
Discrete Comput Geom 10:377~109 (1993)

e o m e ry

An Optimal Convex Hull Algorithm in Any Fixed Dimension*

Bernard Chazelle

Department of Computer Science, Princeton University,
Princeton, NJ 08544, USA
chazelle @cs.princeton.edu

Abstract. We present a deterministic algorithm for computing the convex hull of n

points in E d in optimal O(n log n + n Ld/2j) time. Optimal solutions were previously

known only in even dimension and in dimension 3. A by-product of our result is an

algorithm for computing the Voronoi diagram of n points in d-space in optimal
O(n log n + n Fa/27) time.

I. Introduction

This paper provides a simple a lgor i thm for comput ing the convex hull of n points

in d-space determinis t ical ly in opt imal O(n La/2j) time, for d > 3. This result settles

an open quest ion of long standing. Opt imal determinist ic solut ions were previously

known only in even dimension and in dimension 3 [11], [17], [19]. By duali ty,

the a lgor i thm can be used to construct the full lattice structure of the feasible set

of n l inear const ra ints in opt imal O(n log n + n La/2j) time. As a by-product , we

obta in an a lgor i thm for comput ing the Voronoi d iagram of n points in opt imal

O(n log n + n Fa/zT) time, which is also a new result.

The convex hull p rob lem has had an intr iguing history. The cases d = 2, 3 have

long been solved, but the problem has remained elusive in higher dimensions.

More than a decade ago~ Seidel [19] gave an optimal , O(n log n + nLd/2J)-time,

* This research was supported in part by the National Science Foundation under Grant CCR-
9002352 and The Geometry Center, University of Minnesota, an STC funded by NSF, DOE, and
Minnesota Technology, Inc. A preliminary version of this paper has appeared in "An optimal convex
hull algorithm and new results on cuttings," Proceedings of the 32nd Annual IEEE Symposium on the
Foundations of Computer Science, October 1991, pp. 29-38. The convex hull algorithm given in the
present paper, although similar in spirit, is considerably simpler than the one given in the proceedings.

378 B. Chazelle

algorithm for the case where d is even. Later, he gave a slightly suboptimal,

O(n kd/Ej log n)-time, solution for any fixed d [20]. On the probabilistic front,

Clarkson and Shor [8] gave a Las Vegas incremental algorithm with optimal

expected time. A variant of that method with a particularly simple analysis was

proposed recently by Seidel [21].

Our convex hull algorithm is optimal in the worst case, but it is not output-

sensitive. On that score the best-known general solution is due to Seidel [20]. Its

running time is O(n 2 + h log h), where h is the facial complexity of the hull. The
quadratic overhead can be cut down to O(n 2-(2/([-d/21+ 1))+E), for any fixed e > 0, as

was recently shown by Matougek [16]. Whether the complexity can be brought

down to the lower bound of ~(h + n log h) remains an outstanding open problem.

To date, only in two dimensions [12] and three dimensions [5], [8] are optimal

output-sensitive algorithms known. (The algorithm in [8] is probabilistic; its

optimal derandomization is given in [5].)

The convex hull algorithm given here can be regarded as an attempt to

derandomize Clarkson and Shor's probabilistic incremental method [8]. It is

nearly as simple as its randomized counterpart. Its complexity analysis, however,

requires more effort. In the process we develop a deterministic version of a Monte

Carlo integration method, which is likely to be useful elsewhere. Note that the

details of the technique are needed for the analysis of the algorithm but not for

its implementation. Whereas most geometric algorithms based on random samp-

ling have been successfully derandomized [1], [3], [4], [13]-[15], this has not

been the case of randomized incremental algorithms. We believe that our result

is the first such instance, and we anticipate that others will follow from this work.

The term randomized incremental refers to a class of geometric algorithms,

whose guiding principle is to add the input elements one at a time, in random

order, and maintain the current solution naively after each addition--see Clark-

son's survey article [-7] for a detailed discussion. This is the approach followed by

Clarkson and Shor to compute the convex hull of n points. Translated into dual

space, we are given a set H of n half-spaces, and we must compute their intersection.

At the rth stage, a subset R of r of them has been selected and a triangulation

~ of the polyhedron R n = (]{he R} has been computed. We also assume

that we have, for each face of ~-(R~), a conflict list that provides all the half-spaces

cutting through it. Among the remaining n - r half-spaces, we pick one at random

and intersect it with the current intersection R% using the triangulation as a

guiding device to speed up the location of the sliced simplices of Y-(R~). If the

intersection with R ~ is not trivial, we recompute a new triangulation and update

the conflict lists.

The running time of the algorithm is proportional to the total amount of

updating among the conflict lists. Intuitively, it is clear that at stage r the faces of

the triangulation are cut by O(n/r) half-spaces on average. By the Upper Bound

Theorem, the intersection R ~ has O(r Ld/2j) faces and its triangulation J-(R ~) has

on the same order of simplices. Therefore, the total number of half-space/simplex

cutting pairs is O(#a/2J(n/r)). It follows that if the next half-space to be added is

picked at random, it should cut at most on the order of (1/(n - r)Xn/r)? -a/2j faces

of f (R n) . If r is not too large, that puts the amount of work for slicing/

An Optimal Convex Hull Algorithm in Any Fixed Dimension 379

retriangulating at stage r at O(rLd/2J-1). Assuming that each face is cut by no

more than O(n/r) half-spaces, the total amount of updating at stage r is O(nrL~/ZJ-2),

which represents the number of cutting pairs destroyed or created. Summing up

over all r gives an expected running time of O(n log n + nLd/EJ), which is optimal.

Of course, this analysis is not rigorous and does not constitute a proof.

However, it gives some intuition for what a fast deterministic algorithm must strive

for, namely, keeping the size of each conflict list at stage r within O(n/r). As it

turns out, this is too much to ask, but fortunately a relaxed, "lower-moment"

condition suffices. To state this condition, we need to define the energy of the set

R: this is the sum ~e]Hlel c, taken over all segments e joining the origin to the

vertices of R ~, where c is a large constant and [Hle] is the number of half-spaces

cutting through e. The required condition says that the energy of R should be

O(rLd/2J(n/r)C). Such a low-energy triangulation is called a semicutting.

How do we produce a "random-looking" permutation deterministically? Think

of the half-spaces as a stack of cards (in arbitrary order). We proceed in O(log n)

rounds: at round t, we remove 2 t cards from the deck by going through the entire

deck and selecting cards to be removed. Each card has an initial score and we

remove only cards whose scores are below average. (The removal of a single card

may alter the score of all the remaining cards, so scores need to be recomputed.)

Every time a card is thrown out, the corresponding half-space is added to the

current structure (which means cutting through the current intersection, re-

triangulating, and updating the conflict lists). The order in which the cards are

thrown out gives us the desired permutation. Note that with the help of the conflict

lists and the current triangulation, adding a new half-space is routine. So, it appears

that the efficiency of the algorithm rests entirely on the choice of a good scoring

function: it must lead to a favorable ordering of the cards and be easy to compute.

At the beginning of round t, we have in hand the intersection R ~ of a subset

R of r = 2 t of the input half-spaces, along with its triangulation Y(R ~) and the

set of conflict lists. The purpose of the round is to find, among the n - r remaining

half-spaces, a "good" subset S of 2' of them, and compute the new intersection

(R w S) ~ along with its associated triangulation and conflict lists. By a good set

S, we mean one that makes ~-((R u S) ~) a semicutting.

We can verify that a random choice of S is good with high probability. Thus,

a reasonable approach is to simulate a random selection deterministically by using

Raghavan and Spencer's method of conditional probabilities [18], [22]. The

underlying probabilistic model is the hypergeometric distribution, which assumes

that all subsets of H \ R of size 2 t are equally likely. Let ~ be the expected energy

of R w S, where R is fixed and S is random. There must be a choice of h E H \ R

for which the expectation of the energy, conditioned upon h ~ S, is at most & We

choose such an h and iterate in this fashion 2 t times. This gives us a low-energy

set R u S, whose triangulation 3-((R u S) ~) is therefore a semicutting.

This approach easily yields a polynomial-time algorithm for computing H r.

One major snag, however, is that computing the required conditional expectations

exactly within a reasonable amount of time seems completely hopeless. Instead,

we must do with very rough estimations of these quantities. We build approxima-

tion tools by using recent results [3], [13] from the theory of range spaces of finite

380 B. Chazelle

VC-dimension. This allows us to devise a method of approximate conditional
probabilities.

Besides the main result of this paper, we introduce three simple ideas which

might be useful in other situations:

1. A scheme for producing "random-looking" permutations.

2. A deterministic Monte Carlo integration method for approximating the sum

(i.e., integral) of a function defined over the vertices of a hyperplane

arrangement.

3. An elementary error analysis to cope with faulty calculations in the

Raghavan-Spencer method.

2. Preliminaries

Computing the convex hull of n points is reducible, by duality, to computing the

intersection of n half-spaces I-9]. If we choose a polarity with the origin inside the

simplex determined by d + 1 of the points, then we are guaranteed that the

intersection of the half-spaces is bounded and contains the origin O. Let H be a

set of n hyperplanes (assumed to be in general position and away from O), and

let H ~ be the polyhedron formed by the intersection of the corresponding

(origin-enclosing) half-spaces. (Note that we have changed our notation slightly,

as H referred to a set of half-spaces in the previous section.) Given a simplex s of

any dimension between 0 and d, let Hf, be the set of hyperplanes of H that intersect

the relative interior of s but do not contain s. We denote by v(H; s) the number

of vertices in the portion of the arrangement of H in the relative interior of s. If

s is of dimension k < d, the k-dimensional arrangement formed by H over the

affine hull ofs is understood. So, in particular, ifs is a line segment, v(H; s) = [His].

(We use a lower bar to avoid confusion with the cardinality sign.) Finally, we use

the notation ~r to designate the arrangement formed by H. Because of the

previous results in low dimension, we can assume that d > 3.

The Geode. We need to define a particular type of triangulation which we use

throughout. We adopt the convention that a triangulation consists of disjoint faces

which are relative interiors of simplices of all dimensions between 0 and d. (Other

definitions can be found, where faces are closed sets.) Of course, the standard

properties of a simplicial complex, in particular, the fact that the closures of

adjacent faces intersect in the closure of a face, are assumed [4], [6], [93. Given

R ___ H, a triangulation of ~r is obtained by first triangulating recursively the

(d - 1)-dimensional cross-section of the arrangement made by each hyperplane,

and then, for each cell of the arrangement, lifting all the k-faces on its boundary

(0 < k < d - 1) toward a consistently chosen vertex (except for the simplices

partitioning the faces incident upon the vertex in question). When it comes to

triangulating the polyhedron R ~, however, we must be more specific about the

choice of lifting vertices. We define the geode of R, denoted ~--(R~), as the particular

triangulation o fR ~ obtained in the following recursive manner. For k = 2, 3, . . . , d,

An Optimal Convex Hull Algorithm in Any Fixed Dimension 381

in that order, triangulate each k-face f of R n like this: If k < d, let vl vm be

the vertices of f and let vl be the one that minimizes the quantity tHlet, where e

is the segment Ova(1 < i < m). (Break ties by taking the vertex with lexico-

graphically smallest coordinate vector.) Lift toward vl the triangulation of each

j-face (j < k) of R ~ that lies within the boundary of f but is not incident upon vr

By our choice of v~ this produces a triangulation of f that is consistent with that

of its boundary. (This is because vl is also the vertex chosen for triangulating the

faces on the boundary of f that are incident upon v~.) For k = d, simply lift toward

O the triangulation of t3R ~ just obtained. An easy inductive argument based on

the Upper Bound Theorem shows that the size of the geode is O(IRILa/2J). Our

next result motivates this particular choice of triangulation.

Lemma 2.1. Given the geode of R ~ H, for any constant c > 1, a constant b = b(c)

exists, such that

~,]Hj~[c _~ ~ b[Hf~[~,
S e

where the first sum is taken over all faces s (or all dimensions) of the geode and the

second one over all segments e connecting 0 to the vertices of the geode.

The proof of the lemma as well as other proofs are given in the Appendix. For

any face s e ~--(R ~) the set HI~ is called the conflict list of s. By setting c = 1 in

Lemma 2.1, we easily derive the following result.

Corollary 2.2. Given a full facial-lattice description of R ~ and the list Hie, for all

segments e connecting 0 to the vertices of the geode, we can compute the geode of

R and all its conflict lists in time proportional to [RI La/2j + Ee I H l e ["

Approximation Tools. Specializing a definition from [23], we say that a subset

R of H is a (1/r)-approximation for H if, for any line segment e, the densities in R

and H of the hyperplanes crossing e differ by less than I/r, or, formally,

1 IHrel IRle[< _ .

IRI r

Matou~ek [13] has shown how to compute a (1/r)-approximation for H of size

O(r z log r) in time nr ~ for any r > 1. A (1/r)-approximation can be used to

estimate the number of vertices of ~r inside a given simplex.

Lemma 2.3 [3]. Let R be a (1~O-approximation for a finite set H of hyperplanes

in E d. For any d-dimensional simplex s, we have

v(H;s) v(R;s)[1

IHI ~ IRI d <- 'r

382 B. Chazelle

Semicuttings. We fix two integer constants c o and cl, which are used throughout.

We must think of them as large enough to satisfy all the inequalities in which they

are involved; ct depends only on the dimension d, while Co depends on both d

and cl. Given R c_ H, if the energy satisfies

1; IHel c' ~ colRlLa/2/ n \~
e

where the sum extends over all the segments e joining O to the vertices of R n,

then the geode ~r(R~) is called a semicuttinff (for H). A side observation, which

we often use but do not mention explicitly again, is that we have a similar

inequality for lower moments, i.e., for any c < c 1,

1; In , I c < colRILa/2J/~n / c / " ~
, - ~,IRI}"

We omit the proof, which is a straightforward application of Hflder 's inequality.

The Method of Approximate Conditional Probabilities. We briefly recall Ragha-

van and Spencer's method of conditional probabilities [18], [22] and generalize

it to allow errors in the computations. Let X be a discrete set and let X be a real

function whose argument is any subset R ___ X of fixed size r. The goal is to

determine a particular S ___ X of size r at which the value of the function Z does

not exceed its expectation, i.e.,

= ~ z(R) �9

R~-X;IRI=r

Here is a way to do it. Note that (using subscripts to indicate the relevant

probability spaces)

ERI-z(R)I IXl - t 1; (I X I _ ~ l l) - t
= I ;

xeX Rc-X;IRI=r;xER

x(g) = Ex[Edx(R)Ix e R]].

Dropping the argument R for notational convenience, the element x of X, denoted

st, that minimizes E[Xlx e R] satisfies E[xlst e R] < EX. Pursuing this idea, we

find that the element x e X\{s t } , denoted s2, that minimizes E[xIsl, x e Rl is such

that

E[xlsx, 82ER] <~ EI-zlst ~R] _ EZ.

In the end, we find a complete assignment for which

Z(sl, . . . , s,) = E[Xlsl s, eR] < EX.

An Optimal Convex Hull Algorithm in Any Fixed Dimension 383

Note that we can relax the selection criterion by simply requiring that the

choice of sl satisfies EI-ZlSl ~ R] < EZ, and, more generally,

E[z t s l si+ 1 ~ R] < Ex[E[xls l si, x ~ R]] ,

where the expectat ion Ex is taken over all x # s~ si, with all sj distinct

(1 < j < i + 1). In practice, this will work only if the relevant condit ional expecta-

tions can be computed efficiently. Suppose that we cannot compute E exactly, but,

instead, we can obtain only an estimation E*. Let s* s* be the r elements of

X selected in the same manner , i.e., in such a way that

E * [z I s T E R] _< E x [E * [x l x E R]]

and, for i > 0,

E*[ZIsT s*+ x E R] < Exr[E*EzIs~' s*, x e R]].

We also require that

E*[xls~' s,* ~ R] = X(s'~ s*,).

The method will work if (i) E*Z is not too far from EX and (ii) the drift Ai is not

too large, where

A o = Ex[E*[zIx ~ R]] - E*Z

and, for i > 0,

Ai = Exr rI-E*I-xls~ s*, x e R]] - g* l -x l s~ s~' e R] .

The first expectat ion is not starred because in our appl icat ion it can be easily

computed exactly. Note also that in the original Raghavan-Spencer method the

drift is always null.

Lemma 2.4. X(s* s*) g E*Z + ~o~i<_,-1Ai.

Remark. The notat ion E* is used for mnemonic purposes. It should not be

confused with a mathemat ica l operator: E*Exlx~ xl] is simply a function of

xl xl, with none of the usual properties of an expectation.

3. The Convex Hull Algorithm

To build intuit ion we begin with a probabilistic version of the algori thm and we

briefly discuss its expected complexity. Then we move on to the deterministic

algori thm and analyze its performance in detail.

384 B. Chazelle

A Probabilistie Solution. To get started we compute a (1/c0-approximation R for

H and naively compute its geode as well as the conflict list His of every face s in

the geode. This takes linear time. For convenience, we can always add a few

hyperplanes to R (e.g., the duals of the d + 1 points chosen at the beginning of

Section 2), if necessary, so as to make the geode bounded but still enclosing H r.

By making Co large enough, we can always ensure that the geode is a semicutting.

Furthermore, note that IHle I < n/q for any segment e connecting 0 to a vertex

of R?. This concludes the start-up phase.

We are now ready to pick up the algorithm in mid-action. At the outset of

round t we have already chosen a subset R _ H of size r whose geode J-(R ~) is

a semicutting and whose conflict lits HI, (s e J-(R~)) have already been computed.

To conduct the round we pick a random sample S of r hyperplanes in H\R, and

we insert them into the current intersection. Thus, by going from R to R u S in

one round, we double the number of hyperplanes inserted, which ensures that in

round t on the order of 2 t hyperplanes will have been inserted.

For each s ~ ~--(R~), we identify the set Sj.~ of cutting hyperplanes in S, and we

form the polytope s n (Sis) ~ naively by, say, computing d(S) explicitly 1-93 and

clipping the relevant cell within s. We complete the work by computing the geode

of R u S and its conflict lists. It is easy to achieve a running time on the order of

rEd/Z J+ ~ IHI, I x [SJ .
, ~ f (R ~)

By Markov's inequality, the probability that the geode of R u S is a semicutting

is at least a positive constant, provided that the expectation (for R fixed) of

~v IHiovl c', summing over all vertices v of(R w S) ~, is at most on the order of

d 2 / n "X c'

which is not difficult to verify. We can also easily check that, with high probability,

ISmsl ~ = O(rLd/2J).
seJr (R ~)

Intuitively, a typical face s should be cut by O(n/r) hyperplanes, so at most a

constant number of those should end up in S. It follows from Lemma 2.1 and

Cauchy-Schwarz's inequality that the expected time for computing the geode of

R u S is O((n/r)rLd/2j). Since the sizes of R, R w S, etc., grow geometrically and

d > 3, we find that the total expected running time of the algorithm is O(nLd/2J).

This discussion only illustrates the mechanics of the probabilistic algorithm, so

we do not need to justify our claims. However, we are now ready to describe its

derandomization in detail, and provide a complete analysis of its complexity.

An Optimal Convex Hull Algorithm in Any Fixed Dimension 385

The Deterministic Algorithm. The first round does not use randomization, so let

us turn directly to the construction of S in round t. Our assumptions about R are

the same as in the probabilistic case, i.e., Y-(R ~) is a semicutting; for convenience,

however, we assume that r = IRt is less than n/cv We can also trivially assume

that r is large enough, say, r > c~. For natural reasons, we want to ensure that:

1. The faces of the geode Y-(R ~) should not be cut by too many hyperplanes.

2. The next current set of inserted hyperplanes, R u S, should produce a

semicutting.

To achieve both conditions, it would be natural to enhance the definition of the

energy g of R w S given earlier by setting g = g l + ~2, where each 8~ is the

(normalized) randomized variable:

1
e , -- c~rLd/2j ~ ISl~l~'

s~o~-(R ~)

and

1

'~2 -corLd/Za(n/r)C, ~ IHlel c',

where the sum extends over all the segments e joining O and the vertices of

(R u S) ~. (Note that, from now on, s e J (R n) refers to a face of the geode that is

either d-dimensional, or, else, that is not incident upon O; indeed, the nonfull

dimensional faces incident upon O can be assumed not to contain any vertices of

d (H) and thus can be ignored.) If we can show that the expectation of ~ is less

than i, then we are in a position to apply the method of conditional probabilities

and derive a set S that satisfies both desired conditions.

The problem is that the expectation of gz is very unwieldy to compute. So we

must substitute approximations, and define a random variable d ~*, whose expecta-

tion E[g~] provides a fairly accurate estimation of E[g2]. Using the terminology

of the last section, we define the estimated expected energy of R w S to be

E*E l -- + EEe*] .

To define 8*, we consider each face s e ~--(R ~) in turn, and compute a (1/p,)-

approximation As for HI, of size O(p2~ log Ps), where

r 1 "F. P ' = 2c~ n I n l ~ + l

We use the notation s + to designate the relative interior of the convex hull of O

and s. Note that s + e f f ' (R n) and that IHi, I < Ial ,+l . Given a point v, let ~ov be

386 B. ChazeUe

the number of hyperplanes of R passing through v and let 6v be a shor thand for

IHio~l. Lemma 2.3 suggests that a vertex v ~ ~r should "accoun t" for roughly

(IHtsl/IAsl) a-~~ vertices of ~r so it is natural that we should set

se.~-(R ~)

where the inner sum extends over all vertices v of (R u S) ~ that lie in s and are

also vertices of ~r u As). Note that in order to account for vertices on the

boundary o f R ~, we do not require v to be a vertex of ~r but only of~C(R u As).

Lemma 3.1. E*[~f] < �89

Here is how the tth round is conducted. We select hyperplanes in H k R one at

a time until we have a collection S = S, of size r. Assume that we have already

chosen a subset Sk of size k, with So = ~ . The score of a hyperplane h e H \ (R w Sk)

is equal to our estimation, denoted E*[r w {h} _c S], of the expectation of

condit ioned upon having all the hyperplanes of Sk ~ {h} in the r andom set S.

Although ideally we would like to pick the hyperplane of lowest score, this seems

too difficult to do, so we content ourselves with any one of a reasonably low score.

We define the score ~k(h) of a hyperplane h at step k to be

(k(h) = E*[r w {h} _~ S] d~f E[e~[Sk w {h} ~_ S] + E[e*(S k u (h})].

What is the r andom variable 8*(Sk U {h})? For notat ional convenience we define

8*(Sk), from which the definition of ~*(Sk u {h}) follows trivially. At the beginning

of the round, we have E * [r = E [~ I] + E [~] , so it is natural to set r = r

Now, for k > 0, let ~0 v denote the number of hyperplanes of R u Sk passing through

vertex v. (Note that since So = ~ , this is consistent with our earlier definition of

q~v as the number of hyperplanes of R passing through v.) We define

d-~av (I,,,,q
1 ~" ~ \ lasl) v, 8*(Sk) -- corLa/2 J(n/r) c' s ~ t R ~

where the inner sum extends over all vertices v of (R w S) ~ that lie in s and are

also vertices of ~ (R w Sk u A~); we define S = Sk w T, where T is a r andom subset

of H \ (R w Sk) of size r -- k.

Important Remark. Except for k = O, E[~(Sk)] is not the same as the conditional

expectation E[8*ISk--~ S]. Note that it cannot be smaller. The reason we use

E[8~(Sk)] instead of E[g~ISk -- S] is that to find a set S such that ~* is small is

in itself quite useless: it only guarantees that a small subset of the vertices of

(R • S) ~ (those in the arrangement of R u As) has low "energy," which does not

An Optimal Convex Hull Algorithm in Any Fixed Dimension 387

give us a semicutting. Instead, we must in t roduce a brand-new r andom var iable

g*(S,) at each step, so that in the end every vertex of (R w S) ~ is counted in the

inner sum for g*(Sr). Indeed, we can verify that

1
, r f___, IHi~l <',

corLd/ZJ(n/r) <1 e

where the sum extends over all segments e connect ing 0 to the vertices of (R u St) ~.

It follows that the energy of R w S,, defined earl ier as r + d~2, or, to be more

rigorous, as E [d l + N2[S = Sr], is also equal to E [g l l S = S,] + g*(S,).

Let us show how to calculate the score (k(h). Again, for no ta t iona l convenience,

we only discuss the calculat ion of E* [d~ Sk ~-- S]. We can express E [d ~ ~-- S] as

,

cgr ha/2j ~ ~, (IS~<i,I + i f ' n --
s e J (R ~) j>_O r - - " " r - - k '

with the usual convent ion that

if b < O or b > a .

Indeed, we pick r - k hyperplanes out of n - r - k, and we dist inguish among

those (j) crossing s and the others: note that the hyperplanes crossing s form the

set HI~\(R u Sk), which is the same as HI~\Sk. Similarly, we write E[d~ as

1
corLdi2J(nlr)C ̀ ~ 2 Z,~

SE,~- (R ~) v E ~ (R ~ S k t ~ A s } m s

x (, , _ r _ , < _ < , _ d + r - , <) r - - - - + r - '< '

where Zv = 1 if Hio ~ c~ S k = ~ and 0 otherwise. Here we express the fact that, in

order to con t r ibu te to E[w~*(Sk)], the vertex v must not be separa ted from O by

any hyperp lane of Sk nor by any selected hyperplane, and its d - ~o~ passing

hyperplanes not in R w Sk must all be selected. (Recall the redefinit ion of toy to

include S k as well as R.)

At step k we need to select a hyperplane ho~ H \ (R ~ Sk) whose score does not

exceed the average score, i.e.,

1

- n - r - k heH\(RuSk)

388 B. Chazelle

We show how to do this in the Appendix. We prove the following:

Lemma 3.2. Round t can be executed in time at most proportional to

- - + + ~ IHisl2-~(ISl~l + 1) a+2 + ~ IHI~I 2-~+c~'3
log n ~ s~:-(R~) s~:lR~)

for some f i xed 0 < v < 1.

As in the randomized case, once S = Sr has been determined, we compute the

geode 3-((R w S) n) and update the conflict lists. To do that, for each s ~ ~-(R n) we

form the arrangement of Sis and the d + 1 hyperplanes defining s [9], and we

retrieve the cell s n (R w S) ~. These cells glue naturally together around adjacent

simplices s of 5-(Rn). Therefore, it is routine to compute (R w S) n. By Corollary

2.2, we can also update the conflict lists without difficulty in time within the bound

of Lemma 3.2.

We are now ready to analyze the complexity of the whole algorithm. Because

of our selection criterion, we can use Lemma 2.4 to bound the energy, 81 + 8"(S),

of R w S by

E*d ~ + ~ Ak,
O < k < r - 1

where

Ak = --E*[~ISk ~ S] +
1

E
n -- r - - k heH\ (RuSk)

E*[81Sk u {h} _ S].

Our next result bounds the drift Ak:

L e m m a 3.3.

Ak < c~r~+Ld/2j/~ ~ ~) k ~ j ,

where c = c~/3.

From there a simple inductive argument shows that the energy of R u S at the

end of round t is less than l, i.e., E*[o~IS = S,] < 1.

Lemma 3.4. The energy o f R w S at the end o f round t is less than 1.

The lemma immediately implies that 5"((R w S) n) is a semicutting, as desired.

It also shows that

~, ISl,r' < c~r~d/2J.
se~-(R~)

An Optimal Convex Hull Algorithm in Any Fixed Dimension 389

Since ~-(R ~) is a semicutting, Cauchy-Schwarz's inequality implies that (up to

constant factors)

Iglsl2-v(ISl,l + 1) a+2 + ~ Iglsl 2-~+4'3 = 0(1) + r La/2J r '
se.~-(R ~) s~.~-(R~)

Thus, Lemma 3.2 shows that the cost of round t is

O (n 2 / l o g n + n2/r 2/3 q- n 2-vrl-d/2/-2+v),

where r = O(2t). Summing up over all t gives O(nLd/Ed). Recall our earlier assump-

tion that r < n/c1. When we reach r > n/cl, we simply include in the next set S

the remaining hyperplanes, and finish up the work naively. The time needed for

this last phase is at most proportional to

~, ISisl d = ~ I H i J = 0(1) x r Ldt23 r = O(nL"12j)'
se..~-(g~) se~-(R~)

which completes the proof of our main result.

Theorem 3.5. I t is possible to compute the convex hull o f n points in d-space

deterministically in O(n log n + n L-d/2j) time, which is optimal.

There are several ways of interpreting a Voronoi diagram of n points in d-space

as a convex hull or an intersection of half-spaces in (d + 1)-space [2], [9], [10].

We have the immediate corollary:

Theorem 3.6. The l/oronoi diagram of n points in d-space can be computed in time

O(n log n + nFd/2q), which is optimal.

Acknowledgments

I wish to thank J. Matou~ek for several helpful suggestions and the referees for

many useful comments.

Appendix

Lemma 2.1. Given the geode of R ~_ H, for any constant c >_ 1, a constant b = b(c)

exists, such that

I H I J _~ ~ blnlel c,
$ e

where the f irst sum is taken over all faces s (of all dimensions) of the geode and the

second one over all segments e connecting 0 to the vertices o f the geode.

390 B. Chazelle

Proof. Because it cannot pass through O, any hyperplane of H meeting a k-face

s of the geode without containing it must intersect (without containing) the relative

interior of at least one of the k + 1 segments connecting its vertices to O. Thus,

it suffices to prove the inequality obtained by substituting ~ for IHis l, where W~

is the number of hyperplanes crossing at least one of those segments outside of

its endpoints. We show by induction on k that, for any k-face f of R n, the sum

W], denoted Af, where s ranges over the faces of the geode lying within the

closure of f , is at most

dk(2 c + 1) k ~ In t , r ,
e ~ E

where E is the set of edges joining 0 to the vertices of f . The case k = d, where

f is the interior of W', gives the lemma.

The case k = 0 is obvious, so let assume that k > 0. We observe that, by our

choice of the lifting vertex, we have Af < (2 c + 1) ~g Ag, where g ranges over all

the (k - 1)-faces o fR ~' incident upon f. (Note that 9 ranges over faces of R n, which

are not necessarily faces of the geode.) The term 1 comes from the contribution

of the faces incident upon f , while the term 2 ' accounts (conservatively) for the

effect of the lifting vertex to the contribution of the geode faces within f. By

induction, we have

Ao < #dk-l(2 ~ + 1) k-1 ~ I H J ,
a e e E

where # represents the maximum multiplicity of a segment e in the counting.

However, the general position of H, and hence of R, ensures that a segment e is

adjacent to d hyperplanes, and, therefore, k (k - 1)-faces incident upon f. It follows

that # < d, which completes the inductive proof. []

Lemma 2.4. X(s1' s*) < E*X + ~o~i~ , -1 Ai.

Proof. For i > O, we have

E*[XIs*, . . . , s*+ 1 ~ R] < Ex,s~ 7[E*[xisT s*, x ~ R]]

< E*[XIs* s* ~R] + A,,

with a similar inequality for i = 0. Since X(s* s*) = E*[XIsT s* eR] , the

lemma follows by induction. []

Lemma 3.1. E*[g] < �89

Proof. Given se#-(W'), let m = Int,I and k 0 = 2clrmr/n-]. To evaluate the

expectation of ISlY ' we put a threshold at k = k0, and, for k > ko, we consider

the event where, out of the r random hyperplanes, exactly k of them intersect s.

We have

EISIY' < k,' + ~ k ~ ' (n - r - m) (~) / (n - r) .
k o < k ~ r r - - k r

An Optimal Convex Hull Algorithm in Any Fixed Dimension 391

Note that, because of the start-up phase, m can be at most a small fraction of n.

The same is true of r, so all the binomial coefficients are strictly positive, except

m) we adopt convention that it is zero if m < possibly for k ' for which the k.

') ' (' - -
ko<k<, n - - 2r + k

<_k~ + Z \ kn I
k>ko

<-Ud + ~ U'2 -k
k>ko

= 0(1) x + 0(1).

m y-k(ern~k
n - r } t , k)

Note that the constants hidden behind O(1) do not depend on c 0. Therefore, by

Lemma 2.1 and the fact that J-(R ~) is a semicutting,

It follows that

' (:) E1-~I] = O + 0(1) x c2rCal2~ d ~ IHisl c'
s e f (R ~)

(~) Ir\<' ink<, 1 1 [I corLdi2Jl i "
= O + 0(1) X C2orLdl2 ~ \ h i \ r l

E [~ ,] < �88 (A.1)

To bound E l8*] is more difficult and we must begin with a technical extension

of a result of Clarkson and Shor [8] concerning k-levels in arrangements of

hyperplanes. We say that a point p is at level k if the relative interior of the segment

Op intersects exactly k hyperplanes of H. Let fk(H) denote the number of vertices

of ~r at level k. It was shown in I-8] that the prefix sum

fsk(H) = ~ fi(H)
O<i<k

is in O(rlLa/2ikFd/21). For any j _< d, let fk(H, R,j) denote the number of vertices of

~r at level k formed by the intersection of any j-face of R ~ and j hyperplanes

of H\R. (Note that the level function remains unchanged.) We prove that

fak(H, R,j) = O(1) x (k + 1); r + k + 1 / " (A.2)

392 B. Chazelle

Let t = Ln/(2k + 2)]; we can obviously assume that t is large enough. Let T be a

r andom sample of H\R obtained by picking each hyperplane independently with

probabili ty t/n, and let V be the number of vertices of the polyhedron R ~ n T ~

that are formed by the intersection of a j-face of R ~ with j hyperplanes of H\R.
With high probability, T has on the order of t hyperplanes, so we should expect

the polyhedron R n n T ~ to be bounded by O(r + t) hyperplanes, which would

then give an upper bound of O((r + t) La/2j) on its number of vertices, and, hence,

on V. Indeed, using elementary tail estimates for the binomial distribution, we

leave it as an exercise to show that the expected value of V is O((r + t)Lal2J). We

can also estimate EV from below: because tin < �89

EV= y~
i>_O

�9 t i

f~(H,R,j)(~) '(1--~)'> e-2kti"(n)f<_k(H,R,j) >_ e-'(~ff<k(H, R, j),

from which (A.2) follows.

Using the fact that 6~ < n/cl (because of the start-up phase) and r < n/c 1, we

easily derive an upper bound on the expectation of g*. For a given face s of ~'-(R n)

we consider every vertex v of d (R w As) inside s, and we express the probability

that v is a vertex of(R u S) ~ for r andom S: this means that the d - q~ hyperplanes

through v that are not already in R are picked and that the 6v separating

hyperplanes are not chosen. We have

E [~] -

Co rLdl2 J(n/r) c' \ [As [J s~,~(R ~) vEsc~(RwAs)

• r

,

<-- corLdlBJ(n/r)~, E E

(' y o?
x 1 - -

n - r - 6 v] \ n--r

We fix j (0 < j < d) and define

- r - 6 v Ih, I) \ n - r

where the summat ion in s extends over all (d - j)-faces of 3-(R~), and the one in

v ranges over all the vertices in s in the (d - j) -d imens iona l arrangement formed

by A s over the affine hull of s. Because of general position we can assume that the

(d - j)-dimensional faces of Y-(R ~) lying in fewer than j hyperplanes of R do not

An Optimal Convex Hull Algorithm in Any Fixed Dimension 393

contain any vertices v and thus can be ignored. This implies that all the vertices

v involved in the sum satisfy ~0v = j. Because of previous restrictions on 6~ and r,

we have

Fs=O(1) X~\niAsl/ ~ -

where the factor O(1) does not depend on c 0.

We wish to est imate the inner sum in the expression of Fj as a sum over vertices

of the (d - j) - d imens iona l ar rangement induced by H over s. To do so, we use an

approach similar to the finite-element method in numerical analysis. We subdivide

the summat ion domain into clusters over which simplifying assumptions can be

made about the summands. This can be regarded as a deterministic Monte Carlo
integration method.

Let ~ be a tr iangulation within s of a (1/vs)-approximation for His of size

O(vZ~ log vs), where v s = [-rlHis+ I/nT. (The weaker notion of an e-net is sufficient

here, but for the reader 's sake we probably do not need to add any new definitions

at this point. Note that ~ need not be computed: it is only used to prove the

lemma.) The tr iangulation partit ions s into faces (i.e., relatively open simplices) of

all dimensions between 0 and d - j . Let us perturb ~ slightly so that all the

vertices v (in the definition of F j) lie only in (d - j)-dimensional faces of J-~. Note

that, as a result of the perturbation, given any two points p, q inside the same

(d - j)-dimensional face of ~ , we have (recall that IHis I < IHI~+ l)

IHI~ I 2n
16 v - 6ql < + 0(1) < - - - .

I) s r

In this way we can write

E = E E ,
v a v e ~ c ~ , ~ e (R u A s)

where a extends over all the (d - j) -d imens iona l faces of ~ . By L e m m a 2.3 (applied

in dimension d - j) ,

l<lAsle-s+(IAs])d-s 1.
. . . . ~r Ps \ I H I , I , / ~r162

Note that Ps can always be assumed to be nonzero since any simplex s such that

His + = ~ can be ignored from the summat ion for Fs. Returning to F~, we can

bound the inner sum as follows:

1260"

max{0, 6,Sn - 2n/r}) r'

394 B. Chazelle

where, for each v, we are allowed to choose any point w in a. It immediately follows

that Fj = 0(1) x (F~ + Fj), where the factor O(1) does not depend on c o, and

(n)a- j (~)~1(max{O, bv--4n/r})"
F) = E E Ov + 1 - -

s vesmsr n

and

. d-j]HIs[n-J r +

Fj = Ps r J '

where w is any vertex in o'.

F~ _< E
v~,~ (H); v ~ R~; cpv = j

(~v _l_ 4~nr)C'e- max{ O,'~v- 4n/r}r/n

(r)-, (4.

(Note that v e R ~ does not mean that v is a vertex of R~.) Let ko = V4n/r-]; the

contr ibut ion to the sum of the first k o terms is easily seen to be O(1) x rLd/2J(n/r)"
because of (A.2). To handle the second part, we use Lemma 2.1 but now we apply

summat ion by parts beforehand. In other words, using the identity

N N k N

UkUk = Z (U k - - U k + l) Z I)i "~ UN+I Z Ui'
k=ko k=ko i=ko i=ko

with u k = kCle-rkl" and v k = fk(H, R, d - j) , we derive a similar upper bound, from

which it follows that

Fj Off) x r L~/2j (A.3)

Here are the details: Let

A = ~ kC~(H, R, d -j)e-'k/".
k>ko

We have

A < ~ (kC'e -'k/" - (k + 1)C'e-'(k+l)/"Xf<k(H, R, d - j) - f<_ko_t(H, R, d - j)) ,
k>ko

since the term uN+ 1 ~ o vl tends to 0 as N goes to infinity.

An Optimal Convex Hull Algorithm in Any Fixed Dimension

Note that

395

r kCte_rk/n, kC'e - ' k I n - (k + 1)Cle - r (k + l)/n ~_ k C l e - r k l n (1 - - e -'1") < -
n

therefore each of the following inequalities hold up to within a constant factor:

k>_ko

k >_ko

<-- r rLa/23 xcl+d-Je -rx/a dx
\ n / o

~_ r Ld/2j y~'+d-Je-Y dy

ko/n

/ n V ' +d-i
= 0(1) x [r) r La/zJ ,

from which (4.3) follows. For any w in s, we have 5~ < IHt~+ 1, where, as we recall,

s + is the relative interior of the convex hull of O and s. Note that IHI~ I < IHI~+ [.

Fj = O(1) x (r-I d-j \n/ ~ IgIS+p~ la-j 2 log vs)a-i((1 + vs I HI~+I

We distinguish between several cases. If lilts+ I < n/r, then p, = 2 c~ and v, = 1, and

(~) d - j i/n~C,+d-J I/n\C,
F; = O(1, x ~ 2-C~) <-rLa"2J[r)

for c o large enough. Of course, the sum is understood to range only over those s

for which the condition IHis+l < n/r holds.

If IHis+l > n/r, then we have (summing over all relevant s e Y(R~))

Fj = O(1) •
sE~-(R ~) \ rl /

The simplex s + belongs to 3"-(R~). Note that it can be counted at most twice if

we extend the summat ion to all s in J- (R ~) (of all dimensions), therefore

(_rny-J- F; = 0(1) • E
sv.Y-iR~)

396 B. Chazelle

By Cauchy-Schwarz, it follows that

F~ < r L a / 2 j .

Since the O(1) factor in (A.3) does not depend on c o, we derive from (A.1), (A.3) that

1 0 (1) 1 0 (1) 1

E * [g] = E [d ~ ,] + E [d ~*]<~+corkd/2j(n/r)~ ' ~ (F) + F~) < ~ + < .

O<_j<_d C O 2

[]

Lemma 3.2. Round t can be executed in t ime at most proportional to

(y - - + + ~ Inl~12-v(ISl~l + 1)d+2 + 2 Int~l 2-v+4/3
log n r 2/3 s e . Y t R ~) s e ~ - t R ~)

for some f i x ed 0 < v < 1.

Proof. Our first step must be to compute the approximations As for each simplex

s e J-(R~). Conservatively, this takes time proportional to

IHI~+I-q- ~ IHis+l 1+4/3.
se..~-(R ~) se aJ-(R ~)

Recall that at step k we must find a hyperplane h o whose score (k(ho) does not

exceed the average score

1
~k(h) �9

n -- r -- k hEH\(RuSk)

To speed up the process, we set up a rudimentary priority queue structure in the

form of a tree of height 2, whose leaves are in bijection with the hyperplanes of

H \ (R w Sk), and whose internal nodes have degree at most x//n. Our first attempt

might be to store at each node z the average score of the hyperplanes in the set

L(z) associated with the set of leaves below z, i.e.,

1
r

IL(z)l h~L(z)

Indeed, this would allow us to home in fairly quickly toward a good h o. Updating

the tree would be too costly, however, so instead we store only partial scoring

An Optimal Convex Hull Algorithm in Any Fixed Dimension 397

informat ion at the nodes. Recall that E [r ISk - S] is equal to

1 ()
s~(R~)j>_O r - - k - - j J \ j J / \ r - k '

and E[r is equal to

1
corld/22(n/r) c~ s~J tR ~) ~ r 1 6 2

IH,,IV -~'

x r - k - d + (P v r - k '

where Zv -- 1 if H i o v r Sk ---- ~ and 0 otherwise. After regrouping, E [~ l ISk ~-- S]

can be expressed as

~, S , (S k , i, oOF(k, i, oO,
i,ct

where

and

F(k,i, o O = ~ j ~ (n - r - k - i) ~ .) / (n - r - k)
j , r - k - j r - k

where the sum ranges over all s~ J - (R ~) such that [His\Ski---- i. We must adop t

the convent ion that [Skl~] ~ = 1, even if ISklsl = 0. Note that 0 < i < max~lHt~ \Sk[

and 0 < :t < c 1. Similarly, we can write

E[e~(SR)] = ~ N2(S k, i, j)G(k, i, j),
i , j

where

(n - r - k - i) / (n - r - k)
G(k, i , j) = r - k - j r - k '

with 0 < i < m a x s l H l , \ S k l and 0 < j _< d, and

1 J~i~',
N2(Sk , i, j) - Co~-a/2J(n/r) c' ~ertR~)~

398 B. Chazelle

where the inner sum ranges over all v e ~ (R u S k u A s) n s such that

(i) HlovC~ Sk = ~Z~, (ii) d - tpv = j , and (iii) 6~ = i - j . We do this to separate

quantities (i.e., F, G) that are purely combinator ia l and depend on k from quantities

that are essentially geometric.

We now have

(k(h) = ~ N,(Sk w {h}, i, ct)F(k + 1, i, a) + ~, N2(S k u {h}, i, j)G(k + 1, i, j).
i, at i , j

We can now write (k(h) as the sum (k + Ak(h) of two terms, the first of which does

not depend on h. We have

(k = ~ N,(Sk, i, ~t)F(k + 1, i, ct) + ~. N2(Sk, i,j)G(k + 1, i,j),
i,~t i , j

or in vector form

The vectors bT~, ff are indexed by (i, ~), or more simply by a single index running

between 1 and (cl + 1Xmaxs[Hl~l + 1). In this way the two vectors have a fixed

length during the entire round. Similarly, the vectors b~ 2, (~ can be made to have

a fixed length equal to (d + 1)(max,[Hts [+ 1). We also have

ak(h) = ~ (N,(S k u {h}, i, ~) - NI(Sk, i, a))F(k + 1, i, ~)
i, at

+ ~ (N2(S k w {h}, i,j) - N2(Sk, i,j))G(k + 1, i,j),
i , j

or in vector form

Ak(h) = A]V,(h)" P + Ab72(h) �9 (~.

We store the two vec to r s /~ , and /~2 separately. Each node z of the tree stores

the two vectors (i = 1, 2)

1
() A]V/(h),

where we recall that L(z) is the set of hyperplanes associated with the set of leaves

below z.

To find ho we evaluate (k and go down the tree until we reach a leaf. At internal

node z, we compute the average

1 1
~ (k(h)---~k+-

IL(z,)l h ~,, IL(z~)l hEL(z,)

(A/~,(h). ff + Ab72(h) �9 d)

= Ch + ~(z~). ; + ~(z3" d

An Optimal Convex Hull Algorithm in Any Fixed Dimension 399

for each child zg and branch toward the child with the smallest average. This

clearly takes us to a leaf whose score is at most the average. Note that the

computation at each z~ requires only two inner products since we have stored the

relevant vectors at the nodes (assuming that all vectors P, (~ are also available).

Once ho has been found, we delete the corresponding leaf and update all the

vectors N~, A~7~(h) that need updating as well as the relevant nodes of the tree.

Let us review each step of the process in detail. First, how hard is it to

precompute all the vectors F, (~? Since Y(R n) is a semicutting,

/ n \ c~
z i i , , : , = o .) •

se,~'-(R ~)

and therefore max~l Hlst = O(n/r ~ -0 for an arbitrarily small constant e = ~(cl) > 0.

So, all the necessary binomial coefficients can be precomputed, as well as the

vectors F needed in round t, in time proportional to

r n n
(r~-~) x man{r, r~- , } ,

which is (conservatively) O(n2/log n), for, say, e = ~. All the vectors t7 are easily

obtained in time O(n:)= O(nl+O. Note that computing binomial coefficients

exactly might be a problem if O(log n)-bit precision words are used. However, we

can compute them with a relative error of 1/n ~, for an arbitrarily large constant

c > 0, which, we can easily verify, is good enough for our purposes.

At the beginning of round t, the vector NI can be obtained trivially by exploring

each conflict list, which takes time

s~.~(R ~)

(To simplify the notation all our analysis is done up to within constant factors.)

For each s e ~-(R n) we set up a data structure for computing 3~ efficiently. This

consists of a triangulation of the arrangement formed by a (1/I His+ I C)-approxima -

tion for His+, for some small positive constant c. For each vertex w of the

triangulation we compute 8,~ by examining the entire set HI~+. Then any 6v (v e s +)

can be obtained very simply by locating the face tr enclosing v (in the computed

triangulation) and examining each hyperplane cutting it. Knowing the value 5 w

of, say, the closest vertex w of tr to O, it is then straightforward to derive 5 v. The

preprocessing time is o(Inls+l 2-v) and each query can be answered in time

O(iHis + 11 -v) for some fixed 0 < v < 1. It follows that, counting preprocessing, 57 2

can be found in time

IHl,+l 2-~ + ~ tHl,+lX-~ x IAJ.
se ~'-(R ~) se ~r(R ~)

400 B. Chazelle

At the beginning of round t, to compute AbTi(h) (i = 1, 2) requires only the

examination of the simplices s e 3-(R ~) cut by h or separated from O by h, and

thus takes time

nr ~-1 -4- ~ [Ht~+ l 1 - v • I A J .
s : s + n h ~ ~

The term nr ~- 1 comes from the fact that the entire vector, represented as an array,

needs to be initialized and its size is max~lHl~ I = O(nr ~- 1). We omit the details of

the data structure needed to find all the relevant simplices s because they are

straightforward. So, to set up the tree in its entirety takes time

n2r ~ - 1 + ~ IHis+[= - ' X I A s l a.
s ~ . ~ (R ~)

Once all the relevant vectors are available, h 0 is obtained by computing O(n 1/2)

inner products, which takes O(n3/er ~- 1) time.

Once ho has been found, we delete its corresponding leaf from the tree. To

update ~7 i (i = 1, 2) requires only work within the simplices s cut or separated

from O by h o. Let us consider the update in the midst of the round. For N2, a

straightforward solution involves examining each vertex formed by R w Sk W As

within s and checking whether it is separated from 0 by Sk W {ho}. The distance

6v for each such vertex v is computed using the data structure. Note that ~0 v might

change. An obvious upper bound on the time for updating both N1 and ~7 2 is

nr ~- I + ~ Int~+l 1-v • ISI~ u A~I a+ l.
s:s + nhor ~

To update ANi(h) (i = 1, 2) we must examine each s ~ ~--(R ~) that is cut or separated

from 0 by both h and h o, and modify the vector ANi(h) accordingly. Care must

be taken not to look at the whole vector unless this is needed. In other words, we

update only those entires that are no longer valid, without looking at those that

are not affected by the insertion of h o. Thus, the time required is at most

I HI~ +11-" x IStsu Asl d+l,
s

where the sum ranges over all s ~ J-(R ~) that are cut or separated from 0 by both

h and ho. Summing over all h gives us an upper bound on the time required to

update all AbTi(h) as well as the information stored at the internal nodes of the

tree. (Again, we do not look at the entire vectors stored at the nodes, but only at

the entries to be updated.) The upper bound is

IHl~+l 2-~ • ISI~ u A~I a+l
s : s+ c~ho~= O

An Optimal Convex Hull Algorithm in Any Fixed Dimension 401

Finally, taken over the entire round, the updat ing time amounts to

nr~+ ~ [S t s + l x l n l s + 1 2 - ~ x l S l s u Z s l d + L
s e J (R ~)

We conclude that round t can be executed in time

n 2

_ _ + n 3 / 2 r ~ + n 2 r ~ - 1 _1_ n r ~ +

log n sEY(R~)
iHis + [2 - v X ISis+ k..) a s l a+2 .

Up to within a constant factor we have

]nl~ +[2-v x ISis + u As[a+2
se.Y-(R ~)

- < Z [H,s+l 2-'~ • ISts+['+2 +,Y__, IH,~+I 2-" x IAsl "+2.
s s

From the relation

IZ~l-< + 1,

again unders tood up to within a constant factor, we derive

Inls+l 2-~ x ISis+ whs l a+2
s e ~ - (R ~)

< ~ IH,s+l 2-v x IS,s+l a+2
s

+ - IRis+ + ~
S S + '

since IHlsl _< IHis+ I. All subscripts s + can be replaced by s without losing more

than a constant factor. Setting e = �89 and taking into account the cost of comput ing

the initial approximat ions A s (and making some obvious simplifications) estab-

lishes the lemma. []

Lemma 3.3.

where c = c 2/3.

Proof.

A k - - < C 2 r l +Ld/2J/c se ~) ks J ,

To begin with, notice that g l has no drift, therefore

1
E

rl - - r - - k heH\ (RuSk)
A k = --EI-g*(Sk)] + E[g*(Sk W {h})].

402 B. Chazelle

Let �9 = n - r - k and fl = r - k; we have

1

AR -- corLd/2J(n/r) c~ ~ B~,
seY(R ~)

where

BS ~-"
l (I H l . ['] a - ~ ' ~

heH\(RuS~)

-~kl,4sl,/ k B-d+~o.) I \B)

In the first sum, v ranges over all the vertices of ~ (R w Sk w As w {h}) within

s n (Sk w {h}) ~, while in the second one, v ranges over all the vertices of

, ~ t (R w S k U A s) within s c~S~. Note that q~v is defined with respect to

R w Sk U {h} in the first sum and with respect to R u Sk in the second sum. We

further derive

1

Ak corLd/2J(n/r)~ ~ ~. F.6v,
se.~-(R ~)

where v ranges over all the vertices within s c~ S~ formed by any of the arrange-

ments .~(R u Sk u As u {h}) for h e H \ (R w Sk u A,). To express Fv, we distinguish

between two cases. (In the following, ~o v is defined with respect to R w SR.) If v is

a vertex of .s~(R w Sk ~ As), then what is the contribution of v to the positive sum

in B,? The 6v hyperplanes h cutting Ov contribute nothing; the d - ~o~ hyperplanes

passing th rough v, not in R u Sk, each contribute one term, with ~o~ raised by 1.

Finally, the other ~t - 6~ - d + % hyperplanes contribute one term each, with ~.

unchanged:

k ~ /KIA.I) ~-d+~o)IkP

klk, I) k fl-d+q~v , I /kf l)

We derive

F~ = i - I-~I)\IA~I~I) /~ - d + ~)I\/~ '

An Optimal Convex Hull Algorithm in Any Fixed Dimension 403

and, hence,

F, = 1 -] ~ / \] - ~ .] fl - d + tp,, I / \ f l } "
(A.4)

If v is not a vertex of d (R w S k k..)A~), then it must be formed by the rater-

section of d - 1 hyperplanes in R w Sk w A s and one other hyperplane h not in

R w Sk w A s. This hyperplane must be chosen in order for v to contribute to B~;

note that picking h raises q~ by 1. No contribution can be made to the negative

sum.

F~= ~ k.l ~ (/ \ f l - d + tp, / / k.fl

1 (I H l ~ l ~ - ~ ~ + (p~ / (~ t~

= ~ - ~ - a + ~o 1 1 \ ~ /

Note that we use the convention that

Let Ak(j) be the contribution to Ak of the vertices v such that j = d - ~o v. These

vertices lie on j-dimensional flats defined by hyperplanes in R w Sk. Any s E J (R n)

that contains such vertices must be of dimension at least j. Since these are also

vertices of s n S~, it is possible (by triangulation of s n d (R u Skis)) to identify

O(ISk]sl Ld/2]) disjoint j-dimensional simplices that collectively contain all these

vertices; actually, we use the conservative b o u n d O(ISklst d) for convenience. Let

be one of them, and let e be a line segment formed by the intersection of tr with

j - 1 hyperplanes of A s. By (A.4), it is easy to see that Ak(j) = 0, i f j = 0 or j > fl,

so let us assume that 0 < j < ft. A vertex v of d (R w Sk W As) n a n S~ appears

on j distinct edges e, therefore, by summing over all e, it will be counted j times

if it is a vertex of ~r u Sk u As) and only once if it is not, i.e., if it lies on exactly

one hyperplane not in R u SR w A s. Thus, we can immediately verify that

1

'"

+ 2 ~ \ IA. I / \ /~-J
vz (H\As)le

404 B. Chazelle

In the first (resp. second) inner sum v ranges over all vertices formed by the

intersection of e with the hyperplanes in A~ (resp. not in As). Therefore,

1 1 (I H i s l y -1

Ak(J) - corLa/2J(n/r) c' ~s ~ ~e fl \~A~,] Ge'

where

Ge =
~a.,. IA.IIX f l - - j ,]/\f l ,] + ~" 6~' .~(n\a.),, fl -- J ,] / \fl,]

To find an upper bound on Ge we are now ready to use the sampling-based

integrat ion method int roduced in the p roof of L e m m a 3.1. No te that we can

trivially assume that His + # (ZJ (else s can be ignored), therefore p, > 0. Let

[Inl ,+ 17 x,--/~/"

By subdividing e into subsegments e' such that Hle, has size xs or less, it appears

that

E 1 _< IHl't + (IH,,I'~
~.,.. p~- \ ~ i - / X

v ~ Aste"

,

therefore

y
veHle"

S~'C t fl _ j ,] / \fl,]

< X (~o+x,) 4 ~ " ' ' q ? - ~ + ~ ' - ; ~ / (~ ' ~
- ,,,A,,.. k IA, I /k fl - - j , / / \ f l ,] +', , , , /

where 3w = m a x v { Q l v z H w } . Since 3w < IHis+ I, it follows that

~n,, ", fl--J / l \ f l /

. - . , + , ,
+ / x , / \ p, / .~

An Optimal Convex Hull Algorithm in Any Fixed Dimension 405

From the fact that ps = 2'~ Iln] ,/~', we easily verify that x, < nl(4r), and,

therefore,

(" 7 - ' (~) ' c,.~
1 + - - < 1 + < l + - -

a - b , f l + l - n

Consequently,

() I 0) (")'-'('-"-')I0) ~ - - b . + x , - j < 1 + f l - J
fl - j - o~ - 6 v fl + -i

We have

IA,l, l x IHl, l IHi,I
-I-1-/l'~l-i -< ~ l i l 7 + + 1,

xs I XsPs

therefore

(~. ~'-JWr Z 6;' --o j
VeHIr

--,~a,,, f l i j J l \ f l J

+ ~ ((, L+~y ' -a~ ') l +
~,,,,. /7-. i) / t , /V

+,, , , . , t,~.,., x ,-.., ,,,..,)(0 ~ x,p, t, iA, I + p, + xs ; iH~,+i <'.

If we substitute the right-hand side of the inequality into the expression for G.,

we find that the 1 of the factor (1 + clxsr/n) cancels out. Specifically, we derive

Ge <
Y" "\i~Ti-,i)\~--,st, p - J Sl\~, ,

0,) (~)(~':T - ~ - < ~
+ Z Y. ' a~,<,-' a+

o~,,.,, o_<<<, ,a - j J /k / t)

] fl I H , + I ~ , + z + ~ ; Id t '+ + - - IHi,+('+'
+ x,p--~ t o t / k lasl I x , p , p, a "

406 B. Chazelle

Note that clx~r/n is less than a constant . Since there are O(IAis] j - a) segments e

for each j -d imens iona l tr and O(]Skl~l a) simplices a for each s, we now find that

cl (IH,~ly -~
Ak(j) < flcorLd/2J(n/r)~' ~' \ ~ 1 I S~lsl ~

se:~-(R ~)

+ c 1 2 ~' ~ x~lHis+l~ x IAs[J-l+x~ps ~ IHis+l ~'+2 x IA~I j - x

1 2 • [A j - 1 + _ His+lC~+l • tAsli-1

+ ~ Ps "

If x~ = 1, then Ps -> IHis+ 12 >]Hlsl 2 and therefore A s = HI~. This implies that

G~ = 0 for e ~ s, and so we can assume tha t x, > 1 in the summat ion below.

A k(j) --< f lcorLa/2d(n/r) c~ s r

f/clx~r'X i~,+ j + j -1

Since xs > 1, we have

F r o m the inequali t ies,

and

(:rY x, < 21-~~ - IHI,+t 1-'/~'/z.

X s p s >-- 2 co/2 _ IHl~+l,fii,/2+l

p, >__ 2~~ IH,,, i ~ ,

we derive

Ak(j) < cgr La/z-----~j \-~J\~J \r,I E l s ~ J • I HI,+ t ~'+j+~-'fiT/2
s~.~-(R ~)

+ cg, ~a/2--q \~,/\~) \r) E IS~J • Inl,+
s e S (R ~)

An Optimal Convex Hull Algorithm in Any Fixed Dimension 407

By H61der's inequality,

where Pl = c2/3(cl +J + 1 - ~/~1/2)/(c~/3 - 1) and q = 1 - 1/c~/3. Similarly,

IHI~+ 1 p~ ,
$

w h e r e P 2 - - c2/3(ci + J -- x/f~l/2)/(c~/3 - 1). Finally, we have

a iHis + ip3 ,
$

where P3 = c2/3(c1 ' ~ J - ~ 1) / (c 2 1 / 3 - 1) . Because 5-(R ~) is a semicutting and

P3 < P2 < Pl < cl (recall that c a can be chosen as large as we want) we have, for

some constant b = b(cl),

Z I H I s + [~ ' = O (1) • IHl~lP'<-bcorLa/Tj(n-r)P"
s e , ~ ~) s e . ~ - (R ~)

therefore

l(1-'](~-y(n-]JrLa/2~q-"(~ " ac2.'~ 1/ff~
- - _ ~kls I) .

Since we have assumed that j > O,

y(.y
1 n

r-k r -- k)r \r(n ~ r 2 k)J = 0 ,

and, hence,

Ak(j) ~ ~ rLa/E-~q-l)-l(~ ISkl~[a~) 1/:'/~.
C O \ s e ~ (R n)

Adding up Ak(j) for all j _< d completes the proof. []

408 B. Chazelle

Lemma 3.4. The eneryy of R w S at the end of round t is less than 1.

Proof. It suffices to prove that

E*[e[Sk ~-S] < �89 + ~),

which we do by induction. The case k = 0 follows from Lemma 3.1. Assume that

it holds up to k < r. From the analysis of Lemma 2.4 and from Lemma 3.3, we

derive

E*[r -~ 53 < E*[SIS, --- S] + Ak

< � 8 9 + +

From the induction hypothesis we find that

E[~IlSk ~- S] < E*I-~ISk ~ S-1 < 1,

therefore

and

ts~,~l ~'/~ < c~r Ld/2j
s~-tR ~)

< 1 +
r

which completes the induction. []

References

t. Agarwal, P. K. Partitioning arrangements of lines, I: An efficient deterministic algorithm, Discrete
Comput. Geom. 5 (1990), 449-483.

2. Brown, K. Q. Voronoi diagrams from convex hulls, Inform. Process. Lett. 9 (1979), 223-228.

3. Chazelle, B. Cutting hyperplanes for divide-and-conquer, Discrete Comput. Geom. 9 (1993),

145-158.
4. Chazelle, B., Friedman, J. A deterministic view of random sampling and its use in geometry,

Combinatorica 10 (1990), 229-249.
5. Chazelle, B., Matou~ek, J. Derandomizing an output-sensitive convex hull algorithm in three

dimensions (submitted for publication).

An Optimal Convex Hull Algorithm in Any Fixed Dimension 409

6. Clarkson, K. L. A randomized algorithm for closest-point queries, SIAM J. Comput. 17 (1988),

830-847.

7. Clarkson, K. L. Randomized geometric algorithms, in Euclidean Geometry and Computers, D. Z.

Du and F. K. Hwang, eds., World Scientific, to appear.

8. Clarkson, K. L., Shor, P. W. Applications of random sampling in computational geometry, I1,

Discrete Comput. Geom. 4 (1989), 387-421.

9. Edelsbrunner, H. Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.

10. Edelsbrunner, H., Seidel, R. Voronoi diagrams and arrangements, Discrete Comput. Geom. 1 (1986),

25~,4.

11. Graham, R. L. An efficient algorithm for determining the convex hull of a planar point set, Inform.

Process. Lett. 1 (1972), 132-133.

12. Kirkpatrick, D. G., Seidel R. The ultimate planar convex hull algorithm? SlAM J. Comput. 15

(1986), 287-299.

13. Matou~ek, J. Approximations and optimal geometric divide-and-conquer, Proc. 23rd Annual .4 CM

Syrup. on Theory of Computing, 1991, pp. 505 511.

14 Matou~ek, J. Efficient partition trees, Proc. 7th Annual ACM Symp. on Computational Geometry,

1991, pp. 1-9.

15. Matou~ek, J. Cutting hyperplane arrangements, Discrete Comput. Geom. 6 (1991), 385-406.

16. Matou~ek, J. Linear optimization queries, J. Algorithms, to appear.

17. Preparata, F. P., Hong, S. J. Convex hulls of finite sets of points in two and three dimensions,

Comm. ACM 20 (1977), 87-93.

18. Raghavan, P. Probabilistic construction of deterministic algorithms: approximating packing

integer programs, J. Comput. System Sci. 37 (1988), 130-143.

19. Seidel, R. A convex hull algorithm optimal for point sets in even dimensions, Technical Report

81-14, University of British Columbia, 1981.

20. Seidel, R. Constructing higher-dimensional convex hulls at logarithmic cost per face, Proc. 18th

Annual ACM Syrup. on Theory of Computing, 1986, pp. 404-413.

21. Seidel, R. Small-dimensional linear programming and convex hulls made easy, Discrete Comput.

Geom. 6 (1991), 423M34.

22. Spencer, J. Ten Lectures on the Probabilistic Method, CBMS-NSF, SIAM, Philadelphia, PA, 1987.

23. Vapnik, V. N., Chervonenkis, A. Ya. On the uniform convergence of relative frequencies of events

to their probabilities, Theory Probab. Appt 16 11971), 264-280.

Received July 9, 1991, and in revised form May 28, 1992, and March 8, 1993.

