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Abstract—Reducing energy consumption in multi-processor 
systems-on-chip (MPSoCs) where communication happens via 
the network-on-chip (NoC) approach calls for multiple 
voltage/frequency  island (VFI)-based designs. In turn, such 
multi-VFI architectures need efficient, robust, and accurate 
run-time control mechanisms that can exploit the workload 
characteristics in order to save power. Despite being tractable, 
the linear control models for power management cannot 
capture some important workload characteristics (e.g., 
fractality, non-stationarity) observed in heterogeneous NoCs; if 
ignored, such characteristics lead to inefficient communication 
and resources allocation, as well as high power dissipation in 
MPSoCs. To mitigate such limitations, we propose a new 
paradigm shift from power optimization based on linear 
models to control approaches based on fractal-state equations. 
As such, our approach is the first to propose a controller for 
fractal workloads with precise constraints on state and control 
variables and specific time bounds. Our results show that 
significant power savings (about 70%) can be achieved at run-
time while running a variety of benchmark applications. 

Keywords - Networks-on-Chip; Power Management; Fractal 
Workloads; Finite Horizon Optimal Control 

I. INTRODUCTION 
Networks-on-Chip (NoCs) have been recently proposed 

as a promising communication paradigm able to overcome 
various communication issues (e.g., increased interconnect 
delays, high power consumption) in highly integrated multi- 
core systems. In contrast to traditional bus-based designs, the 
NoC paradigm enables various processing elements (PEs) 
communicate by routing packets instead of wires 
[4][5][17][22]. As such, NoCs not only offer a high degree of 
scalability and reusability, but also represent the main driver 
for achieving tera-scale computing [15].  

Integrating many cores operating at high frequencies in 
order to accommodate complex applications [29][33] leads 
to heterogeneous workloads, higher power consumption, and 
temperature fluctuations within die [6][8][19][26]. Such 
problems cannot be predicted or corrected at the design and 
manufacturing stages so, in order to sustain the increasing 
computational demands, it is essential to enhance the multi-
core platforms with smart power management policies, 
which can enable per core/tile control of power consumption 
while satisfying various performance levels [16][19]. 

Towards this end, in this paper, we formulate the 
problem of optimal power management for multi-domain 
platforms where communication happens via a globally 
asynchronous locally synchronous (GALS) NoC 
architecture. The goal of our on-line control algorithm is to 
determine the optimal operating frequencies for both PEs 
and routers that belong to separate voltage and frequency 
islands (VFIs) such that the performance constraints, 
typically measured by queues utilization (or occupancy) 
values, are met despite the high variability exhibited by real 
computational workloads. Queues utilization is used as a 
performance measure because it is directly related to the 
waiting times of packets in the queues and so it is 
proportional with packet latency1.  

Generally speaking, several types of control techniques 
have been used in many engineering applications; they 
would then naturally appear as good candidates to control the 
MPSoC behavior as well [12][25][34][40]. For instance, the 
feedback-based control approaches compute a set of control 
actions meant to bring the system into a desired state with no 
constraints on the magnitude of the control signal. In many 
situations, however, such control signals can take 
exceedingly high values which make them (physically) 
unfeasible. In addition, the feedback-based control strategies 
have the drawback that only a limited number of design 
parameters can be found from the closed-loop pole locations.  
An alternative approach is to consider the problem of  finite 
horizon optimal control with a predefined reference which 
finds the best sequence of control actions over a fixed time 
interval (horizon); this set of control actions can bring  the 
system (characterized by differential equations) to the 
desired reference at the end of the control interval.  

The new optimal control approach proposed in this paper 
is also finite horizon in nature. As opposed to existing 
approaches, it allows to directly optimize a certain 
performance metric subject to fractal (i.e., fractional 
derivatives) state equations (i.e., for queue utilization) and 
bounded control signals (i.e., operating frequencies). In other 
words, the proposed fractal controller is able to provide the 
optimal control signals (i.e., operating frequencies), if they 
exist, for a given performance level.   

                                                           
1 We note that our mathematical formulation for power management can be 
extended for other performance metrics as well. 
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We note that existing control-based approaches for power 
management [2][12][25][34][40] rely on the assumption that 
real workloads can be modeled via linear state-space models 
without explicitly including the timing constraints in 
problem formulation, i.e., they work under the assumption of 
having an infinite time horizon to control the system. As 
shown later in the paper, such approaches can provide 
inefficient solutions that actually may consume more power 
in real situations.  

In summary, our novel contribution to state-of-the-art 
power management of MPSoCs is threefold: 
• First, we propose a fractal-based state description of the 

dynamics of queues interfacing neighboring VFIs (see the 
top part of Figure 1). For completeness, we also describe 
a strategy for estimating the parameters of the fractal 
model as shown in the mid-section of Figure 1. 

• Second, we formulate the power management problem as 
a constrained finite horizon fractional control problem, 
which brings the utilization of queues in the multicore 
platforms as closely as possible to some predefined 
reference values, while minimizing the individual 
operating frequency of both PEs and routers (see Figure 
1). Of note, the controller we synthesize does account for 
the high variability observed in computational workloads 
and ensures that the operating frequencies of processors 
and routers remain within a predefined interval. 

• Third, using Lagrange optimization and calculus of 
variations, we derive the optimality conditions that need 
to be satisfied by all operating frequencies across the 
VFIs in order to reach the desired performance level 
across the entire multicore platform.  

• Finally, we evaluate the practical impact of all these 
solutions using realistic benchmarks and applications.  

The remainder of the paper is organized as follows. 
Section II reviews several power and thermal management 
techniques proposed to date for multicore platforms and 
highlights our novel contribution. In Section III, we discuss 
the main concepts specific to fractional calculus and explore 
how these ideas can be related to the observed characteristics 
of real world processes. Section IV presents the fractional 
optimal control problem and summarizes the optimality 
conditions for the run time power management algorithm we 
propose. Section V describes how the parameters of the 
proposed fractal model can be identified (at run time) from 
real traces and presents the experimental results we obtained 
while evaluating this approach. Finally, Section VI 
concludes the paper by summarizing our main contribution. 

II. RELATED WORK AND NOVEL CONTRIBUTION 
The power and/or thermal management methodologies 

proposed to date for multicore systems focus on either 
balancing the power/thermal profile via task or thread 
manipulation (i.e., allocation, migration, scheduling) 
[10][11][13][28][37], optimizing power consumption via 
clock gating [20], or dynamic voltage and frequency scaling 
(DVFS) [3][18][24][30]. For instance, while building on a 
DVFS-based approach, Sharifi et al. [30] propose a joint 
technique for thermal and energy management which 
optimizes for energy efficiency. Arjomand et al. [3] propose 
a thermal-aware heuristic for regular 3D NoCs which, for a 
predefined mapped application, seeks to find the voltage and 
frequency of all cores such that the power consumption is 
reduced. Along the same lines, Coskun et al. [10] propose an 
autoregressive moving average (ARMA) model for 
predicting the core temperature and allocating the application 
tasks to the cores while trying to balance the thermal profile. 
Coskun et al. [11] also describe a thermal-aware job 
scheduling that reduces the frequency of hot spots and spatial 
thermal gradients. In contrast, a task migration strategy for 
thermal management is presented in [13]. Along  the same 
lines, a dynamic thermal management for 2D MPSoCs is 
proposed in [24] which scales the frequency for a hot core 
such that its temperature is kept below a given threshold.  

Several research studies propose control-theoretic 
approaches to optimize for power and/or thermal profiles 
[2][12][23][25][34][40]. For example, while trying to 
minimize the power consumption in multiple clock domain 
multicores, the pioneering work by Wu et al. [39][40] 
models cores as queuing systems and proposes a 
Proportional-Integrator-Derivative (PID) controller which 
scales the operating frequency (for each clock domain) such 
that the queue utilization is kept close to a reference value. 
Ogras et al. [25] propose a feedback-based control 
mechanism to control the speed of each VFI while describing 
the NoC traffic through a linear state-space equation [35]. 
Along the same lines, Garg et al. [12] investigate the 
performance of a small world distributed control approach 
and propose a custom feedback control strategy which seeks 
to minimize the implementation cost of global 
communication, while sacrificing some performance. 
Adopting a similar linear system representation, Alimonda et 
al. [2] propose a feedback control DVFS of data-flow 
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Figure 1. Overview of our methodology. We first input the information 
about application (e.g., task graphs), architecture (e.g., topology, routing) 
and the set of costs and performance constraints that have to be met by 
the NoC platform. Building on NoC workload measurements (i.e., queue 
utilization, packet arrival and departure times), we build a fractal model 
of the queue dynamics by estimating the fractional order of the time 
derivative, the utilization parameter and the arrival/departure 
coefficients. Next, we use this identified model to design an optimal 
controller which determines the VFI optimal operating frequencies such 
that the performance constraints are satisfied. 
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applications mapped on MPSoCs. Zanini et al. propose a 
predictive model for balancing the thermal profile of the 
multicore platform by controlling the operation frequencies.  

 Before getting into the details of our new approach, we 
note that in all this previous work, the authors assume that 
either the workloads are stationary (and therefore use 
techniques like task migration/remapping which are based on 
average values of the variables that need to be optimized), or 
the NoC traffic can be characterized by exponentially 
distributed inter-arrival times between successive packet 
arrivals at various queues in the network. Unfortunately, the 
real applications can rarely be characterized by exponential-
type distributions [9]. For instance, Figure 2.a shows the time 
series of inter-arrival times between successive packets 
received at a queue located between tiles (2,0) and (1,0) in a 
4×4 mesh NoC under XY wormhole routing. In this 
experiment, the packets consist of 15 flits, queues have 50 
slots, and inter-arrival times are recorded while running a 
multi-threaded transaction processing application. 

By looking at data in Figure 2.a, we can easily note that 
the inter-arrival times exhibit not only a high variation, but 
also a non-stationary type of behavior which cannot be 
properly captured by the classical linear system theory 
models [9]. This observation can be directly proved by 
checking the validity of the exponential assumption as 
shown in Figure 2.b and Figure 2.c. More precisely, we 
observe that the empirical probability distribution of inter-
arrival times between successive packets does not follow the 
exponential assumption and it can be better fit by a heavy tail 
distribution instead. 

The existence of heavy tails in the dynamics of queue 
utilization suggests that the average value of any variable 
characterizing a metric of interest in the system (e.g., queue 
utilization) at time t does not depend only on its previous 
value at time t-1, but instead, due to the long term memory of 
the traffic, it depends on the weighted sum of several values 

at prior moments in time t-1, t-2, etc. This is precisely the 
point where correlations observed in the inter-arrival times of 
packet communication can and should be exploited via 
fractal-based models to control and optimize the overall 
multi-core platform operation [7]. From a mathematical 
perspective, the fractal model is based on fractional (i.e., 
non-integer) derivatives which are described next.  

III. BASICS ON FRACTIONAL CALCULUS 
Since its inception, fractional calculus has found many 

applications in physics (e.g., dielectric polarization, heat 
transfer phenomena, etc.) and engineering (e.g., control, bio-
engineering, etc.) [27]. More recently, the calculus of 
variations has been extended to systems characterized by 
fractional dynamical equations [1]. 

Simply speaking, the fractional (or fractal) calculus is 
based on techniques for differentiation and integration of 
arbitrary orders [21][27]. Unlike classical (i.e., integer order) 
calculus, fractional derivatives allow us to directly 
incorporate the dynamical characteristics (fractal behavior) 
of any target process x(t) (e.g., queue utilization in a 
network) through a weighted sum denoting the contribution 
of the previous events x(�), for � � [0,t]: 
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where � is the fractional order of the derivative and �(n-�) is 
the Gamma function [21], n is an integer and n-1<�<n. This 
continuous time definition of a fractional derivative can also 
be written in a discretized form as follows:  
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Figure 2. a) Packet inter-arrival times at queue between tiles (2,0) and (1,0) a 4×4 mesh NoC running a 16-node multithreaded online transaction 
processing (oracle) application. b) Comparison between the probability of inter-arrival times to exceed a given threshold and the maximum likelihood 
exponential fitting for the inter-arrival times at queue between tiles (2,0) and (1,0) obtained from a 4×4 mesh NoC running a 16-node multithreaded 
online transaction processing (oracle) application. c) Comparison between the probability of inter-arrival times to exceed a given threshold and the 
maximum likelihood exponential fitting for the inter-arrival times at queue between tiles (2,1) and (1,1) obtained from a 4×4 mesh NoC running a 16-
node multi-threaded scientific (ocean) application. This significant departure from exponential assumption shows that the network control and power 
management cannot be done properly using the classical linear system theory. Such experimental characteristics invalidate the use of classical control 
theory for regulating bursty workloads, and motivate our fractional calculus approach to power management. 
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where h is the time increment, [(t-a)/h] represents the integer 
part of the ratio between (t-a) and h. Equations (1)           
(continuous) and (2) (discrete) capture directly the role of the 
power law distributions observed in packet inter-arrival 
times (i.e., the term (t-�)�-n+1); they allow not only for a more 
accurate description of the dynamics of queue utilization x(t), 
but also for a better optimization; this issue is discussed next.  

IV. POWER MANAGEMENT IN FRACTAL WORKLOADS 

A. Problem Formulation 
Next, we formulate the power management as an optimal 

control problem which takes into account the fractal 
characteristics of the NoC workload. As shown in Figure 3, 
we consider a VFI-based MPSoC architecture consisting of 
NPE PEs, Nr routers, and &�

'queues interfacing the router in 
the j- th VFI with other routers in the neighboring VFIs.  

The goal of our nonlinear control problem is to find, for a 
given starting time (ti) and a final time (tf), the optimal 
assignment of operating frequencies for the PEs, routers, and 
queues, which minimize the quadratic costs of queues 
utilization with respect to a predefined reference, as well as 
the operating frequency of each VFI (this would implicitly 
minimize also the power consumption): 
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subject to the constraints given in Eq. (4) through Eq. (6) : 
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where 12���  and 12
345 , for i = 1,…,NPE, are the actual 

utilization and the utilization reference of the queue between 
the i-th PE and its corresponding router,  �A��� and �A

345 for 
k = 1,.., &�

'  are the actual and the reference utilization of the 
k-th queue located between the routers in j-th and l-th VFIs.   

In (3), wi, zi, rj and qk are some positive weighting 
coefficients. In (4), �i is the fractional order which depends 
on the fractal dimension characterizing the queue utilization 
process 12���, ai(t) represents the weighting coefficient of the 
utilization 12���, bi  and ci(t) reflect the contributions of the 
writing frequency (fi) and the reading frequency (fj), 12M2�  
and 12M!Oare the admissible lower and upper bounds on the 
queue utilization 12���. Of note, the optimal controller allows 
the designer to set individual weighting coefficients (i.e., wi, 
zi, rj and qk) in (3) for each of the NoC components such that 
the major power consumption elements can have a higher 
impact on the overall cost function. 

The next set of constraints is meant to characterize the 
utilization of queues between neighboring VFIs: 
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where �k is the fractional order characterizing the queue 
utilization process �A��� , �FA���  represents the contribution 
of utilization �A���  to the entire queues utilization 
dynamics,�GA��� and HA��� are the coefficients of the writing 
frequency (fk) and the reading frequency (fl) 
respectively,��AM2� and �AM!O are the lower and upper bounds 
on the utilization��A���.  

Note that the cost function in (3) maintains all NoC 
queues at specific utilization references (see the squared 
differences between  12���  and 12

345 or �A���  and �A
345 ), 

while the control inputs (i.e., operating frequencies) are 
prevented from taking exceedingly large values which would 
induce a too high power consumption. The role of the 
optimal controller is to select the minimum operating 
frequencies for which the performance constraints are 
satisfied. Moreover, in order to prevent the nonlinear 
controller from selecting an unacceptable range of operating 
frequencies, we also impose the following constraints:  

 
 rjjjPEiii NjfffNifff ,...,1,   ,,...,1, maxminmaxmin =≤≤=≤≤          (6) 

 
where 92M2�  and 92M!O� are the lower and upper frequency 
bounds at which each PE can run, 9�M2�  and �9�M!O�are the 
lower and upper frequency bounds for each router. 

 Note that we introduce two indices i- for the PEs and j-
for the routers and implicitly two variables (i.e., fi and fj) 
such that the operating frequencies of the PEs are decoupled 
from the router frequencies; this way, we avoid setting the 
PE to a small frequency which may affect the computational 
performance requirements, or setting the router to a too high 
frequency when it may not be necessary. Since considering a 
single VFI for each router would introduce further 
complexity (due to a larger number of mixed-clock queues), 
we limit ourselves at considering that the Nr consists of just a 
few VFIs and include more constraints to reflect the fact that 
neighboring routers are operating at the same frequency.  
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Figure 3. Representation of j-th and l-th neighboring VFIs where each PE 
is set to run, if necessary, at its own frequency. The xj(t) variable 
represents the utilization of the interface queue between the  j-th and l-th 
VFIs. The yi(t) represent the utilization values of the interface queue 
between the  i-th PE and  j-th VFI. Note that various colors of the tiles in 
the above NoC imply that each island can run at a certain frequency. 

38



B. Significance of Fractal Power Management Problem 
To put our power management approach into a broader 

perspective, we look at the optimal control problem defined 
in equations (3), (4), (5), and (6) from three different 
perspectives (see Figure 4), namely: i) the degree of fractal 
behavior exhibited by the system (state-space) model (Z-axis 
in Figure 4), ii) the degree of constraining imposed on the 
state and control variables (Y-axis), and iii) the scale (infinite 
vs. finite) of the timing constrains imposed on the control 
algorithm (X-axis).  

The classical optimal control refers to infinite time 
horizon approaches that rely on first order derivative state-
space models with no constraints imposed on state and 
control variables (see the striped red dot in Figure 4). We 
note that a linear quadratic regulator (LQR) approach as in 
[12][25] is a particular case of our problem formulation by 
considering �i = �k = 1, for i = 1,…,NPE, k = 1,…,Nj

q, tf = � 
and imposing no constraints on the state variables in (4) and 
(5), and control signals in (6). 

By the same token, a proportional-integral-derivative 
(PID) type of controller as in [39][40] can be also obtained 
as a particular case of our approach by considering  zj = rj =0 
and �i = �k = 1, for i =1,…,NPE  and k =1,…,Nq, infinite time 
horizon tf = � and imposing no constraints on the state 
variables in (4) and (5), and control signals in (6). So, it 
becomes clear now that the newly proposed problem 
formulation (shown as the chessboard green dot in Figure 4) 
is more general than either classical LQR- or PID-type of 
approaches. Given its generality, our new formalism allows 
to handle the high variability that occurs in real workloads.  

Next, we derive the necessary and sufficient conditions 
for optimal control using convex optimization concepts; we 

also show how the constrained finite horizon fractal control 
problem can be solved efficiently via linear programming.  

C. New Algorithm for Optimal Controller Synthesis  
To solve the power management problem, we use 

concepts from the optimization theory and first construct the 
Lagrangian functional, L(yi, fi, �i, xk, fj, �k,j), as follows: 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) dtftcftbtxta
dt

txdtxtxq

tfr
tftctftbtyta

dt

tyd

tfztytyw
fxfyL

lkkkkk
k

jk

ref
kkk

N

j

N

k

jj
jiiiii

i
i

t

t

N

i

ii
ref
iii

jkjkiii

k

k

r
q
j

i

i

f

i

PE

�
�

�
�

�

�
�
�

�

�

	
	




�

�
�




�
+−−+

−

�
�

�

�
++

�
�
�

�

	
	




�

�
�




�
+−−

+
�
�

�
�

�

�
�
�

�

�
+

−
=

��

� �

= =

=

α

α

α

α

γ

λ

γλ

,

2

1 1

2

1

22

,

2

2

22
,,,,,

   (7) 

where 12��� and �A��� denote the queue utilization variables, 
fi is the frequency associated with the i-th PE, fj is the 
frequency associated with the j-th router, �i is the Lagrange 
multiplier associated with the constraint imposed for the 
queue between the PE and the router, and �k,j are the 
Lagrange multipliers associated with the constraints on the 
queue between neighboring routers in different VFIs. 

For completeness, we also have to add some boundary 
constraints on the utilization of mixed clock queues: 
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These conditions are required in order to satisfy a certain 

performance level from the computation standpoint. 
By expanding the Lagrangian in (7) via the Taylor 

formula and considering that it attains its minimum in the 
vicinity of � = 0, i.e.,��XY

XZ 	 K[ we obtain the next relations: 
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where �̂=

�.� and �̂
�@�.  represent the fractional derivatives 

operating backward and forward in time, respectively. 
In order to solve the equations in (9), we discretize the 

interval [ti, tf] into N intervals of size (tf - ti)/N and use the 
formula in (2) to construct a linear system which can be 
solved using LU decomposition. In short, the algorithm of 
the optimal controller synthesis works as follows:  

a) Step 1: From the system identification module, read 
the coefficients �i,  ai, bi, ci for i=1,…,NPE characterizing the 
dynamics of queues between PEs and routers, and �k, ak, bk, 
ck for j = 1,…,Nr, k = 1,…,&�

'describing the dynamics of 
queues between neighboring routers in different VFIs; 

b) Step 2: For a fixed number of discrete steps N, 
compute the coefficients obtained after discretizing the 
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Figure 4. Power management problem seen from three different 
perspectives: Degree of fractality of state-space model (Z-axis), degree of 
constraining the state and control variables (Y-axis), and scale (finite vs. 
infinite) of time constraints (X-axis). The red (striped) dot corresponds to 
an infinite time horizon optimal control problem with no constraints on 
state and control variables relying on a non-fractal state-space model. 
Particular cases of this problem are linear quadratic regulator (LQR) and 
proportional-integral-derivative (PID) controller. Our approach (the green 
chess dot) refers to a finite-horizon optimal control problem which 
operates with constraints on both state and control variables and relies on 
a fractal state-space model. 
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fractional derivatives in (4), (5) and (9) using the formula in 
(2) and construct a linear system, where the unknown 
variables are represented by the operating frequencies (i.e., 
fi, fj) and Lagrange multipliers (i.e., �i  and �k,j); 

c) Step 3: Solve the linear system in (9) and find the 
operating frequencies for each VFI in the NoC architecture. 

V. EXPERIMENTAL SETUP AND RESULTS 
To evaluate our fractal optimal control algorithm, we 

consider a combination of trace-driven and cycle-accurate 
simulation of a VFI-based NoC architecture. From an 
application perspective, we consider four 16-node multi-
threaded commercial workloads (i.e., Apache HTTP server 
v2.0 from SPECweb99 benchmark [33], on-line transaction 
processing consisting of TPC-C v3.0 workload on IBM DB2 
v8 ESE and Oracle 10gExterprise Database Server, blocked 
sparse Cholesky factorization and ocean simulation) 
obtained from a FLEXUS-based shared-memory 16-
processor environment consisting of cycle accurate models 
of out-of-order processors and cache hierarchy [36][38]. 

From an architectural perspective, we consider a 4×4 
mesh NoC employing XY wormhole routing with mixed 
clock queues of 10 flit size and packets consisting of 15 flits. 
In this setup, we consider that the execution of a set of 
applications is divided into control intervals of 20�s length. 
Of course, the proposed control algorithm can also work 
with larger time intervals but the model parameters need to 
be estimated for the new time scale. 

A. New Power Management Methodology 
For each control interval, the parameter identification 

module (PIM) estimates the fractional exponent �k in (5) in 
two stages: First, it computes the workload variation 
coefficients for log2(m) resolution scales based on queue 
utilizations (m is the size of the control interval). Second, it 
performs a linear regression between the resolution scales 
and the variation coefficients. Because this approach relies 
only on variation coefficients at various time scales (as 
opposed to the entire time series which would be needed for 
any linear regression method [14]), the PIM module not only 
reduces the computational complexity from a O(N3) order to 
a linear order O(N), but it also enables an on-line estimation 
procedure with minimum memory overhead (i.e., it does not 
require to store all queue utilizations and can be done 
iteratively whenever there is a change in queue occupancy).  

Next, the PIM module estimates parameters ak,  bk, and ck 
from arrival (Ak), departure (Dk) and queue utilization (Xk) 
processes by solving a 10×3 linear system with three 
unknowns ak,  bk, and  ck. 

After the identification step is completed, and in parallel 
with the application computations, the fractal optimal 
controller implemented in the Power Manager (PM) module 
reads these parameters and solves the linear system defined 
by the equations (9) to determine the optimal operating 
frequencies for the PEs and routers (for the next interval of 
20�s) that can ensure a predefined performance level 
specified in terms of queue utilization references. 

B. Hardware Complexity of the Power Manager 
To illustrate the hardware requirements of the PM 

module, we consider that the optimal controller solves the 
optimality conditions in (9) for 30 discretization steps. 
Implementing the controller in Verilog and synthesizing it 
using the Xilinx’s SXT/Isim on a Virtex4 FPGA (Device: 
XC5VLX30, Package: FF324), for controlling a large  multi-
VFI platform with 80 queues we would need about 19440 
registers, 19120 LUTs, 80 RAM/FIFOs and 480 DSP48Es in 
a basic, un-optimized, FPGA design. This looks very 
reasonable for all practical purposes; with some additional 
optimization, these requirements can be reduced even 
further. Alternatively, the linear program solver in (9) can be 
implemented in software.  

C. Power Management under Real Workloads 
Next, we apply the optimal controller for N = 30 discrete 

steps and a 4×4 mesh NoC running an Apache HTTP 
webserver application; the objective is to determine the 
operating frequencies such that the queues utilization 
remains below 0.1. The reason for bounding the maximum 
utilization of the queues at a reference value of 0.1 is two-
fold: First, a small utilization of the queues implies smaller 
packet waiting times in buffers and, implicitly, smaller 
source-to-destination latencies. Second, a small queue 
utilization, also minimizes the chances of thermal hotspot 
buildup; this can improve the chip reliability significantly. 

Note also that the number of discrete steps (N) chosen for 
discretizing equations (4), (5) and (9) influences the 
precision of computing the operating frequencies. Thus, 
when less precision is needed in terms of operating 
frequency, we can use a smaller N value (e.g., 5 to 10).  

For illustration purposes, we consider the case of N = 30 
discrete steps and solve the linear system describing the 
dynamics of the same large multi-VFI platform with 80 
queues in less than 1�s. This clearly illustrates that our 
approach is suitable for online power management of future 
multicore platforms.  

Figure 5.a shows the utilization of a few queues at tiles 
(0,0), (0,2), (1,1), (1,2), (2,2), (2,1), and (3,3). We can 
observe that the optimal controller is able to bring the 
utilization of these tiles below the reference value of 0.1. 
Figure 5.b) shows the operating  frequencies of the tiles at 
(0,0), (0,2), (1,1), (1,2), (2,2), (2,1), and (3,3) needed to 
attain the imposed reference values. Moreover, Figure 5.c) 
shows the utilization of the queues without and with fractal 
optimal control. The optimal controller is able to keep the 
utilization of all queues below 0.1 by adjusting the operating 
frequencies of all PEs and routers.  

For completeness, we have also applied the optimal 
controller to a 4×4 mesh NoC running Cholesky 
factorization with a maximum reference value of 0.4 
allowed for utilization of all queues. Note that, by imposing 
a value of 0.4 for queue utilization in this experiment, the 
impact on average packet latency is less than 4%, while the 
power savings are about 40%.  
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D. Comparison Between our Approach and Classical 
Approaches  for Power Management 
To illustrate the difference our fractal controller (FC) can 

make in terms of power savings, we consider next a 4×4 
NoC running one of the burstiest applications among all the 
benchmarks we tested (namely, the Apache HTTP 
webserver) and compare the power consumption observed 
under three different PM approaches, i.e., PM with PID, PM 
with LQR, and PM with FC, against a baseline platform 
consisting of a homogeneous NoC running at 3GHz. More 
precisely, tin order to better understand the mathematical 
underpinnings of this comparison, for the PM based on PID 
control (as in [40]) and for the PM based on LQR (as in 
[12]), the model behind the controller is based on integer 
order differential equations that characterize the queues 
utilization at run time. In contrast, for the FC approach, the 
queue utilization is modeled using fractional calculus as 
discussed in Section IV. 

As we can see from data in Table 1, the PM based on 
PID turns out to oscillate because it sometimes selects 
exceedingly high frequencies. Consequently, an approach 
based on PID control cannot deal with the kind of burstiness 
a real workload like Apache HTTP exhibits. The PM based 
on LQR control does a better job and reduces the overall 
power consumption of the system to approximately 70% of 
the power consumption of the baseline platform. In contrast, 
the PM based on FC makes the platform consume only about 
30% of the dynamic power consumption of the baseline. 
This shows that the PM based on fractional control performs 
significantly better than classical control approaches for 
power management like PID or LQR which can get trapped 
in local minima for such bursty workloads.  

Of note, the power savings for PM with LQR can further 
decrease, if no bounds on maximum frequency are set. 
However, the fractal optimal controller allows to find the 
optimal solution; this enables the highest amount of power 
savings to be achieved (as shown, almost 2X power savings 
compared to LQR).  

 
TABLE I. NORMALIZED POWER CONSUMPTION VALUES 
TO THE HOMOGENEOUS BASELINE PLATFORM AND THREE 
PM APPROACHES: PID, LQR, AND FC WHILE RUNNING A 
BURSTY APPLICATION (APACHE HTTP). 

No PM (baseline) 
Normalized power 

consumption

PM with 
PID

PM with 
LQR

PM with 
FC

1 cannot 
stabilize 

0.70 0.30 

 
Similarly, by performing other experiments with the 

Cholesky factorization benchmark, we observe that our 
approach leads to 40% power savings compared to the 
homogeneous baseline where PEs and routers run at 3GHz. 
Finally, by applying the proposed algorithm and comparing 
the savings with NoC architectures running at 3GHz leads to 
50% and 20% power savings for ocean simulation and on-
line transaction processing application, respectively.  

VI. CONCLUSION 
In this paper, we have addressed the problem of power 

management in multicore architectures where computational 
workloads are highly complex and exhibit fractal 
characteristics. Towards this end, we have proposed a new 
modeling approach based on the dynamics of queue 
utilization and fractional differential equations. This fractal 
model is used to formulate an optimal control problem for 
dynamic power management which determines the necessary 
operating frequencies such that the NoC queues reach and 
remain at their target reference values for bursty workloads.  
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