary at tf are zero. The constrained optimization of Appendix B

may then be solved since only those costates are required which corres-

pond to state variables off the boundary. For each set of state variable

leaving the boundary which is found to have globally optimal trajectories,

feedback control regions are constructed which range from one dimensional

(axes of IRn) to n-dimensional subsets of IRn. At each step we

propogate backward in time an appropriate set of state and costate trajec-

tories and save the information which is required to execute subsequent

steps. Each region of the set thus constructed is used as the starting

point for the sequence of steps which builds new higher dimensional regions.

This process continues until all the feedback control regions which are

constructed are n-dimensional. Note that the complete set of backward

state and costate trajectories which is constructed during the execution

of the algorithm will not in general be unique due to the arbitrariness

in the selection of the set Xp(£p) at each step.

We point out that the feedback control regions constructed during

a particular step may have been constructed previously. In essence, we
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are being conservative in insisting that £p be set equal successively

to all possible non-empty subsets of Bp, but no method is currently

known for the a priori elminination of those subsets which will produce

previously constructed regions. However, our thoroughness allows us

to state the following:

Theorem 5. Complete execution of the constructive dynamic programming

algorithm will result in the specification of the optimal feedback con-

trol over the entire admissible state space.

Proof: Feedback control regions are constructed for every conceiv-

able type of optimal trajectory in terms of sequences of state variables

on and off boundary arcs. Moreover, we are finding the largest such regions

since we are taking into account all optimal controls corresponding to

each sequence. Therefore, the feedback control regions constructed must

cover the entire admissible state space.

Summarizing, the following questions which have been left unresolved

in the current discussion:

1) The validity of the assumption that it is optimal for all the state

variables in Ip 1 to remain off the boundary as time runs to

minus infinity.

2) Partitioning Rp into subregions (Operation 1)
P
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3) Determining the leave-the-boundary costate values (Operation 2).

4) Determination of global optimality (Operation 3 - part (b) of

Appendix A).

As the algorithm is presented here in principle only we shall not

enter into details regarding off-line calculation or on-line implement-

ation. However, two points are worthy of mention. First, the number of

steps to be performed and the number of feedback control regions cons-

tructed will be very large for reasonable size networks. In constructing a

numerical version of the algorithm we must therefore be concerned with

the efficiency of the various operations. Secondly, a large amount of

computer storage will be required to implement the solution in real time.

The feedback control regions must be specified by a set of linear inequal-

ities which in general may be very large, and the optimal controls within

these regions must also be specified. This situation illustrates the

tradeoff which occurs between the storage which is required for the on-

line implementation of feedback solutions calculated off-line and the

amount of calculation involved in the repeated on-line calculation of

open-loop solutions.
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VI I. CONCLUS ION S

We have considered the linear optimal control problem with linear

state and control variable inequality constraints proposed in [2] as

a method of analyzing dynamic routing in data communication networks.

The conceptual structure of the Constructive Dynamic Programming

Algorithm has been presented for finding the feedback solution to this

problem when all the inputs to the network are assumed to be constant

in time. Several required tasks of the algorithm pose complex questions

in themselves and are therefore left unresolved here. These questions

are confronted in detail in [5] and a forthcoming paper by the authors,

where in the case of single destination networks with all unity

weightings in the cost functional simplifications arise which permit

a numerical formulation of the algorithm.
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APPENDIX A - COMPUTING BACKWARD OPTIMAL TRAJECTORIES

Consider the following constrained optimization problem (i.e. constrained

in state) in which the nJ do not appear:

Find all

u*(-r) ARG MIN ( ) ) (A.1)
-u(T)EU xJE 

I p-1

subject to

0J<l) = o Vxj E B (A.2)
-,., (): oi p-1

where

XJ(t) = appropriate component of X (A.3)

Vx J E I
p-1

xJ<J> ( t = I-aJ (A.4)

Vr E (-=,tp).

The following is presented without the proof, which is trivial:

Theorem A.1 Any solution to the global optimization problem which

satisfies xz ~(T) = 0 for all xi E S is also a solution to the
~I ~I p-1

constrained optimization problem.

We are able to solve the constrained optimization problem immediately

since we know all of the coefficients of (A.1) and the values of xJi

for xj E B are not required. However, solutions to the constrained
I p-1

optimization problem may not be solutions to the global optimization

problem. These observations suggest the following two part approach to



finding aZZ solutions to the global optimization problem which satisfy

xJ = 0 for allZZ x E B
fI p-1·

(a) Find all solutions to the constrained optimization problem.

(b) Produce values of -r(T), T E (--,tp), for all xj E B which satisfy
' ' ' I p-1

th- nec.ssary cordtions and such that all solutions to part (a)

are also solutions to the global optimization problem or show

that no such values exist.

The above tasks were performed in a simple fashion for the examples

of Section V, where due to the small dimensionality of the problems we

were able to solve part (b) by inspection. Of course, this is rarely

possible, and a general method for solving part (b), referred to as the

determination of global optimality, is presented in [5], p.l63.

We now turn our attention to the solution of part (a). Taking into

account the dynamics (7) and integrating (A.4) backward in time from t

we may re-write (A.1) - (A.4) in terms of the underlying decision vector

u as follows:

u*(T) = ARG MIN (c + Tc )u(r) (A.5)
u(-r)EL' -o 1

D u(T) < C (A.6)

U' = u(T) >0 (A.7)

bu(Tr) = -aJ VXj E B 1 (A.8)
where b = row ofI I ponding to x

where b: row of B corresponding to x.
~~~~~~- I i
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x = X X(t )bJ
-0 xEI I' pb

I p-1

c ~ .z aj bi

1 p-1

and t is time running backward from t to minus infinity.
p

The presence of the constraints (A.8) prevents us from immediately

specifying the optimal solution at a given time in terms of the costates

as is possible in the absence of these constraints. However, since for

fixed T (A.5) - (A.8) is a linear program the Simplex technique may

be applied to find a solution. Moreover, the cost function of (A.5) is

a linear function of the single independent parameter T, while the

constraints are not a function of T since a is constant. This is

precisely the form which can be accommodated by parametric linear prog-

ramming with respect to the cost coefficients. The solution proceeds

as follows:

Set T = 6, where 6 is some small positive number which serves to

perturb all costate values by aJ6. We wish to start our solution at

time tp-6 since we may have XJ(tp) = 0 for some xj E B so thatp I p I p-1'

the solution exactly at tp may not correspond to xJ leaving the bound-

ary. The number 6 must be such that 0 < 6 < tp 1, where tp_1 is

the first break time to be encountered backward in time.

We now use the Simplex technique to solve the program at T = 6,

There are many linear programming computer packages which may be enlisted
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for this task which utilize efficient algorithmic forms of the Simplex

technique to arrive at a single optimal extremum solution. Given this

starting solution which we call u 1 most packages are also equipped

to employ parametric linear programming to find the value of T for

which the current solution ceases to be optimal as well as a new optimal

solution. These are the break time t l and the optimal control up-2

respectively. We continue in this fashion to find controls and break

times until the solution remains the same for T arbitrarily large.

This final solution is the control u

The linearity of the pointwise minimization associated with the

necessary conditions has enabled us to find a sequence of optimal controls

on the time interval (-c,tp) by the efficient technique of parametric

linear programming. However, in the description of Operation 3, we call

for all optimal solutions on every time segment. Since we are dealing

with a linear program, the specification of all optimal solutions is

equivalent to the specification of all optimal extremum of the solution

set. Unfortunately, it turns out that the problem of finding all the

optimal extremum solutions to a linear program is an extremely difficult

one. It is easily shown that given an initial optimal extremum solution

this problem is equivalent to finding all the vertices of a convex poly-

hedral set defined by a system of linear equality and inequality constraints.

Discussion of this problem has appeared intermittently in the linear

programming literature since the early 1950's, where several algorithms

based upon different approaches have been presented. However, none of
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these methods has proven computationally efficient for a reasonably

large variety of problems. The fundamental difficulty which appears

to foil many algorithms, no matter what their underlying approach, is

degeneracy in the original linear program. As our problem is charac-

terized by a high degree of degeneracy, one would expect poor performance

from any of these algorithms. Hence, it appears at this time that the

development of an efficient algorithm for the solution of this problem

is contingent upon the discovery of methods for resolving degeneracy

in linear programming. As degeneracy is a frequent nuisance in most

linear programming procedures, this problem is the subject of much on-

going research.



- 69 -

APPENDIX B - CONSTRUCTING NON-BREAK FEEDBACK CONTROL REGIONS

Exactly one non-break feedback control RX0 is constructed in either of

the cases q = 0 or q > 1. If q = 0 then the state variables in £

leave Rp (p) backward in time with optimal control set a and RX

is constructed adjacent to R (£p). Similarly if q > then the state

variables in £ leave the breakwall w backward in time with
p P-q

optimal control set Q and R is constructed adjacent to wp._=3 -=00 p-q

In this discussion it is unnecessary to distinguish between these cases;

we therefore let R represent either the subregion Rp(£ ) or the

breakwall w depending upon whether q = 0 or q > 1 respectively.
p-q

Theorem B.1 Suppose _ is the set of optimal controls with which

the state variables £ leave R backward in time. Then
P P

R1o = Co(R i V_)/R
p -oo p

is the non-break feedback control region with associated control set

Q in the sense of Definition 4.

Proof. We must show that items (i)-(iii) of Definition 4 apply to

R and Q . The situation is depicted in Figure B.1.

We prove item (iii) first. Consider x E Rp. Translate each ray

in V by placing its origin at x and call the translated set

V' = {v,v,...,v'} . Next form the conical region M(x) = Co(x U V')/x.

See Figure B.1. If xl E r(x), then there exists a direction which is
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some convex combination of the members of V' which takes x to x.

Hence, for any x1 E t(x) there exists a u E 2X which takes x to x.

Now, R , = Co({J(x) x E R }) since the sma'lestconvex set containing

{tr(x) I x E R } is clearly R . Therefore, for any x1 E R there

exists some direction which is a convex combination of members of V

which carries x to some point x E Rp. This is equivalent to saying

that for any x1 E RA, there exists a u E £2 such that x = B u + a

carries x1 to some point x E R . Also, the trajectory remains within
-- p

R until it strikes R .
_00o ~p

Now, let us select some x1 E R X and apply any control u1 E _-o

which helps the state within R for a non-zero period of time At.

Clearly there exists such a control by the above argument. Denote by

X2 the state which results after applying u1 for the time At. Then

also by the above argument there exists some control u2 e Q_ which

takes x 2 to some point 3 E R. See Figure B.1. The control u2

is optimal since £2 is constructed such that any u E l 2 is optimal

to move the state off of R backward in time. Finally, u1 is optimal
P

since u1 E £2 and the trajectory segment x2 -- x in part of the

trajectory x3 - x2 - x which leaves from Rp. We have therefore shown

that item (iii) of Definition 4 is satisfied.

Items (i) and (ii) follow easily from the fact that R, is itself
P

part of a feedback control region.

Cl Theorem B.1
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Figure B.1 ; Geometry for Proof of Theorem B. 1
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