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This paper presents a method that can achieve fast adaptatiofor a class of model-reference adaptive
control. It is well-known that standard model-reference adaptive control exhibits high-gain control behaviors
when a large adaptive gain is used to achieve fast adaptatian order to reduce tracking error rapidly. High-
gain control creates high-frequency oscillations that caexcite unmodeled dynamics and can lead to instability.
The fast adaptation approach is based on the minimization ofthe squares of the tracking error, which is
formulated as an optimal control problem. The necessary catlition of optimality is used to derive an adaptive
law using the gradient method. This adaptive law is shown toesult in uniform boundedness of the tracking
error by means of the Lyapunov'’s direct method. Furthermore, this adaptive law allows a large adaptive gain
to be used without causing undesired high-gain control efigs. The method is shown to be more robust than
standard model-reference adaptive control. Simulations dmonstrate the effectiveness of the proposed method.

[. Introduction

In recent years, adaptive control has been receiving afiignt amount of attention. The Aviation Safety Program
under the NASA Aeronautics Research Mission DirectorafRNW) has established the Integrated Resilient Aircraft
Control (IRAC) research project to advance the state of ttsermadaptive control to enable flight control resilienay i
the presence of adverse conditidnEhere has been a steady increase in the number of adaptitrelcapplications
in a wide range of settings such as aerospace, roboticsggg@ontrol, etc. Research in adaptive control continues
to receive attention from government agencies, industaied academia. In aerospace applications, adaptive ¢ontro
have been developed for many flight vehicles. For exampleSAlAas recently conducted a flight test in 2006 of
a neural net intelligent flight control system on board of adified F-15 test aircraft. The U.S. Air Force-Boeing
team has successfully developed and completed numerduistéiggs of direct adaptive control on Joint Direct Attack
Munitions (JDAM)3 The ability to accommodate system uncertainties and toowepiault tolerance of a flight control
system is a major selling point of adaptive control. Nonktb® adaptive control still faces significant challenges i
providing robustness in the presence of unmodeled dynaamdsparametric uncertainties. The crash of the X-15
aircraft in 1967 serves as a reminder that adaptive control is still viewetth ®me misgivings despite enormous
advances in this technology ever since. The ability for aapéde control algorithm to modify a pre-existing control
design is considered a strength and at the same time a wasaknes

Over the past several years, various model-referenceiadapntrol (MRAC) methods have been investigated: 13.14
The majority of MRAC methods may be classified as direct,reatj or a combination thereof. Indirect adaptive
control methods are based on identification of unknown ptanémeters and certainty-equivalence control schemes
derived from the parameter estimates which are assumedtteivérue values! Parameter identification techniques
such as recursive least-squares and neural networks hemaibed in indirect adaptive control methdds. contrast,
direct adaptive control methods directly adjust controbpaeters to account for system uncertainties without iflent
ing unknown plant parameters explicitly. MRAC methods loame neural networks has been a topic of great research
interest$™19 In particular, Rysdyk and Calise described a neural nettladaptive control method for improving
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tracking performanc®.This method is the basis for the intelligent flight controm that has been developed for
the F-15 test aircraft by NASA. Johnson et al. introducedeugs-control hedging approach for dealing with control
input characteristics such as actuator saturation, nai¢, land linear input dynamic®. Idan et al. studied a hierar-
chical neural net adaptive control using secondary actsatach as engine propulsion to accommodate for failures of
primary actuatord! Hovakimyan et al. developed an output feedback adaptivealdn address issues with paramet-
ric uncertainties and unmodeled dynamit<ao et al. developed a#f; adaptive control method to address high-gain
control1?

While adaptive control has been used with success in a nusfilb@plications, the possibility of high-gain control
due to fast adaptation can be an issue. In certain applicatfast adaptation is needed in order to improve tracking
performance when a system is subject to a large source oftairdées such as structural damage to an aircraft that
could cause large changes in aerodynamic derivatives eBethituations, a large adaptive gain or learning rate must
be used in the adaptive control in order to reduce the trgokiror rapidly. However, there typically exists a balance
between stability and adaptation. It is well-known that fdaptation can result in high-frequency oscillationsaklihi
can excite unmodeled dynamics that could adversely affecstability of an MRAC law. Recognizing this, some
recent adaptive control methods have begun to addressgaigheontrol, such as th& adaptive contréf and a
hybrid direct-indirect adaptive contr&?. In the former approach, the use of a low-pass filter effebtipeevents
any high frequency oscillation that may occur due to faspsateon. In so doing, the reference model is no longer
preserved and instead must be reconstructed using a mmexdtiotlel. In the latter approach, an indirect adaptive law
based on a recursive least-squares parameter estimajigisatthe parameters of a nominal controller to reduce the
modeling error, and the remaining tracking error signallddhen be handled by a direct adaptive law with a less
aggressive learning rate.

This paper introduces a new approach to fast adaptatioeiMEBRAC framework. The method is formulated as an
optimal control problem to minimize the tracking ert@b-norm. The optimality condition results in a modification to
the MRAC law by introducing a damping term proportional togigent excitation. The optimal control modification
is then analyzed to determine convergence and stabilitsackexistics. The analysis shows that this modification can
achieve fast adaptation without high-frequency oscilagias in the case with the standard MRAC. Furthermore, the
modification is shown to provide improved stability robueste while preserving the tracking performance.

lI.  Optimal Control Modification for Fast Adaptation

—— | Reference Model
. +<> e
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Direct MRAC

Fig. 1 - Direct MRAC

A direct MRAC problem as illustrated in Fig. 1 is posed asdoi:
Given a nonlinear plant model as
X = Ax+Bu+ f ()] 1)

wherex(t) : [0,00) — R" is a state vecton(t) : [0,00) — RP is a control vectorA € R™" andB € R™P are known
plant matrices such that the pdik, B) is controllable, and (x) : R" — RP is a matched uncertainty that acts as a
disturbance.
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Assumption 1x(t) € C' (t) is smooth irt € [0, ).
Assumption 2f (x) € C!(x) is semi-globally Lipschitz. Then there exists a constant0 such that

1100 = f (o) | <L [Ix—xo )

forall |||, < & int € [0,00).
It then follows that the partial derivatives &f(x) are uniformly bounded and at least piecewise continuous suc

that
af(x)
ox

<L ()

[«

forall ||X||, < & int € [0, ).

Proposition 1:If u(t) is a stable and bounded controller, then the total derigatif (x) is also bounded.

Proof: u(t) is bounded if there exists a constant> 0 such thaf|u|,, < &Vt € [0,). u(t) is a stable controller
which implies thai(t) is bounded and sfx||,, < &Vt € [0,00). Sincex(t) is at leasiC! smooth by Assumption 1,
x(t) is boundedf (x) is semi-globally Lipschitz, and ifi(t) is bounded, ther(t) is also bounded. Thus, there exists
a constant vectagy, > 0€ R, i=1,...n, such that sugx| < gy Vt € [0, ). It then follows that

df(x)
dt

sup
t

<
— || ox

Haf(x)

n n
SN supx| <LI Y oy = 0of 4)
o i; t i; !

for somea; > 0 € RP, where.# € RP is a vector whose elements are all equal to one. Theref¢r,c .Z.
The objective of the problem is to design a full-state feettlzntroller that enables the nonlinear plant model to
follow a reference model described by
Xm = AmXm =+ Bl 5)

whereAn € R™" is Hurwitz and a known matrb8ny, € R"*P is also a known matrix, and(t) : [0,00) — RP € % is
a bounded command vector with its time derivative %, also bounded.

Defining the tracking error as= Xy — X, the goal is then to determine a controller that resultsin li, ||€]| < &.
Toward that end, let the controller be comprised of a stadliack, a command feedforward, and an adaptive signal
as follows:

U= Kee+ KyXm+ K — Ugg (6)

whereKe € RP*", Ky € RPN, andK; € RP*P are known nominal gain matrix, angg € RP is a direct adaptive signal.
Then, the tracking error dynamics become

&= Xn—X= (A—BKe) e+ (An— A— BKm) Xm+ (Bm— BK/) I + BUag — f (X)] @)

For bounded tracking error, we choose= A — BKe = A, and the gain matricd§,, andK; to satisfy the model
matching conditions so that the nominal plant tracks theresfce model

A—BKe=An 8
A+ BKn = An 9
BK; = B (10)

The adaptive signal,q can be parameterized by a linear-in-parameters matcheztaimnty
Uag = O D (x) (11)

where® € R™P is a weight matrix an@ (x) : R" — R™is a known regressor vector.
Let ©* be a constant ideal weight matrix a@d= © — ©* is a weight variation, thea is the approximation error
defined as
e(X)=0"Td—f(x) (12)
Assumption 3The approximation errcg (x) of the matched uncertainty(x) by @ @ (x) is bounded and its time
derivative is also bounded; i.e., there exists a constartove, > 0 € RP such that

d@©T®) df(x)
dt dt

< Oe (13)
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Assumption 3 essentially implies thétis Lipschitz and its partial derivative is bounded, i.eerthexist constants
C> 0 andn > 0 such that

[P (X) = ®(x0)[| < Clx—Xol| (14)
P (x)
oo

for all ||x||, < & int € [0, ).
The tracking error dynamics can now be expressed as

e=Ae+B (éTq>+e) (16)
Defining d = sup |€| as an upper bound &f then
e<Ae+B(670+5) (17)

An optimal control modification to MRAC for fast adaptatiangroposed as follows:
Proposition 2:The following adaptive law provides a weight update law thatimizes theZ-norm of the track-

ing error:
O=—To (eTP— chTeBTPAgl) B (18)

wherel' > 0 € R™™M is a symmetric positive-definite learning rate or adaptigagnatrix,v > 0 € R is a positive
weighting constant, and > 0 € R"™*" is a symmetric positive-definite matrix> 0 that solves the Lyapunov equation

PAc+AP=-Q (29)

whereQ > 0 € R"™" is a symmetric positive-definite matrix.
Proof: The adaptive law seeks a solution that minimizes #enorm of the tracking error with a cost function

ts T
3:5/0 (e—A) Q(e—A)dt (20)

subject to Eq. (17) wher.represents the tracking errortat t;.
Jis convex and represents the distance measured from thehsunface of a balB; with a radiusA.

0‘ e (to)

e(t)

Fig. 2 - Tracking Error Bound

This is an optimal control problem whose solution can be fdated by the Pontryagin’s Maximum Principle.
Defining a Hamiltonian

~ 1 ~
H (e, eTqa) = >(e=8)Q(e-2)+p' (Ace+ BO d+ Bae) 1)
wherep € R" is an adjoint variable, then the adjoint equation is giveth@ynegative gradient of the Hamiltonian with

respect to the tracking error
p=-0OHs =-Q(e—A)—-Alp (22)
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Treatirlgc:)T as a control variable, then the optimality condition is afed by the gradient of the Hamiltonian with
respect t@®@ ' ®
OHgre =p'B (23)

The adaptive law can then be formulated by the gradient ndedko
O=-TOOHgro = -TOp'B (24)

wherel” > 0 is an adaptive gain or learning rate matrix.
If e(0) is known, then the transversality condition requires

p(t) =0 (25)

This results in a two-point boundary value problem wherdélyetdjointp solves Egs. (22) and (17) simultaneously.
The optimal control problem can be solved using a “sweepingthod by lettingp = Pe+ SO ®. Then

M)

Pe+ P (Ace+ BO'®—BO Td+ Bée) +To+s——

> -Qe—A)—Al (Pe+ S@TCD) (26)
Since®@' @ is the linear-in-parameter matched uncertainty 6f), then by Proposition 1 and Assumption 3

d(eTo)
dt

d(6 o)
dt

+'s(x)+L(X>

sup at

t

=sup

< sup’(i)TdJ+ (:)Tc'b‘ + 0¢ + 0%
t t

< sup‘—BT pququ‘ +sup‘éT¢‘ +0:+01 (27)
t t

The first term in the last inequality of Eq. (27) is boundedsip must be a stable solution to the optimal control
problem andp is also bounded by definition. The second term is also bousided® must be bounded if the adaptive
law is stable (an assertion that will be proved later) énid bounded by the virtue of Assumption 3. Therefore, there
exists a constant vectoy > 0 € R" such that

dO'®

sup (7) < O (28)

t dt

Equation (26) yields three equations
P+PA+A[P+Q=0 (29)
S+PB+A/S=0 (30)
subject toP (t;) = 0 andS(t;) = 0, and

6<|Qt[PB(&-0"®)+Sq| (31)

Consider an infinite time-horizon optimal control problegnléttingt; — o, thenP(t) — P(0) andS(t) — S(0)
and the solutions d? andSare determined by their steady state values. Thus

PA.+AP=-Q (32)
S=-A;'PB (33)

The adjointp now becomes
p=Pe—A; 'PBO'® (34)

Since®* is constant, the® = 0. Upon substituting the expression of the adjgirinto Eq. (24), the following
adaptive law is then obtained

O=—To (eTP— chTeBTPAgl) B (35)
wherev > 0 € R is introduced as a weighting constant to allow for adjustimenthe second term in the adaptive law.

O
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Remark 1The cost function (20) could also be penalized v%FRIHGTCDHZ > 0. This would result in an additional
term in the adaptive law which would then become

O——To (eTPB— Vo OBTPA 1B+ cDTeR) (36)

R then becomes an additional tuning parameter that can betasedjust the adaptive law. Alternatively, the
adaptive law could just only include tlieterm as

O=-To (eTPB+ cheR) 37)

The adaptive law (18) can be shown to be stable by the follgwirorem:
Theorem 1The adaptive law (18) results in stable and uniformly bowhtdecking error in a compact set

2Amax(P) [[B]| (||©* "], + |2 [])
S =ecR":|g|>r= ® 38
{ Il Amin(Q) =
Proof: Choose a Lyapunov candidate function
V —e'Pe+t trace(eTrfle) (39)

whereP solves Eq. (19).
Evaluating the Lie derivative &f yields

V <e (AP +PA) e+ 26" PB (ean —oTo+ 65) - 2trace{OTCD (eTPB— vcheBTPAngﬂ (40)
Using the trace identity tradé" B) = BA", V can be written as
V < —e'Qe+2e'PB (ech 0T+ 55) —2e"PBO ®+2vd OB PA;1BO @ (41)
The sign-definiteness of the tefPd; ! is now evaluated. We recall that a general real matris positive (nega-
tive) definite if and only if its symmetric paMls = % (M + MT) is also positive (negative) definite. Then, by pre- and
post-multiplication of Eq. (19) by\; " andA; 1, respectively, one gets
AcTP+PAt=—ATQA! (42)

SinceA; "QA; ! > 0, we conclude thaPA; 1 < 0. FurthermorePA; ! can be decomposed into a symmetric part
M= 2 (PA;1+A; TP) = —2A; TQA;! < 0 and an anti-symmetric pat= 5 (PA;1— A; TP). Then,V becomes

V < -e'Qe+ 2eTPB(—e*Tq>+ 55) ~vo'eB'A; "QA;'BO ®+2ve OB NBO @ (43)
Lettingy = BO' ® and using the property’ Ny = 0 for an anti-symmetric matriX, V is reduced to
V< —e'Qet2e'PB(~0 015 ) —vaTOB A, QA 'BO (44)
and is bounded by
V < A (Q) €l + 2max(P) 8] (|| @] + 1) el - vAmin(@) A "0 (45)

where||©*T®|| = ||sup |©* T ®|||.
To ensure tha¥ < 0, we require that

~Anin(Q) llel* + 2Amax(P) B (|| 7|+ 15/ ) e <0 (46)

which implies
2Amax(P) [[BII ([|©° " || + 1)

/\min (Q)

llell >

(47)
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It is noted thak'e %, bute € % N %, since

Moin(Q) [ 62at <V (0) -V (¢ = ) + 2hmP) 8] [0 + ) [ el
— VAmin(Q) /Om HA;lEsechszt <o (48)

It follows that - )
V (t — 00) <V (0) — w\min(Q)/ HA;lBeTqJH dt < (49)
0

V (t) thus decreases inside a compactget R" where

(50)

*T
P {eeR“ 6] ¢ = PP B ([0 0] + 3]) }

/\min (Q)

butV (t) increases inside the complementary et {ec R": ||e|| <r}, which containse = 0, whose trajectories
will all stay inside of%. It follows by LaSalle’s extensions of the Lyapunov methbate is uniformly bounded and
S0 isO.

O

Remark 2:The effect of the added term in the present adaptive law isldodamping to the weight update law so
as to reduce high-frequency oscillations in the weightse @amping term requires persistent excitation (PE) which
is defined by the product ter@® . With persistent excitation, the weigBtis exponentially stable and bounded.
This scheme is contrasted to the well-knogwt’ ande-® modification methods and other variances which also add
damping terms to prevent parameter drift in the absencersfgtent excitatiort® These adaptive laws are compared
as follows:

Modification ‘ Adaptive Law ‘
o- O=—T (ve' PB+00),0 >0
£ ©=—T (Pe'PB+p|e'PB|O), u>0
Optimal | ©=—T (Pe' PB— vd® ' OBTPA;!B), v >0

Table 1 - Modifications to MRAC Law
O
In the presence of fast adaptation, i&min(I') > 1, the adaptive law (18) is robustly stable with all closedgd
poles having negative real valuesiif= 1. This fact can be established in the following theorem:

Theorem 2:For large adaptive gaifi and® ' ® > 0 which implies PE, the adaptive law (18) results in robustly
stable closed-loop tracking error dynamics

e<—-P lQe+B (sup‘ @*TCD‘ + 55) (51)
t

whenv = 1.
Proof: The adaptive law (18) can be written as

ro-_o (eTP— chTeBTpAgl) B (52)

If I > 1is large, then in the limit a5 — o

e'P—vod'eB'PA;1=0 (53)
Solving forBO' @ yields
BO = %P*lACT Pe (54)
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Hence, the closed-loop tracking dynamics become

6= (AC + %PlACTP) e+B (e —~ e*Tqa) < (Ac+ %PlACTP) e+B (sup\G)*be\ + 65) (55)
t
which, upon some algebra, can also be written as
e<-pt [Q— (%—1)AIP} e+B(sup‘®*T¢’+5a> (56)
t

AJ P can be decomposed into a symmetric gaf#\] P+ PA:) = —3Qand an anti-symmetric pa§S= 3 (Al P — PA;).
The tracking error dynamics now become

. 1| 1+v 1-v T
e<-p KW)Q— (7) s} e—i—B(s:.lp‘G) q>‘+55) (57)
The eigenvalues of) are all real positive values and those®#re purely imaginary. The system is stable for
all values ofv. If v <1, the closed-loop complex-conjugate poles move furthter the left-half plane and Ins|
increases with decreasing In the limit, whenv — 0 and the adaptive law is reverted to the standard MRAC law,
then Im[s] — o which illustrates a well-known fact that fast adaptatiothvthe standard MRAC law results in high
frequency signals which can potentially lead to instapiiit the presence of time delay or unmodeled dynamics.
Conversely, ifv becomes large, the effect of adaptation is reduced and ilntitevhen v — oo, adaptation ceases as
the adaptive law (18) becomes infinitely stiff.
A special case of = 1 is considered. The closed-loop poles are all real, negasilues with Rés| = —A (P*lQ).

The system transfer function matiik(s) = (sl + P*lQ) “tis strictly positive real (SPR) sind¢ (jw) +H T (—jw) >

0, and thus the system is minimum phase and dissip&tivithe Nyquist plot of a strictly stable transfer function is
strictly in the right half plane with a phase shift less tharqual to’—ZT.18

O

Remark 3:The adaptive law for fast adaptation results in a LTI repnéstgon of the tracking error dynamics in
the limit whenl" — . This is a useful feature of this adaptive law that can entidestability of the system to be
analyzed using traditional linear control methods.

The adaptive law (18) causes the tracking error to tend tmasv — 0 if y — oo for fast adaptation. On the other
hand, stability robustness requires> 0. Thus, a trade-off between tracking performance andlgtabbbustness
exists and, consequently,becomes a design parameter to be chosen to satisfy corgrotements if” is large and
the input is PE. This can be shown as follows:

Lemma 1 The equilibrium statg = 0 of the differential equation

y=-®" (t)ro(t)y (58)

wherey(t) : [0,0) — R, ®(t) € % : [0,0) — R" is a piecewise-continuous and bounded function,;and0 € R™",
is uniformly asymptotically stable, if there exists a camt > 0 such that

1 t+To

= o' (n)ro(r)dr>y (59)
To Jt

which implies thaly is bounded by a linear differential equation

y<-w (60)

Proof: Choose a Lyapunov candidate function

v=1p (61)
2
V=-—0"()Fo{t)y*=-20" () d(t)V (62)
Then, there existg > 0 for whichV is uniformly asymptotically stable since
t+To

V(t+To) =V (t)exp<—2 / ®' (1) r¢(r>dr) <V (e (63)

t
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This implies that
t+To
exp(—z/ dJT(r)FCD(r)dr) <e M (64)
t
Thus, the equilibriuny = 0 is uniformly asymptotically stable if

1 t+To

= o' (n)ro(r)dr>y (65)
To Ji

providedd (t) € % is bounded.
Theny(t) € £ N %, since

V (t— 00) —V (0) < —2y/my2(t)dt:>2y/my2(t)dt§V(O)—V(t—>oo) <
0 0
It follows that +T
y(t+To) = y(t)exp<—/ o' (1) F(D(r)dr> <y(t)e ¥l (66)
t

which is equivalent to
y=-0"Ore)y< -y (67)

Now, suppose thab = d (y(t)), Eq. (67) still applies. The conditich(y(t)) € % is satisfied sincg € %N L.

To show this, we first evaluaké as .
V=-0(y{t)rey)y (68)
which upon integration yields
t+To
V(t+To) =V (t)exp(—Z/ o (y(1)) r¢(y(r))dr> <V (t)e D (69)
t
Thus,V is uniformly asymptotically stable. This condition is aksguivalent to

V<2V = yy< —w (70)

which then implies Eq. (67).
Example Considerp(t) = (t+1) ' € %. yis evaluated as

1 [T 1
:?0/0 F(Ddr= = (72)

The solutions of = —y¢? (t) andy; = —yy; with y(0) = y; (0) are

y

y(t) =y(0) exp(——) (72)

n® =yOen(- ) 73)

Clearly,y <y, sinceTy >t. Thereforey <vyj.

Lemma 1 is a version of the Comparison Lemma that allows beondhe solution of (t) to be computed from a
differential inequality without the need to compute theusioh itself1° A different version of the proof is also provided
by Nadrenda and Annaswariy Figure 3 illustrates various functions as compared to five#ar counterparts.
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y=-y(t+1) 8 y=y’
y'=-0.0910y y=-0.3774%y

10 10

y'=-y(e™)? y'=-ysin%(0.1y)
— y=-11318y 8 — y=-0.1496y

N b OO

Fig. 3 - Comparison of Solutions of Differential Equations

O
Theorem 3The steady state tracking error is bounded by
VAmax(P) |B|| ([@*T®|| + |6,
im suplel < 2mexPIBI (O @, +18:1) Al B (1B +lloel) -
too Omin (Al P+ VPA) YOmin (BB'") Omin (A¢ P+ VPA)
if there exist a constant > 0 such thaty = inf; (T—lo ft”TO dJTFCD) > 0 € R and a constant vectg® > 0 € R" where
B=sup|0'd|.
Proof: Sincee € %, x € %%, and sod (x) € %%. Using Lemma 1, the adaptive law (18) can be written as
d /=~ % I
= (eTqa) 0 0+0"d< —y(BTPe— vBTA;TPBeTqa) +B (75)
B =sup|0'®| € %, is bounded since € .%, is bounded by Assumption 3 because
©" " sup|®| = sup|é (x) + L(X)} < suplé (X)|+sup L(X)} < 0g + 0% (76)
t t dt t ¢ | dt
Thus, the system dynamics with adaptation are described by
g e < Ac B e Bde (77)
dt| @™ |~ | —yB™P wBTA,'PB || &7 ywBTA; TPBO* T+
Differentiating the tracking error dynamics and upon sitison yields
& A+ yBB Pe— yvBB'A; TPBO ® < B (vaTAgTPB@*TqJ 1B+ oe) (78)
The steady state tracking error is thus bounded by
(yBBTP+ vaBTAgTPAC) e< ywBB'A;'PB (e*ch - 55) +B(B+ 00) (79)
from which the upper bound on the norm of the steady-statitrg error is computed as
VAmax(P) |B|| ([©*T®|| + |6, B
im suplel < P IBI(IOT @], +12:1) | Acl B (181 + o) 0)
t—oo ¢ Omin (A P+ VPA,) YOmin (BBT) Omin (Ad P+ VPA:)
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whereomin denotes the minimum singular value.
Similarly, the steady state value and the upper bound obitsrare obtained as
~ (WB"A. TP+ yBTPAY)BBT® < (ywBTA TPBO" ®+ B+ 0p) + VBT PA; 1B (81)
\Mmax(F’)HAcH||<9*T‘D||<>OJr Amax(P) [|Ac|? || 3 | n 1AC]1® (18] + |l
Omin (Ac) Omin (A(—;I—P-l- VPAc) YOmin (BBT) Omin (A;FP—F VPAC()SZ)

l O'o| <
el SUPH H = T Gmin(ALP + VPA)
Thus for fast adaptation with PE, i.¢.;— o, the second term on the RHS of Eq. (80) goes to zero, and ttlera

t—oo t

error only becomes bounded and is dependent.dfy in addition,v — 0, thene — 0, but ifv — o, e € %, is finite
and does not tend to zero. Thwshas to be selected small enough to provide a desired trapkirigrmance, but large

enough to provide sufficient stability margins against taeéay or unmodeled dynamics.
O

lll. Application to Flight Control

Consider the following adaptive flight control architeegas shown in Fig. 4. The control architecture comprises:
1) a reference model that translates rate commands inteedestceleration commands, 2) a proportional-integral
(PI) feedback control for rate stabilization and trackiy,a dynamic inversion controller that computes actuator
commands using desired acceleration commands, and 4) al netidirect MRAC due to Rysdyk and Cafise

u
Aircraft

Model Yo~ e X X Dynamic
— —==(O—=%+{ PI Controller ——=(——+ -

Reference = Inversion

u

o~

ad
X, u
M

Fig. 4 - Direct Neural Network Adaptive Flight Control

Adaptive flight control can be used to provide consistendtiag qualities and restore stability of aircraft under
off-nominal operating conditions such as those due tofedwr damage. A reduced-order equation of the linearized
angular motion of a damaged aircraft can be described by
X = Ax+Bu+Gz+ f(x,u,2) (83)

T T
wherex = [ p g r } is the angular rate vectou = { 02 0% O } is the control surface deflection vector;
T
z=| a B & | isatrim state vecto’ € R*<3, B € R¥3, andG € R**3 are known; and (x,u,z) represents a
(84)

structured uncertainty which has the form
f (X) = AAX+ABu+AGz

whereAA, AB, andAG are changes to th&, B, andG matrices of the aircraft linear plant model.
The objective is to design a dynamic inversion flight contaal with a direct adaptive control augmentation to
(85)

provide consistent handling qualities which may be spetlfiga reference model according to
Xm == AmX+ er

whereAny € R®*3 is Hurwitz, By, € R3*3 is known,r € % is a bounded pilot command with its time derivative ‘%,

also bounded
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Let X4 be a desired acceleration that comprises the referencel momeration, a proportional-integral feedback
control, and a neural net adaptive signal

t
a = A+ Bt -+ K =)+ K [ k=0T ~ g (86)
0
] T
whereugg =0 dwithd = | xI uT 2z’
Assuming thaB is invertible, then the dynamic inversion controller is qorted as

u=B"1(%4— Ax—Bu— G2 (87)

Computing the acceleration error yields
. t
X=—KpX— Ki/ AT 4 uag — f (X, U) (88)
0

wherexX= xm — X, Kp = diag(Kkp 1,Kp 2, kp 3) > 0, andK; = diag(ki 1,ki 2, ki 3) > 0 are matrices of the proportional and
integral gains for roll, pitch, and yaw.
Defining the tracking error as

t ~
o [ JoXdr ] (89)
X
then the tracking error dynamics are expressed by
e=Ace+b(uyg—f) (90)
where
0 I
Ac [ KK ] (91)

b= [?] (92)

Let Q = 2I, then the solution of Eq. (19) yields

-1 —1/Kk. -1
P:[K' ot K (Ki+1) i " ]>0 (93)
K; Kot (1 +K )
A;lis computed to be
] KK K
= 94
Ac [ | 0 (94)
Evaluating the ternb " PA; b yields
b'PA b= K ?<0 (95)

Applying the the adaptive law (18), the weight update lavhentgiven by

©=—T® (' Pb+vo 0K ?) (96)

Thus, the damping term in the adaptive law only depends oimthgral gairk;.

A simulation of pitch rate doublet is performed to illustraéhe adaptive law (18) with the optimal control modifi-
cation. The uncertainty is due to airframe structural daenalich in this case represents a 25% loss of the left wing
of a generic transport model (GTM) as shown in Fig. 5.
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Fig. 5 - Damaged Generic Transport Model

Figure 6 is a plot of the aircraft angular rates with only Phitol and without adaptive control. Due to the
asymmetric damage, a pitch rate command results in botlamndllyaw rate responses due to cross-coupling effects.
The response is completely unacceptable due to the exeestliand yaw rates.

0.1

p, rad/s

10 20 30 40 50 60
0.05

g, rad/s

_0.05 Il Il Il Il Il
0 10 20 30 40 50 60

0.01

r, rad/s

No Adaptive Control

~0.01 ! ! ! !
0 10 20 30 40 50 60

Fig. 6 - Aircraft Rate Response with PI Control

Figure 7 is a plot of the aircraft angular rates due to thedstesh direct MRAC ¢ = 0) using a learning rate
I = 10% The tracking performance drastically improves in all axéswever, high-frequency oscillations can clearly
be seen in the yaw rate response and to a much lesser extéetpit¢h and roll channels.. Further increase in the
learning rate results in progressively larger high fregqyeamplitudes and eventually leads to a numerical instgbili
whenl™ > 2 x 10* due to a sampling limitation.
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Fig. 7 - Aircraft Rate Response with Standard MRAC

In contrast, the aircraft rate response for the optimal mbdmbodification tracks the reference model very well
as can be seen in Fig. 8. Furthermore, the optimal controlifination results in no observable high-frequency
oscillation in spite of the fact that the learning rate is twvders of magnitude greater than that for the standardtdirec
MRAC. For this simulation, a value of = 0.033 is used. A larger value of will degrade the tracking performance
but improve stability robustness. For comparison, the Kitman also includes the-maodification as shown in Fig. 9.

A value of u = 0.25 is used with a learning rafe= 10*. Thee-modification significantly reduces the high frequency
in the yaw rate response, but at the expense of the trackifigrpence as the amplitudes in the roll and yaw channels
significantly increase.
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-0.05 I I I I I
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w
3
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-0.05 I I I I I
0 10 20 30 40 50 60
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Fig. 8- Aircraft Rate Response with Optimal Control Modifioa
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Fig. 9- Aircraft Rate Response witiModification

The simulation illustrates a potential benefit of the optietntrol modification for fast adaptation. In practice,
there is a practical limit of how large a learning rate woudd In general, actuator dynamics can impose constraints
on the learning rate. The frequency separation betweendhgtation and actuator dynamics can lead to potential
problems. Nonetheless, the optimal control modificatiomalestrates the tolerance to larger learning rates than the
standard MRAC which can be beneficial when fast adaptatiopésied to deal with large uncertainties.

One of the issues with adaptive control is the lack of metiicassess stability robustness in the presence of
unmodeled dynamics and or time delay. With fast adaptatids,known that the direct MRAC results in reduced
phase and time-delay margifisThus, the learning rate must be chosen carefully in ordevaianstability due to
time delay and unmodeled dynamics. The optimal control firezdion is shown to provide more robustness wiken
approaches unity. Hence, it can also increase a systeraiatme to destabilizing uncertainties like time delay.

An approximate, simple method for analyzing the stabiligrgin of the optimal control modification is presented.
Toward that end, the tracking error dynamics can be expiesse

m—xzb%gbﬁm+wbﬁﬂe+@) (97)

From Eqg. (75), we get

870 < (s+yvk 2" <—bePe+ wilerel. g) (98)
wherey < [@®'Tddr > 0 € R according to Lemma 1.
Substituting Eq. (98) into Eq. (97) yields
AmXm—+ Bl — X< — K% + Kp> +y(s+ vafz)*1 <% + Pzz)] 4
+@+wmﬂl<ﬂﬁi¥igb+%>+@ (99)

whereP; = K = diag(kijll, ki kij31) LandP =Ky (1 + K1) = diag(kgj + ko 1k K5+ ko sk o kg + kgélqgl) :
Thus, the loop transfer function matrix froxtd'x is then obtained as

H(s) :} K%JFKF)) +y(s+ va(z)f1 (%JFPZZ)} (100)

S
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which can be broken into individual loop transfer functisitsceKp, Kj, P12, andP», are all diagonal matrices which
imply H (s) is also diagonal whose elements are

Kp,iS” + (ki-,J +yvkp ki 2+ Vp12.,j) s+ yvk '+ yPaz)

=123 101
S+ yk 7 : (101)

Figure 10 is a plot of the phase margintof(s) for the pitch rate as a function of for different values ofy.
Increasingy is shown to result in improved phase margin. Increaginguses the phase marginvat 0 to approach
to zero, but moves the phase margin closer to 90 degrees fo0. The margin av = 1 is not necessarily the
greatest. For large values pfthis occurs at some values wf< 1, but the differences are small from thatvat 1.
The phase margin converges asymptotically to its valueesponding to the non-adaptive Pl control wheis large.
Theoretically, the ideal time-delay margin of this tramdignction is infinite. Realistically, it is expected thateth
optimal control modification would provide an increase ia ttme-delay margin, which is proportional to the phase
margin.

It should be noted that Fig. 10 should be viewed in a relatnse rather than an absolute sense. The key research
guestion is how to seled which is a time window in which the parametgiis to be computed. In Fig. 10
is computed for the entire time interval which may provideaaiistic estimates of stability margins. One research
idea has been suggested to adjust the learning rate or inabésthe parameterperiodically by evaluatingy for a
moving time window during which the system is approximatetyinded by an equivalent LTI system based on the
Comparison Lemmat

Phase Margin, deg
Y a (o))
o o o

w
o

N
o
T

10

Fig. 10 - Phase Margin Analysis of Optimal Control Modificeti

Figure 11 illustrates the time delay effect on the optimailtom modification. A time delay is introduced between
the aircraft plant input and output to simulate destalitizincertainties. For the same learning rate 104, the
standard MRAC can tolerate up to 0.004 s time delay beforadlaptive law goes unstable. With the optimal control
modification, the time delay margin increases to 0.010 s ahti0s forv = 0.033 andv = 0.33, respectively. Thus,
this is consistent with the observation above that increpsiresults in improved stability margins. However, this
would come at the expense of tracking performance which dvbetome worse asincreases.
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Fig. 11- Pitch Rate Responses with Time Delay

V. Conclusions

This study presents a new modification to the standard madetence adaptive control based on an optimal con-
trol formulation of minimizing the norm of the tracking erra’he modification adds a damping term to the adaptive
law that is proportional to the persistent excitation. Thedification enables fast adaptation without sacrificing ro-
bustness. When the learning rate tends to a very large whkigacking error dynamics become approximately linear
in a bounded sense. This is a useful feature that can alldvilistaof the adaptive law to be studied in the context
of linear time invariant systems. The modification can bestlasing a parameterto provide a trade-off between
tracking performance and stability robustness. Incregaginesults in better stability margins but reduced tracking
performance. When approaches unity, the system has a phase shift close to 8ede@imulations demonstrate the
effectiveness of the modification, which shows that tragkderformance can be achieved at a much larger learning
rate than the standard model-reference adaptive contebtreat the adaptive law can tolerate a much greater time
delay in the system.
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