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Abstract 

In this paper, an optimal control approach to a prob- 
lem in national settlement system planning is presented. 
The problem description is the same as considered by 
MacKinnon [ 6 ]  and by Evtushenko and MacKinnon [ 4 1  . It is 
shown how the special structure of the model and the sin- 
gular nature of the control can be used to reduce the solu- 
tion of a nonlinear programming problem to the solution 
of sets of linear equations. A branch and bound integer 
programming algorithm is used to handle inequality con- 
straints on the control variables. The organization of 
the paper is as follows. Section I considers problem 
formulation and an optimal control solution is discussed 
in Section 11. A branch and bound technique for deter- 
mining active constraints is presented in Section 111. 
A more general problem is considered in Section IV and 
conclusions are stated in Section V. 

I. Problem Formulation 

We consider first the forward linkage model (1,2) in which 
the state vector x(t) € Rn represents population distribution at 
time t and the control vector u(t) € Rn represents migrations to 
each region from outside the system. 

The budgetary and fixed immigration constraints on u(t) are 
expressed as 
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The initial state x(0) = x is also specified. The objective 0 
function to be minimized with respect to u(t) , t = 0, ..., T - 1 is 

J measures the deviation of actual populations x(t) from certain 
desired population levels g(t). The backward linkage model (1,2) 
will be considered in Section IV. 

11. An Optimal Control Solution 

By adjoining the constraints to the cost function using 
appropriate multipliers, we define the Lagrangian function (3) 

where IT = [I,. . . ,I] is a 1 x n vector of all ones. 

Here X(t) , v(t), n(t) and p are dual or shadow-price variable 
for constraints (I), (3) , (4) and (2) , satisfying constraints 
n(t) 5 0 and p 2 0 and having the same dimension as the constraining 
equation. 

By rearranging terms, Eq. (6) can be written as, 



S i n c e  Y i s  l i n e a r  i n  u ( t ) ,  t h e  o p t i m a l  c o n t r o l  problem i s  s i n g u l a r  
i n  t h e  s e n s e  of  Bryson [ 2 ] .  

S e t t i n g  

and 

aY = o  t = o  ..... T - 1  1 
a11 ( t )  

w e  o b t a i n  t h e  f o l l o w i n g  ( 2 T  + 1 )  n  l i n e a r  e q u a t i o n s :  

and 

Suppos ing  t h a t  t h e  c o n s t r a i n t  u ( t )  2 0  i s  a c t i v e  o n l y  a t  
p  p o i n t s ,  l  w e  now p r e s e n t  a  method f o r  s o l v i n g  Eq .  ( 8 )  t o  ( 1  1 )  

I 
T h i s  k p l i e s  t h a t  u ( t i)  = 0  f o r  o n l y  p  d i f f e r e n t  v a l u e s  

j 
o f  ( j i l t i )  where j i €  [ 1 , 2 .  ..., n] and t i €  [O. .... T-11.  W e  d e n o t e  

t h e  ( j i l t i )  set  by  I . 
P  



along with Eqs. (1 ) , (2), (3) and p equations from (4) , a total 
of ( 3 n ~  + T + n + 1 + p) equations for an equal number of unknowns 

viz. {(x(t) , t = 1 ,  ..., T) , (u(t) , t = O  ,..., T -  1 

We have assumed here that the budget constraint (2) is binding. 
Otherwise u = 0 and Eq. (2) is irrelevant. A determination of 
the binding or nonbinding nature of the constraint Eq. (2) can 
be done by the branch and bound technique to be described below 
for determining the values of t and ji for which the nbnnegativity 
constraints (4) are binding. i 

The linear nature of the above equations allows us to solve 
for (3nT + n) unknowns in terms of the remaining (T + p + 1) 
unknowns 0 where 0 = {v(t), t = O,....T - 1; p ;  Vji (ti) f 

( j i f  ti) f I~}. This is a significant reduction in computation 

since n may-be the order of twenty to 100 and T of the order 
three to ten. 

Eq. (11) gives X (t) in terms of 0. Substituting for X (t) in 
Eqs. (8) to (1 0) , we can also obtain x (t) in terms of 0 .  Then 
u(t) can be solved from Eq. (1). Now there are exactly (T + p + 1) 
binding constraints on u(t) and these give us the desired 
equations for (T + p + 1) unknowns, 0. The detailed equations 
are 

where 



From E q .  ( I ) ,  f o r  t = 1 ,..., T - 2 

u ( t )  = x ( t  + 1 ) - P x ( t )  

= g ( t  + 1 )  - Q-I v ( t )  + r ( t )  p + n ( t )  ) 
+ Q-' p T k T  v ( t  + 1 )  + r ( t  + 1 )  p + n i t  + 1 )  ) 
- P[g( t )  - Q - ~ (  v ( t  - 1 )  + r ( t  - 1 )  p + n ( t  - 

+ Q  P T ~ T  v t  + r ( t )  p + . (15)  

From Eq. (21,  ( 3 )  and ( 4 1 ,  and assuming v (T) = 0,  . r ( T )  - q (T) = 0,  
v ( -1 )  = 0,  r ( - 1 )  = q ( -1 )  = 0, an  e q u a t i o n  of t h e  form A8 = c i s  
ob t a i ned  where 

The t i m e s  a t  which t h e  c o n s t r a i n t s  u ( t )  = 0  a r e  b ind ing  

t l  5 t2 ... -< tkt  and j ...,ji a r e  t h e  cor responding  c o n t r o l  
1  

v a r i a b l e s .  I f  two o r  more c o n t r o l  v a r i a b l e s  a r e  z e r o  a t  one 
t i m e ,  t h e n  t h e  t i m e  index  i s  r epea t ed .  





where e is an n x 1 vector of all zeros except 1 at location 
j 

ji. Assuming A is nonsingular, we obtain 

If A is singular, but c belongs to the range space of A, we 
can still solve for 0 but it is no longer unique. However, this 
is an indication that not all the constraints are linearly inde- 
pendent and a reduction in the dimension of 0 can be made. This 
may be achieved by changing p, the number of controls that are 
exactly zero. If A is singular and c does not belong to the 
range space of A, the constraints are inconsistent and some of 
the constraints must be dropped. For example, Eq. (3) dictates 
that not all the controls at a given time can be identically 
zero. If an attempt to do so is made in Eq. (4), an inconsistent 
set of equations for 0 will result. We now examine the problem 
of identifying the controls that are identically zero. 

111. Branch and Bound Integer Programming Technique 

The total number of control variables is nT, but due to 
constraint (3) at most (n - 1) T control variables can be iden- 
tically zero. (See Garfinkel and Nemhauser [5] . )  I denotes the 

P 
subset of controls that are zero for a particular solution 
trajectory and let I* denote the zero control subset for the 
optimal trajectory. We are interested in determining I* by an 
efficient search over all admissible I , p = O,l, ..., (n - 1) T. 

P 
A branch and bound technique (see [5]) may be used as follows: 

2 

1) Start with 10, an empty set, i.e. neglect all non- 

negativity constraints. Solve Eq. (19) and determine the corre- 
sponding control set, Uo. The associated cost JO is a lower 

bound on the optimal cost J*, since the addition of constraints can 
only increase the cost. Make Uo feasible by setting all negative 

I 

controls to zero and let the correspondina control by Uo with 
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1 1 

associated cost Jo. Then J is an upper bound on J*. 
0 

I I I 

Store Uo, Jot Uo and J 
0 ' Notice that Uo is easily constructed 

from Uo so that it need not be stored if U is stored. 0 

2) Now add one element to the set I i.e. only one 
0 ' 

control variable is set to zero. Examine all sets I1 of a single 

element and let IT be the set with the least cost J1. Notice 

that the addition of a single extra constraint increases the 
dimension of 8 by one and adds a new row and column to A. The 
inversion of the augmented A can be done in terms of the previous 
A by using the Frobenius relation (5) or the matrix sweep methods 
(6). Thus no further inversions of matrix A are required as 
long as the addition or subtraction of constraints is done one 
at a time. Let U1 be the optimal control under I* and U; be the 

I 1 
projected feasible solution with cost J1. N tice that J1 will 

provide an improved lower bound on J*, but J1 need not be an 

improved upper bound. At any stage of the iteration, we store 
the best upper and lower bounds and the associated control 
histories. 

3) We now examine sets I of two elements, obtained from 2 
I* by adding one more constraint. Let I* be the set providing 
1 2 

the minimal cost J control U2, projected feasible control U; 2 ' 
and the corresponding cost J;. If J2 is less than the best 

upper bounds, we accept it as the best lower bound since by 
construction J > J1 > JO. But if J2 exceeds the best upper 

2 - - 
bound, then I; and all its predecessors (see Figure 1) are 

excluded from further consideration. In this case, we go back 
to a set I1 of a single element by eliminating the common vari- 

able among I* and 1; using a matrix sweep algorithm (6). We then 
1 

go down this branch of the tree in the same fashion till either 
I 

U and U become identical or the lower bound exceeds the best 
upper bound achieved previously. 

The branch and bound procedure may be made more efficient 
by using information about multipliers n(t). If at any stage 
of the calculation, n(t) turns out to be zero or positive for a 
control variable on the constraint boundary, it is an indication 
that the corresponding control variable should be taken off the 
constraint boundary. 



Figure 1. Branch and bound tree. 

The convergence of the above branch and bound technique is 
guaranteed owing to the finite number of possible enumerations. 
The more important criterion is efficiency, an evaluation of 
which would require numerical computation. 

IV. Optimal Control for the Backward Linkase Model 

The state equations for this model are 

where v(t) is the distribution of job vacancies in the tth time 
period; u(t) is the distribution of government stimulated job 
vacancies; z(t) is the distribution of spontaneously occurring 
vacancies; K is a diagonal matrix with diagonal elements being 
the regional natural population growth rates; fi is a migration 
matrix with elements iijk, the probability that a job vacancy in 

region k will be filled by someone living in j .  (See Evtushenko 
and MacKinnon [4] . ) 

The control variables in this model are u(t) which are 
subject to budgetary and nonnegativity constraints of the same, 
type as Eq. (2) to (4) . The performance index J is of the same 
form as Eq. (5). 

The above problem is more general than the one considered 
earlier in Section I1 in the sense that the dimension of the 
control vector u(t) is smaller than the dimension of the total 



state vector viz. (x(t),v(t)). One approach would be to cast 
this problem into a general linear-quadratic form (3) with 
terminal state and in-path control variable inequality constraints. 
A Riccati equation approach mixed with integer programming will 
be used to obtain the controls in a feedback form. Clearly all 
the results of this section may be specialized to the forward 
linkage model, though extra costs in computation time will be 
incurred to obtain controls in feedback form. 

Define a new state variable a(t) as follows: 

T a(t + 1) = a(t) + r (t) u(t) , a(0) = 0 

then 

We assume that the binding or the nonbinding nature of 
constraint (24) has been determined by the branch and bound 
procedure. We consider the case 

Now we use the branch and bound technique to convert the 
control variable inequality constraints to equality constraints. 
Along any branch of the tree (Figure I ) ,  the control variable 
constraints may be expressed as 

where 

~ ( t )  = .rr , i(t) = G(t) if u(t) > o (only ~ q .  
(3) holds) 

and 

if some of the controls are identically zero. The matrix E(t) 
is a k x m matrix of zero and ones where m is the dimension of 
u(t) and k is the number of control variables that are identically 



z e r o  a t  t i m e  t. F o r  example,  i f  o n l y  t h e  jth c o n t r o l  v a r i a b l e  
i s  z e r o ,  t h e n  E ( t )  i s  a  1 x n  v e c t o r  o f  z e r o s  e x c e p t  f o r  a  one  

i n  t h e  j th column. 

D e f i n e  a n  augmented s t a t e  v e c t o r  

Eq. ( 2 1 ) ,  (22 )  and (23 )  may b e  w r i t t e n ,  t h e n ,  a s  

y ( t  + 1 )  = F ( t )  y ( t )  + G ( t )  u ( t )  + c ( t )  

where 

- 
K I - M  - 
0 ,  M 

0 ,  0  

The t e r m i n a l  s t a t e  c o n s t r a i n t  (25 )  may b e  e x p r e s s e d  as 

where  



The c o s t  f u n c t i o n  may b e  w r i t t e n  a s  

where 6 ( t )  and 6 a r e  e a s i l y  d e f i n e d  i n  t e r m s  of g  ( t )  and Q ( t )  . 
N o t i c e  t h a t  t h e  t e r m i n a l  c o n s t r a i n t  (32)  may b e  added t o  J u s i n g  
a  q u a d r a t i c  p e n a l t y  t e r m  which would o n l y  modify t h e  l a s t  d i a -  
g o n a l  t e r m  of 0 a t  t i m e  T .  W e  would, however, h a n d l e  t h i s  
c o n s t r a i n t  d i r e c t l y  i n  t h e  same f a s h i o n  a s  was done i n  Bryson 
and Ho [21.  W e  i n i t i a l l y  c o n s i d e r  a  somewhat more g e n e r a l  c o s t  
f u n c t i o n  of t h e  f o l l o w i n g  type :  

where R 2 0  and Q ( 0 )  = 0. The r e s u l t s  f o r  c o s t  f u n c t i o n  a r e  
e a s i l y  o b t a i n e d  by s e t t i n g  R = 0  i n  t h e  r e s u l t s  g i v e n  below. 

The o p t i m a l  c o n t r o l  problem i s  d e f i n e d  by Eqs. ( 2 6 ) ,  ( 2 8 ) ,  
(32)  and (34)  . I t  i s  more g e n e r a l  t h a n  t h e  l i n e a r  q u a d r a t i c  
c o n t r o l  problem owing t o  t h e  i n t r o d u c t i o n  o f  Eq. ( 2 6 )  . 
g e n e r a l i z e  t h e  p r o c e d u r e  of  Bryson and Ho [ 2 ,  pp. 158-1641 f o r  
s o l v i n g  t h i s  problem. 

The Lagrangian  f u n c t i o n  i s  d e f i n e d  by a d j o i n i n g  c o n s t r a i n t s  
( 2 6 )  , (28)  and (32)  t o  J' u s i n g  m u l t i p l i e r s  < (t)  , X ( t )  and p. 



Setting aY = 0 and aY = 0 for all y (t) and u (t) , we obtain 
ay (t) au (t) 

We now use the "sweep-method" (3) to solve the inhomogeneous 
linear two-point-boundary-value-problem (TPBVP) defined by Eqs. 
(28) to (31) and (36) to (38). Let 

X (t) = -S(t) y (t) + A(t) y + a(t) (39) 

and 

where dimensions of S (t) , A(t) , D (t) , a(t) , B (t) and B (t) are 
T 

easily defined. From Eq. (37) , S (T) = Q(T) , A(T) = -H , 
a(T) = 6(T) <(T), D(T) = HI B(T) = 0, B(T) = -b. 

From Eq. (36), 

Substituting from Eq. (28), 



F r o m  E q .  ( 3 8 ) ,  

T h u s ,  

S e t t i n g  N  ( t )  u ( t )  = 0, w e  can solve f o r  S  ( t )  u s i n g  E q .  ( 4 3 )  

S ( t )  = N ( t )  R  + G T s ( t  + 1 )  G  [ ( ) N T ( t ) l 1  N ( t )  (R + G T s ( t  + 1 ) G  

{-cTs(t + 1 )  + c ( t )  + 1 )  p + a ( t  + 1 )  

S u b s t i t u t i n g  back f o r  S ( t )  i n  E q .  ( 4 3 ) ,  t h e  f o l l o i w n g  f e e d b a c k  
c o n t r o l  l a w  i s  obta ined:  

w h e r e  

( T  ~ ( t )  = - R + G  s i t  + 1 )  G ) {I - NT[N(R + G T s G ) '  NT]-I 

N ( R  + G ~ s G ) - ' )  G ~ s ( ~  + 1 )  F ( 4 6 )  



and 

Not ice  t h a t  N ( t )  L ( t )  = 0, N ( t )  M ( t )  = 0  and N ( t )  y ( t )  = 0,  
s o  t h a t  N ( t )  u ( t )  = 0  i s  a u t o m a t i c a l l y  s a t i s f i e d .  

W e  now d e r i v e  r e c u r s i v e  e q u a t i o n s  f o r  S ( t)  , A ( t )  , and a ( t )  
us ing  Eq. (42) and matching t e r m s  on bo th  s i d e s .  Th i s  g i v e s  

Equat ions  f o r  D ( t ) ,  B ( t )  and B ( t )  a r e  d e r i v e d  by c o n s i d e r i n g  
Eq. (40)  a t  t i m e s  t and ( t  + I ) ,  

D ( t  + 1 )  [Fy ( t )  + GL( t )  y ( t )  + G M ( t )  p + Gy ( t )  + c ( t)  I 
+ B ( t  + 1 )  p + B ( t  + 1 )  = D ( t )  y ( t )  + B ( t )  p + B ( t )  . 

(51 

Comparing t e r m s  i n  Eq . ( 5  1  ) , 



T It is easily seen that D(t) = A (t), so that 

-1 NT -1 where 1 (t) = I - NT[N(R+ GTsG) ] N(R + GTsG)-' . 

Eq. (55) shows that B(t) > 0 and for a normal problem ~ ( 0 )  > 0. 
Thus Eq. (40) may be solved for p as, 

We now summarize the solution procedure for a specific N(t) 
sequence. The determination of optimal N(t) is done by the branch 
and bound method of Section 111. 

a) Solve Eqs. (48), (49), (50), (53) and (54) backward in 
time from t = T to t = 0. Also compute simultaneously L(t), 
M(t) and y (t) and store these values for all t. 

b) Compute p using Eq. (56). Now solve Eq. (28) forward 
in time using Eq. (45) to compute u(t) simultaneously. The 
multipliers X (t) can be computed from Eq. (39) . The multipliers 
S(t) to be used in the branch and bound procedure are computed 
from Eq. (44). Notice that R can be set to zero without any 
difficulty to obtain results for the cost function J (cf. Eq. (33)). 

V. Conclusions 

In this paper, a mixed integer programming optimal control 
(MIPOC) approach has been outlined for solving multistage decision 
problems with control inequality constraints. Two specific 
optimization problems arising in national settlement system plan- 
ning were considered. The advantage of the proposed solution as 
compared to penalty methods is that the constraints are met 
exactly and all dual or shadow-price variables are computed 
explicitly. These variables contain valuable information for 
policy questions such as marginal utilities of budgets, of total 
immigration levels and of nonnegativity constraints. The feed- 
back form of the control law has the additional advantage that 
it is also optimal for the stochastic situation in which additive 
random error terms are present in the model. The MIPOC approach 
developed here has several novel features and its applicability 
to constrained optimal control problems of a more general nature 
will be considered in other papers. 
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