
Discrete Comput Geom 10:377~109 (1993) 

e o m e  ry 

An Optimal Convex Hull Algorithm in Any Fixed Dimension* 

Bernard Chazelle 

Department of Computer Science, Princeton University, 
Princeton, NJ 08544, USA 
chazelle @cs.princeton.edu 

Abstract. We present a deterministic algorithm for computing the convex hull of n 

points in E d in optimal O(n log n + n Ld/2j) time. Optimal solutions were previously 

known only in even dimension and in dimension 3. A by-product of our result is an 

algorithm for computing the Voronoi diagram of n points in d-space in optimal 
O(n log n + n Fa/27) time. 

I. Introduction 

This paper  provides  a simple a lgor i thm for comput ing  the convex hull of n points  

in d-space determinis t ical ly  in opt imal  O(n La/2j) time, for d > 3. This result settles 

an open quest ion of  long standing. Opt imal  determinist ic  solut ions were previously 

known only in even dimension and in dimension 3 [11], [17], [19]. By duali ty,  

the a lgor i thm can be used to construct  the full lattice structure of  the feasible set 

of n l inear const ra ints  in opt imal  O(n log n + n La/2j) time. As a by-product ,  we 

obta in  an a lgor i thm for comput ing  the Voronoi  d iagram of n points  in opt imal  

O(n log n + n Fa/zT) time, which is also a new result. 

The convex hull p rob lem has had an intr iguing history. The cases d = 2, 3 have 

long been solved, but  the problem has remained elusive in higher dimensions.  

More than  a decade ago~ Seidel [19] gave an optimal ,  O(n log n + nLd/2J)-time, 
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present paper, although similar in spirit, is considerably simpler than the one given in the proceedings. 
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algorithm for the case where d is even. Later, he gave a slightly suboptimal, 

O(n kd/Ej log n)-time, solution for any fixed d [20]. On the probabilistic front, 

Clarkson and Shor [8] gave a Las Vegas incremental algorithm with optimal 

expected time. A variant of that method with a particularly simple analysis was 

proposed recently by Seidel [21]. 

Our convex hull algorithm is optimal in the worst case, but it is not output- 

sensitive. On that score the best-known general solution is due to Seidel [20]. Its 

running time is O(n 2 + h log h), where h is the facial complexity of the hull. The 
quadratic overhead can be cut down to  O(n 2-(2/([-d/21+ 1))+E), for any fixed e > 0, as 

was recently shown by Matougek [16]. Whether the complexity can be brought 

down to the lower bound of ~(h + n log h) remains an outstanding open problem. 

To date, only in two dimensions [12] and three dimensions [5], [8] are optimal 

output-sensitive algorithms known. (The algorithm in [8] is probabilistic; its 

optimal derandomization is given in [5].) 

The convex hull algorithm given here can be regarded as an attempt to 

derandomize Clarkson and Shor's probabilistic incremental method [8]. It is 

nearly as simple as its randomized counterpart. Its complexity analysis, however, 

requires more effort. In the process we develop a deterministic version of a Monte 

Carlo integration method, which is likely to be useful elsewhere. Note that the 

details of the technique are needed for the analysis of the algorithm but not for 

its implementation. Whereas most geometric algorithms based on random samp- 

ling have been successfully derandomized [1], [3], [4], [13]-[15], this has not 

been the case of randomized incremental algorithms. We believe that our result 

is the first such instance, and we anticipate that others will follow from this work. 

The term randomized incremental refers to a class of geometric algorithms, 

whose guiding principle is to add the input elements one at a time, in random 

order, and maintain the current solution naively after each addition--see Clark- 

son's survey article [-7] for a detailed discussion. This is the approach followed by 

Clarkson and Shor to compute the convex hull of n points. Translated into dual 

space, we are given a set H of n half-spaces, and we must compute their intersection. 

At the rth stage, a subset R of r of them has been selected and a triangulation 

~ of the polyhedron R n = ( ]{he  R} has been computed. We also assume 

that we have, for each face of ~-(R~), a conflict list that provides all the half-spaces 

cutting through it. Among the remaining n - r half-spaces, we pick one at random 

and intersect it with the current intersection R% using the triangulation as a 

guiding device to speed up the location of the sliced simplices of Y-(R~). If the 

intersection with R ~ is not trivial, we recompute a new triangulation and update 

the conflict lists. 

The running time of the algorithm is proportional to the total amount of 

updating among the conflict lists. Intuitively, it is clear that at stage r the faces of 

the triangulation are cut by O(n/r) half-spaces on average. By the Upper Bound 

Theorem, the intersection R ~ has O(r Ld/2j) faces and its triangulation J-(R ~) has 

on the same order of simplices. Therefore, the total number of half-space/simplex 

cutting pairs is O(#a/2J(n/r)). It follows that if the next half-space to be added is 

picked at random, it should cut at most on the order of (1/(n - r)Xn/r)? -a/2j faces 

of f ( R n ) .  If r is not too large, that puts the amount of work for slicing/ 
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retriangulating at stage r at O(rLd/2J-1). Assuming that each face is cut by no 

more than O(n/r) half-spaces, the total amount of updating at stage r is O(nrL~/ZJ-2), 

which represents the number of cutting pairs destroyed or created. Summing up 

over all r gives an expected running time of O(n log n + nLd/EJ), which is optimal. 

Of course, this analysis is not rigorous and does not constitute a proof. 

However, it gives some intuition for what a fast deterministic algorithm must strive 

for, namely, keeping the size of each conflict list at stage r within O(n/r). As it 

turns out, this is too much to ask, but fortunately a relaxed, "lower-moment" 

condition suffices. To state this condition, we need to define the energy of the set 

R: this is the sum ~e  ]Hlel c, taken over all segments e joining the origin to the 

vertices of R ~, where c is a large constant and [Hle] is the number of half-spaces 

cutting through e. The required condition says that the energy of R should be 

O(rLd/2J(n/r)C). Such a low-energy triangulation is called a semicutting. 

How do we produce a "random-looking" permutation deterministically? Think 

of the half-spaces as a stack of cards (in arbitrary order). We proceed in O(log n) 

rounds: at round t, we remove 2 t cards from the deck by going through the entire 

deck and selecting cards to be removed. Each card has an initial score and we 

remove only cards whose scores are below average. (The removal of a single card 

may alter the score of all the remaining cards, so scores need to be recomputed.) 

Every time a card is thrown out, the corresponding half-space is added to the 

current structure (which means cutting through the current intersection, re- 

triangulating, and updating the conflict lists). The order in which the cards are 

thrown out gives us the desired permutation. Note that with the help of the conflict 

lists and the current triangulation, adding a new half-space is routine. So, it appears 

that the efficiency of the algorithm rests entirely on the choice of a good scoring 

function: it must lead to a favorable ordering of the cards and be easy to compute. 

At the beginning of round t, we have in hand the intersection R ~ of a subset 

R of r = 2 t of the input half-spaces, along with its triangulation Y(R ~) and the 

set of conflict lists. The purpose of the round is to find, among the n - r remaining 

half-spaces, a "good"  subset S of 2' of them, and compute the new intersection 

(R w S) ~ along with its associated triangulation and conflict lists. By a good set 

S, we mean one that makes ~-((R u S) ~) a semicutting. 

We can verify that a random choice of S is good with high probability. Thus, 

a reasonable approach is to simulate a random selection deterministically by using 

Raghavan and Spencer's method of conditional probabilities [18], [22]. The 

underlying probabilistic model is the hypergeometric distribution, which assumes 

that all subsets of H \ R  of size 2 t are equally likely. Let ~ be the expected energy 

of R w S, where R is fixed and S is random. There must be a choice of h E H \ R  

for which the expectation of the energy, conditioned upon h ~ S, is at most & We 

choose such an h and iterate in this fashion 2 t times. This gives us a low-energy 

set R u S, whose triangulation 3-((R u S) ~) is therefore a semicutting. 

This approach easily yields a polynomial-time algorithm for computing H r. 

One major snag, however, is that computing the required conditional expectations 

exactly within a reasonable amount of time seems completely hopeless. Instead, 

we must do with very rough estimations of these quantities. We build approxima- 

tion tools by using recent results [3], [13] from the theory of range spaces of finite 
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VC-dimension. This allows us to devise a method of approximate conditional 
probabilities. 

Besides the main result of this paper, we introduce three simple ideas which 

might be useful in other situations: 

1. A scheme for producing "random-looking" permutations. 

2. A deterministic Monte Carlo integration method for approximating the sum 

(i.e., integral) of a function defined over the vertices of a hyperplane 

arrangement. 

3. An elementary error analysis to cope with faulty calculations in the 

Raghavan-Spencer method. 

2. Preliminaries 

Computing the convex hull of n points is reducible, by duality, to computing the 

intersection of n half-spaces I-9]. If we choose a polarity with the origin inside the 

simplex determined by d + 1 of the points, then we are guaranteed that the 

intersection of the half-spaces is bounded and contains the origin O. Let H be a 

set of n hyperplanes (assumed to be in general position and away from O), and 

let H ~ be the polyhedron formed by the intersection of the corresponding 

(origin-enclosing) half-spaces. (Note that we have changed our notation slightly, 

as H referred to a set of half-spaces in the previous section.) Given a simplex s of 

any dimension between 0 and d, let Hf, be the set of hyperplanes of H that intersect 

the relative interior of s but do not contain s. We denote by v(H; s) the number 

of vertices in the portion of the arrangement of H in the relative interior of s. If 

s is of dimension k < d, the k-dimensional arrangement formed by H over the 

affine hull ofs is understood. So, in particular, ifs is a line segment, v(H; s) = [His]. 

(We use a lower bar to avoid confusion with the cardinality sign.) Finally, we use 

the notation ~r to designate the arrangement formed by H. Because of the 

previous results in low dimension, we can assume that d > 3. 

The Geode. We need to define a particular type of triangulation which we use 

throughout. We adopt the convention that a triangulation consists of disjoint faces 

which are relative interiors of simplices of all dimensions between 0 and d. (Other 

definitions can be found, where faces are closed sets.) Of course, the standard 

properties of a simplicial complex, in particular, the fact that the closures of 

adjacent faces intersect in the closure of a face, are assumed [4], [6], [93. Given 

R ___ H, a triangulation of ~r is obtained by first triangulating recursively the 

(d - 1)-dimensional cross-section of the arrangement made by each hyperplane, 

and then, for each cell of the arrangement, lifting all the k-faces on its boundary 

(0 < k < d -  1) toward a consistently chosen vertex (except for the simplices 

partitioning the faces incident upon the vertex in question). When it comes to 

triangulating the polyhedron R ~, however, we must be more specific about the 

choice of lifting vertices. We define the geode of R, denoted ~--(R~), as the particular 

triangulation o fR  ~ obtained in the following recursive manner. For  k = 2, 3, . . . ,  d, 
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in that order, triangulate each k-face f of R n like this: If k < d, let vl . . . . .  vm be 

the vertices of f and let vl be the one that minimizes the quantity tHlet, where e 

is the segment Ova(1 < i <  m). (Break ties by taking the vertex with lexico- 

graphically smallest coordinate vector.) Lift toward vl the triangulation of each 

j-face (j < k) of R ~ that lies within the boundary of f but is not incident upon vr  

By our choice of v~ this produces a triangulation of f that is consistent with that 

of its boundary. (This is because vl is also the vertex chosen for triangulating the 

faces on the boundary of f that are incident upon v~.) For k = d, simply lift toward 

O the triangulation of t3R ~ just obtained. An easy inductive argument based on 

the Upper Bound Theorem shows that the size of the geode is O(IRILa/2J). Our 

next result motivates this particular choice of triangulation. 

Lemma 2.1. Given the geode of  R ~ H, for any constant c > 1, a constant b = b(c) 

exists, such that 

~, ]Hj~[ c _~ ~ b[Hf~[ ~, 
S e 

where the first sum is taken over all faces s (or all dimensions) of  the geode and the 

second one over all segments e connecting 0 to the vertices of  the geode. 

The proof of the lemma as well as other proofs are given in the Appendix. For 

any face s e ~--(R ~) the set HI~ is called the conflict list of s. By setting c = 1 in 

Lemma 2.1, we easily derive the following result. 

Corollary 2.2. Given a full facial-lattice description of  R ~ and the list Hie, for  all 

segments e connecting 0 to the vertices of  the geode, we can compute the geode of  

R and all its conflict lists in time proportional to [RI La/2j + Ee I H l e [  " 

Approximation Tools. Specializing a definition from [23], we say that a subset 

R of H is a (1/r)-approximation for H if, for any line segment e, the densities in R 

and H of the hyperplanes crossing e differ by less than I/r, or, formally, 

1 IHrel IRle[ < _ .  

IRI r 

Matou~ek [13] has shown how to compute a (1/r)-approximation for H of size 

O(r z log r) in time nr ~ for any r > 1. A (1/r)-approximation can be used to 

estimate the number of vertices of ~r inside a given simplex. 

Lemma 2.3 [3]. Let R be a (1~O-approximation for  a finite set H of  hyperplanes 

in E d. For any d-dimensional simplex s, we have 

v(H;s) v(R;s)[ 1 

IHI ~ IRI d <- 'r  
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Semicuttings. We fix two integer constants c o and cl, which are used throughout. 

We must think of them as large enough to satisfy all the inequalities in which they 

are involved; ct depends only on the dimension d, while Co depends on both d 

and cl. Given R c_ H, if the energy satisfies 

1; IHel c' ~ colRlLa/2/ n \~ 
e 

where the sum extends over all the segments e joining O to the vertices of R n, 

then the geode ~r(R~) is called a semicuttinff (for H). A side observation, which 

we often use but do not mention explicitly again, is that we have a similar 

inequality for lower moments, i.e., for any c < c 1, 

1; In ,  I c < colRILa/2J/~n / c / " ~  
, - ~,IRI}" 

We omit the proof, which is a straightforward application of Hflder 's inequality. 

The Method of  Approximate Conditional Probabilities. We briefly recall Ragha- 

van and Spencer's method of conditional probabilities [18], [22] and generalize 

it to allow errors in the computations. Let X be a discrete set and let X be a real 

function whose argument is any subset R ___ X of fixed size r. The goal is to 

determine a particular S ___ X of size r at which the value of the function Z does 

not exceed its expectation, i.e., 

= ~ z(R) �9 

R~-X;IRI=r 

Here is a way to do it. Note that (using subscripts to indicate the relevant 

probability spaces) 

ERI-z(R)I IXl - t  1; ( I X I _ ~ l l ) - t  
= I ;  

xeX  Rc-X;IRI=r;xER 

x(g) = Ex[Edx(R)Ix e R]]. 

Dropping the argument R for notational convenience, the element x of X, denoted 

st, that minimizes E[Xlx e R] satisfies E[xlst  e R] < EX. Pursuing this idea, we 

find that the element x e X\{s t } ,  denoted s2, that minimizes E[xIsl, x e Rl is such 

that 

E[xlsx, 82ER] <~ EI-zlst ~R]  _ EZ. 

In the end, we find a complete assignment for which 

Z(sl, . . . ,  s,) = E[Xlsl . . . . .  s, eR]  < EX. 
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Note  that  we can relax the selection criterion by simply requiring that  the 

choice of sl satisfies EI-ZlSl ~ R] < EZ, and, more generally, 

E[z t s l  . . . . .  si+ 1 ~ R] < Ex[E[xls l  . . . . .  si, x ~ R]] ,  

where the expectat ion Ex is taken over all x # s~ . . . . .  si, with all sj distinct 

(1 < j  < i + 1). In practice, this will work only if the relevant condit ional  expecta- 

tions can be computed  efficiently. Suppose that  we cannot  compute  E exactly, but, 

instead, we can obtain only an estimation E*. Let s* . . . . .  s* be the r elements of 

X selected in the same manner ,  i.e., in such a way that  

E * [ z I s T  E R]  _< E x [ E * [ x l x  E R ] ]  

and, for i > 0, 

E*[ZIsT . . . . .  s*+ x E R] < Exr ...... .[E*EzIs~' . . . . .  s*, x e R]].  

We also require that  

E*[xls~'  . . . . .  s,* ~ R]  = X(s'~ . . . . .  s*,). 

The method  will work if (i) E*Z is not too far from EX and (ii) the drift Ai is not 

too large, where 

A o = Ex[E*[zIx  ~ R] ]  - E*Z 

and, for i > 0, 

Ai = Exr . . . . . .  rI-E*I-xls~ . . . . .  s*, x e R ] ]  - g* l -x l s~  . . . . .  s~' e R ] .  

The first expectat ion is not starred because in our appl icat ion it can be easily 

computed  exactly. Note  also that  in the original Raghavan-Spencer  method  the 

drift is always null. 

Lemma  2.4. X(s* . . . . .  s*) g E*Z + ~o~i<_,-1Ai. 

Remark.  The  notat ion E* is used for mnemonic  purposes.  It  should not be 

confused with a mathemat ica l  operator:  E*Exlx~ . . . . .  xl] is simply a function of 

xl . . . . .  xl, with none of the usual properties of an expectation. 

3. The Convex Hull Algorithm 

To build intuit ion we begin with a probabilistic version of the algori thm and we 

briefly discuss its expected complexity. Then we move on to the deterministic 

algori thm and analyze its performance in detail. 
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A Probabilistie Solution. To get started we compute a (1/c0-approximation R for 

H and naively compute its geode as well as the conflict list His of every face s in 

the geode. This takes linear time. For convenience, we can always add a few 

hyperplanes to R (e.g., the duals of the d + 1 points chosen at the beginning of 

Section 2), if necessary, so as to make the geode bounded but still enclosing H r. 

By making Co large enough, we can always ensure that the geode is a semicutting. 

Furthermore, note that IHle I < n/q  for any segment e connecting 0 to a vertex 

of R?. This concludes the start-up phase. 

We are now ready to pick up the algorithm in mid-action. At the outset of 

round t we have already chosen a subset R _ H of size r whose geode J-(R ~) is 

a semicutting and whose conflict lits HI, (s e J-(R~)) have already been computed. 

To conduct the round we pick a random sample S of r hyperplanes in H\R,  and 

we insert them into the current intersection. Thus, by going from R to R u S in 

one round, we double the number of hyperplanes inserted, which ensures that in 

round t on the order of 2 t hyperplanes will have been inserted. 

For  each s ~ ~--(R~), we identify the set Sj.~ of cutting hyperplanes in S, and we 

form the polytope s n (Sis) ~ naively by, say, computing d(S)  explicitly 1-93 and 

clipping the relevant cell within s. We complete the work by computing the geode 

of R u S and its conflict lists. It is easy to achieve a running time on the order of 

rEd/Z J+  ~ IHI, I x [SJ .  
, ~ f  (R ~) 

By Markov's inequality, the probability that the geode of R u S is a semicutting 

is at least a positive constant, provided that the expectation (for R fixed) of 

~v IHiovl c', summing over all vertices v of(R w S) ~, is at most on the order of 

d 2 /  n "X c' 

which is not difficult to verify. We can also easily check that, with high probability, 

ISmsl ~ = O(rLd/2J). 
seJr (R  ~) 

Intuitively, a typical face s should be cut by O(n/r) hyperplanes, so at most a 

constant number of those should end up in S. It follows from Lemma 2.1 and 

Cauchy-Schwarz's inequality that the expected time for computing the geode of 

R u S is O((n/r)rLd/2j). Since the sizes of R, R w S, etc., grow geometrically and 

d > 3, we find that the total expected running time of the algorithm is O(nLd/2J). 

This discussion only illustrates the mechanics of the probabilistic algorithm, so 

we do not need to justify our claims. However, we are now ready to describe its 

derandomization in detail, and provide a complete analysis of its complexity. 
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The Deterministic Algorithm. The first round does not use randomization, so let 

us turn directly to the construction of S in round t. Our assumptions about R are 

the same as in the probabilistic case, i.e., Y-(R ~) is a semicutting; for convenience, 

however, we assume that r = IRt is less than n/cv We can also trivially assume 

that r is large enough, say, r > c~. For natural reasons, we want to ensure that: 

1. The faces of the geode Y-(R ~) should not be cut by too many hyperplanes. 

2. The next current set of inserted hyperplanes, R u S, should produce a 

semicutting. 

To achieve both conditions, it would be natural to enhance the definition of the 

energy g of R w S given earlier by setting g = g l  + ~2, where each 8~ is the 

(normalized) randomized variable: 

1 
e ,  -- c~rLd/2j ~ ISl~l~' 

s~o~-(R ~) 

and 

1 

'~2 -corLd/Za(n/r)C, ~ IHlel c', 

where the sum extends over all the segments e joining O and the vertices of 

(R u S) ~. (Note that, from now on, s e J ( R  n) refers to a face of the geode that is 

either d-dimensional, or, else, that is not incident upon O; indeed, the nonfull 

dimensional faces incident upon O can be assumed not to contain any vertices of 

d ( H )  and thus can be ignored.) If we can show that the expectation of ~ is less 

than i, then we are in a position to apply the method of conditional probabilities 

and derive a set S that satisfies both desired conditions. 

The problem is that the expectation of gz is very unwieldy to compute. So we 

must substitute approximations, and define a random variable d ~*, whose expecta- 

tion E[g~]  provides a fairly accurate estimation of E[g2]. Using the terminology 

of the last section, we define the estimated expected energy of R w S to be 

E*E l -- + EEe*] .  

To define 8*, we consider each face s e ~--(R ~) in turn, and compute a (1/p,)- 

approximation As for HI, of size O(p2~ log Ps), where 

r 1 "F. P '  = 2c~ n I n l ~ + l  

We use the notation s + to designate the relative interior of the convex hull of O 

and s. Note that s +  e f f ' (R  n) and that IHi, I < Ial ,+l .  Given a point v, let ~ov be 
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the number  of  hyperplanes of R passing through v and let 6v be a shor thand for 

IHio~l. Lemma 2.3 suggests that  a vertex v ~ ~r should "accoun t"  for roughly 

(IHtsl/IAsl) a-~~ vertices of ~r so it is natural  that we should set 

se.~-(R ~) 

where the inner sum extends over all vertices v of (R u S) ~ that lie in s and are 

also vertices of ~r u As). Note  that in order to account  for vertices on the 

boundary  o f R  ~, we do not  require v to be a vertex of ~r but only of~C(R u As). 

Lemma 3.1. E*[~f] < �89 

Here is how the tth round  is conducted. We select hyperplanes in H k R  one at 

a time until we have a collection S = S, of size r. Assume that we have already 

chosen a subset Sk of size k, with So = ~ .  The score of a hyperplane h e H \ ( R  w Sk) 

is equal to our  estimation, denoted E*[r  w {h} _c S], of  the expectation of 

condit ioned upon having all the hyperplanes of Sk ~ {h} in the r andom set S. 

Although ideally we would like to pick the hyperplane of  lowest score, this seems 

too difficult to do, so we content  ourselves with any one of a reasonably low score. 

We define the score ~k(h) of a hyperplane h at step k to be 

(k(h) = E*[r  w {h} _~ S] d~f E[e~[Sk w {h} ~_ S] + E[e*(S  k u (h})]. 

What  is the r andom variable 8*(Sk U {h})? For  notat ional  convenience we define 

8*(Sk), from which the definition of  ~*(Sk u {h}) follows trivially. At the beginning 

of the round, we have E * [ r  = E [ ~ I ]  + E [ ~ ] ,  so it is natural to set r = r 

Now, for k > 0, let ~0 v denote the number  of hyperplanes of R u Sk passing through 

vertex v. (Note that  since So = ~ ,  this is consistent with our  earlier definition of 

q~v as the number  of hyperplanes of  R passing through v.) We define 

d-~av (I,,,,q 
1 ~" ~ \ lasl )  v, 8*(Sk) -- corLa/2 J(n/r) c' s ~ t R ~  

where the inner sum extends over all vertices v of (R w S) ~ that  lie in s and are 

also vertices of ~ ( R  w Sk u A~); we define S = Sk w T, where T is a r andom subset 

of H \ ( R  w Sk) of size r -- k. 

Important Remark. Except for k = O, E[~(Sk)  ] is not  the same as the conditional 

expectation E[8*ISk--~ S]. Note  that  it cannot  be smaller. The reason we use 

E[8~(Sk)] instead of  E[g~ISk -- S] is that  to find a set S such that  ~* is small is 

in itself quite useless: it only guarantees that a small subset of  the vertices of 

(R • S) ~ (those in the arrangement  of R u As) has low "energy," which does not 
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give us a semicutting. Instead, we must  in t roduce a brand-new r andom var iable  

g*(S,)  at each step, so that  in the end every vertex of (R w S) ~ is counted  in the 

inner sum for g*(Sr). Indeed,  we can verify that  

1 
, r  f___, IHi~l <', 

corLd/ZJ(n/r) <1 e 

where the sum extends over all segments e connect ing 0 to the vertices of (R u St) ~. 

It follows that  the energy of R w S,, defined earl ier  as r + d~2, or, to be more  

rigorous,  as E [ d l  + N2[S = Sr], is also equal  to E [ g l l S  = S,] + g*(S,). 

Let us show how to calculate the score (k(h). Again, for no ta t iona l  convenience,  

we only discuss the calculat ion of E* [d~ Sk ~-- S]. We can express E [d  ~ ~-- S] as 

, 

cgr ha/2j ~ ~, (IS~<i,I + i f '  n -- 
s e J ( R  ~)  j>_O r - -  " " r - -  k ' 

with the usual  convent ion that  

if b < O  or  b > a .  

Indeed, we pick r - k hyperplanes  out  of  n - r - k, and  we dist inguish among  

those (j) crossing s and the others:  note that  the hyperplanes  crossing s form the 

set HI~\(R u Sk), which is the same as HI~\Sk. Similarly, we write E[d~ as 

1 
corLdi2J(nlr)C ̀ ~ 2 Z,~ 

SE,~- (R  ~)  v E ~ ( R ~ S k t ~ A s } m s  

x ( , , _  r _ , < _ < , _ d  + r - , < )  r - - - -  + r - '<  ' 

where Zv = 1 if Hio ~ c~ S k = ~ and 0 otherwise. Here we express the fact that,  in 

order  to con t r ibu te  to E[w~*(Sk)], the vertex v must  not  be separa ted  from O by 

any hyperp lane  of Sk nor  by any selected hyperplane,  and  its d -  ~o~ passing 

hyperplanes not  in R w Sk must  all be selected. (Recall the redefinit ion of toy to 

include S k as well as R.) 

At  step k we need to select a hyperplane  ho~ H \ ( R  ~ Sk) whose score does not  

exceed the average score, i.e., 

1 

- n - r - k heH\(RuSk) 
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We show how to do this in the Appendix. We prove the following: 

Lemma 3.2. Round t can be executed in time at most proportional to 

- -  + + ~ IHisl2-~(ISl~l + 1) a+2 + ~ IHI~I 2-~+c~'3 
log n ~ s~:-(R~) s~:lR~) 

for  some f i xed  0 < v < 1. 

As in the randomized case, once S = Sr has been determined, we compute the 

geode 3-((R w S) n) and update the conflict lists. To do that, for each s ~ ~-(R n) we 

form the arrangement of Sis and the d + 1 hyperplanes defining s [9], and we 

retrieve the cell s n (R w S) ~. These cells glue naturally together around adjacent 

simplices s of 5-(Rn). Therefore, it is routine to compute (R w S) n. By Corollary 

2.2, we can also update the conflict lists without difficulty in time within the bound 

of Lemma 3.2. 

We are now ready to analyze the complexity of the whole algorithm. Because 

of our selection criterion, we can use Lemma 2.4 to bound the energy, 81 + 8"(S), 

of R w S by 

E*d ~ + ~ Ak, 
O < k < r - 1  

where 

Ak = --E*[~ISk ~ S] + 
1 

E 
n -- r - -  k heH\ (RuSk)  

E*[81Sk u {h} _ S]. 

Our next result bounds the drift Ak: 

L e m m a  3.3. 

Ak < c~r~+Ld/2j/~ ~ ~) k ~ j , 

where c = c~/3. 

From there a simple inductive argument shows that the energy of R u S at the 

end of round t is less than l, i.e., E*[o~IS = S,] < 1. 

Lemma 3.4. The  energy o f  R w S at the end o f  round t is less than 1. 

The lemma immediately implies that 5"((R w S) n) is a semicutting, as desired. 

It also shows that 

~, ISl,r' < c~r~d/2J. 
se~-(R~)  
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Since ~-(R ~) is a semicutting, Cauchy-Schwarz's inequality implies that (up to 

constant factors) 

Iglsl2-v(ISl,l + 1) a+2 + ~ Iglsl 2-~+4'3 = 0(1) + r La/2J r ' 
se.~-(R ~) s~.~-(R~) 

Thus, Lemma 3.2 shows that the cost of round t is 

O ( n 2 / l o g  n + n2/r 2/3 q- n 2-vrl-d/2/-2+v),  

where r = O(2t). Summing up over all t gives O(nLd/Ed). Recall our earlier assump- 

tion that r < n/c1. When we reach r > n/cl, we simply include in the next set S 

the remaining hyperplanes, and finish up the work naively. The time needed for 

this last phase is at most proportional to 

~, ISisl d = ~ I H i J  = 0(1) x r Ldt23 r = O(nL"12j)' 
se..~-(g~) se~-(R~) 

which completes the proof of our main result. 

Theorem 3.5. I t  is possible to compute the convex hull o f  n points in d-space 

deterministically in O(n log n + n L-d/2j) time, which is optimal. 

There are several ways of interpreting a Voronoi diagram of n points in d-space 

as a convex hull or an intersection of half-spaces in (d + 1)-space [2], [9], [10]. 

We have the immediate corollary: 

Theorem 3.6. The l/oronoi diagram of  n points in d-space can be computed in time 

O(n log n + nFd/2q), which is optimal. 
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Appendix 

Lemma 2.1. Given the geode of  R ~_ H, for any constant c >_ 1, a constant b = b(c) 

exists, such that 

I H I J  _~ ~ blnlel c, 
$ e 

where the f irst  sum is taken over all faces s (of all dimensions) of  the geode and the 

second one over all segments e connecting 0 to the vertices o f  the geode. 
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Proof. Because it cannot pass through O, any hyperplane of H meeting a k-face 

s of the geode without containing it must intersect (without containing) the relative 

interior of at least one of the k + 1 segments connecting its vertices to O. Thus, 

it suffices to prove the inequality obtained by substituting ~ for IHis l, where W~ 

is the number of hyperplanes crossing at least one of those segments outside of 

its endpoints. We show by induction on k that, for any k-face f of R n, the sum 

W], denoted Af, where s ranges over the faces of the geode lying within the 

closure of f ,  is at most 

dk(2 c + 1) k ~ In t , r ,  
e ~ E  

where E is the set of edges joining 0 to the vertices of f .  The case k = d, where 

f is the interior of W', gives the lemma. 

The case k = 0 is obvious, so let assume that k > 0. We observe that, by our 

choice of the lifting vertex, we have Af < (2 c + 1) ~g Ag, where g ranges over all 

the (k - 1)-faces o fR  ~' incident upon f.  (Note that 9 ranges over faces of R n, which 

are not necessarily faces of the geode.) The term 1 comes from the contribution 

of the faces incident upon f ,  while the term 2 ' accounts (conservatively) for the 

effect of the lifting vertex to the contribution of the geode faces within f.  By 

induction, we have 

Ao < #dk-l(2 ~ + 1) k-1 ~ I H J ,  
a e e E  

where # represents the maximum multiplicity of a segment e in the counting. 

However, the general position of H, and hence of R, ensures that a segment e is 

adjacent to d hyperplanes, and, therefore, k (k - 1)-faces incident upon f.  It follows 

that # < d, which completes the inductive proof. [] 

Lemma 2.4. X(s1' . . . . .  s*) < E*X + ~o~i~ , -1  Ai. 

Proof. For  i > O, we have 

E*[XIs*, . . . ,  s*+ 1 ~ R] < Ex,s~ ...... 7[E*[xisT . . . . .  s*, x ~ R]]  

< E*[XIs* . . . . .  s* ~R]  + A,, 

with a similar inequality for i = 0. Since X(s* . . . . .  s*) = E*[XIsT . . . . .  s* eR] ,  the 

lemma follows by induction. [] 

Lemma 3.1. E*[g ]  < �89 

Proof. Given se#-(W'), let m = Int,I and k 0 = 2clrmr/n-]. To evaluate the 

expectation of ISlY ' we put a threshold at k = k0, and, for k > ko, we consider 

the event where, out of the r random hyperplanes, exactly k of them intersect s. 

We have 

EISIY' < k,' + ~ k ~ ' ( n - r - m ) ( ~ ) / ( n - r ) .  
k o < k ~ r  r - -  k r 



An Optimal Convex Hull Algorithm in Any Fixed Dimension 391 

Note that, because of the start-up phase, m can be at most a small fraction of n. 

The same is true of r, so all the binomial coefficients are strictly positive, except 

m)  we adopt convention that it is zero if m < possibly for k ' for which the k. 

' ) ' ( ' - -  
ko<k<, n - -  2r + k 

<_k~ + Z \ kn I 
k>ko 

<-Ud + ~ U'2 -k 
k>ko 

= 0(1) x + 0(1). 

m y-k(ern~k 
n - r }  t , k )  

Note that the constants hidden behind O(1) do not depend on c 0. Therefore, by 

Lemma 2.1 and the fact that J-(R ~) is a semicutting, 

It follows that 

' (:) E1-~I] = O + 0(1) x c2rCal2~ d ~ IHisl c' 
s e f  (R ~) 

(~) Ir\<' ink<, 1 1 [ I corLdi2Jl i "  
= O + 0(1) X C2orLdl2 ~ \ h i  \ r l  

E [ ~ , ]  < �88 (A.1) 

To bound E l8*]  is more difficult and we must begin with a technical extension 

of a result of Clarkson and Shor [8] concerning k-levels in arrangements of 

hyperplanes. We say that a point p is at level k if the relative interior of the segment 

Op intersects exactly k hyperplanes of H. Let fk(H) denote the number of vertices 

of ~r at level k. It was shown in I-8] that the prefix sum 

fsk(H) = ~ fi(H) 
O<i<k 

is in O(rlLa/2ikFd/21). For any j _< d, let fk(H, R,j) denote the number of vertices of 

~r at level k formed by the intersection of any j-face of R ~ and j hyperplanes 

of H\R. (Note that the level function remains unchanged.) We prove that 

fak(H, R,j) = O(1) x (k + 1); r + k + 1 / " (A.2) 
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Let t = Ln/(2k + 2)]; we can obviously assume that t is large enough. Let T be a 

r andom sample of  H\R obtained by picking each hyperplane independently with 

probabili ty t/n, and let V be the number  of vertices of the polyhedron R ~ n T ~ 

that are formed by the intersection of a j-face of R ~ with j hyperplanes of H\R. 
With high probability, T has on the order of t hyperplanes, so we should expect 

the polyhedron R n n T ~ to be bounded  by O(r + t) hyperplanes, which would 

then give an upper  bound  of O((r + t) La/2j) on its number  of vertices, and, hence, 

on V. Indeed, using elementary tail estimates for the binomial distribution, we 

leave it as an exercise to show that  the expected value of V is O((r + t)Lal2J). We 

can also estimate EV from below: because tin < �89 

EV= y~ 
i>_O 

�9 t i 

f~(H,R,j)(~) '(1--~)'> e-2kti"(n)f<_k(H,R,j ) >_ e-'(~ff<k(H, R, j), 

from which (A.2) follows. 

Using the fact that 6~ < n/cl (because of the start-up phase) and r < n/c 1, we 

easily derive an upper bound  on the expectation of g*.  For  a given face s of  ~'-(R n) 

we consider every vertex v of  d ( R  w As) inside s, and we express the probability 

that v is a vertex of(R u S) ~ for r andom S: this means that the d - q~ hyperplanes 

through v that  are not already in R are picked and that the 6v separating 

hyperplanes are not chosen. We have 

E [ ~ ]  - 

Co rLdl2 J(n/r) c' \ [As [ J s~,~(R ~) vEsc~(RwAs)  

• r 

, 

<-- corLdlBJ(n/r)~, E E 

( ' y o? 
x 1 - -  

n - r - 6 v ]  \ n--r  

We fix j (0 < j < d) and define 

- r - 6 v  Ih, I) \ n - r  

where the summat ion in s extends over all (d - j)-faces of 3-(R~), and the one in 

v ranges over all the vertices in s in the (d - j ) -d imens iona l  arrangement  formed 

by A s over the affine hull of  s. Because of  general position we can assume that  the 

(d - j)-dimensional faces of Y-(R ~) lying in fewer than j hyperplanes of R do not 



An Optimal Convex Hull Algorithm in Any Fixed Dimension 393 

contain any vertices v and thus can be ignored. This implies that  all the vertices 

v involved in the sum satisfy ~0v = j. Because of previous restrictions on 6~ and r, 

we have 

Fs=O(1) X~\niAsl/ ~ - 

where the factor O(1) does not depend on c 0. 

We wish to est imate the inner sum in the expression of Fj as a sum over vertices 

of the (d - j ) - d imens iona l  ar rangement  induced by H over s. To  do so, we use an 

approach similar to the finite-element method in numerical analysis. We subdivide 

the summat ion  domain  into clusters over which simplifying assumptions  can be 

made about  the summands.  This can be regarded as a deterministic Monte Carlo 
integration method.  

Let ~ be a tr iangulation within s of a (1/vs)-approximation for His of size 

O(vZ~ log vs), where v s = [-rlHis+ I/nT. (The weaker notion of an e-net is sufficient 

here, but  for the reader 's  sake we probably  do not need to add any new definitions 

at this point. Note  that  ~ need not be computed:  it is only used to prove the 

lemma.) The tr iangulation partit ions s into faces (i.e., relatively open simplices) of 

all dimensions between 0 and d - j .  Let us perturb ~ slightly so that  all the 

vertices v (in the definition of F j) lie only in (d - j)-dimensional faces of J-~. Note  

that, as a result of the perturbation,  given any two points p, q inside the same 

(d - j )-dimensional  face of ~ ,  we have (recall that  IHis I < IHI~+ l) 

IHI~ I 2n 
16 v -  6ql < + 0(1) < - - - .  

I) s r 

In this way we can write 

E = E  E , 
v a v e ~ c ~ , ~ e ( R u A s )  

where a extends over all the (d - j ) -d imens iona l  faces of ~ .  By L e m m a  2.3 (applied 

in dimension d - j ) ,  

l<lAsle-s+(IAs])d-s 1. 
. . . .  ~r Ps  \ I H I , I , /  . . . .  ~r162 

Note that  Ps can always be assumed to be nonzero since any simplex s such that  

His + = ~ can be ignored from the summat ion  for Fs. Returning to F~, we can 

bound the inner sum as follows: 

1260" 

max{0, 6,Sn - 2n/r} ) r' 
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where, for each v, we are allowed to choose any point w in a. It immediately follows 

that Fj = 0(1) x (F~ + Fj), where the factor O(1) does not  depend on c o, and 

(n)a- j  ( ~)~1(  max{O, bv--4n/r})" 
F) = E E Ov + 1 - - 

s vesmsr n 

and 

. d-j ]HIs[n-J r + 

Fj = Ps r J ' 

where w is any vertex in o'. 

F~ _< E 
v~,~ (H); v ~ R~; cpv = j 

( ~v _l_ 4~nr )C'e-  max{ O,'~v- 4n/r}r/n 

(r)-, ( 4.  

(Note that v e R ~ does not mean that v is a vertex of R~.) Let ko = V4n/r-]; the 

contr ibut ion to the sum of the first k o terms is easily seen to be O(1) x rLd/2J(n/r)" 
because of  (A.2). To handle the second part, we use Lemma 2.1 but now we apply 

summat ion by parts beforehand. In other words, using the identity 

N N k N 

UkUk = Z ( U k - - U k + l )  Z I)i "~ UN+I Z Ui' 
k=ko k=ko i=ko i=ko 

with u k = kCle-rkl" and v k = fk(H, R, d - j ) ,  we derive a similar upper bound,  from 

which it follows that 

Fj Off) x r L~/2j (A.3) 

Here are the details: Let 

A = ~ kC~(H, R, d -j)e-'k/". 
k>ko 

We have 

A < ~ (kC'e -'k/" - (k + 1)C'e-'(k+l)/"Xf<k(H, R, d - j )  - f<_ko_t(H, R, d - j ) ) ,  
k>ko 

since the term uN+ 1 ~ o  vl tends to 0 as N goes to infinity. 
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Note that  

395 

r kCte_rk/n, kC'e  - ' k I n  - (k + 1)Cle - r ( k +  l)/n ~_ k C l e - r k l n ( 1  - -  e -'1") < - 
n 

therefore each of the following inequalities hold up to within a constant  factor: 

k>_ko 

k >_ko 

<-- r rLa/23 xcl+d-Je -rx/a dx 
\ n /  o 

~_ r Ld/2j y~'+d-Je-Y dy 

ko/n 

/ n V '  +d-i 
= 0(1) x [ r  ) r La/zJ  , 

from which (4.3) follows. For  any w in s, we have 5~ < IHt~+ 1, where, as we recall, 

s +  is the relative interior of the convex hull of O and s. Note  that  IHI~ I < IHI~+ [. 

Fj = O(1) x (r-I d-j \n/ ~ IgIS+p~ la-j 2 log vs)a-i( (1 + vs I HI~+I 

We distinguish between several cases. If lilts+ I < n/r, then p, = 2 c~ and v, = 1, and 

( ~ ) d - j  i/n~C,+d-J I/n\C, 
F; = O(1, x ~ 2-C~ ) <-rLa"2J[r ) 

for c o large enough. Of  course, the sum is understood to range only over those s 

for which the condition IHis+l < n/r holds. 

If IHis+l > n/r, then we have (summing over all relevant s e Y(R~)) 

Fj  = O(1) • 
sE~-(R ~) \ rl / 

The simplex s + belongs to 3"-(R~). Note  that  it can be counted at most  twice if 

we extend the summat ion  to all s in J- (R ~) (of all dimensions), therefore 

(_rny-J-  F; = 0(1) • E 
sv.Y-iR~) 
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By Cauchy-Schwarz, it follows that 

F~ < r L a / 2 j  . 

Since the O(1) factor in (A.3) does not depend on c o, we derive from (A.1), (A.3) that 

1 0 ( 1 )  1 0 ( 1 )  1 

E * [ g ] = E [ d ~ , ] + E [ d  ~*]<~+corkd/2j(n/r)~ ' ~ (F) + F~) < ~ + ....... < . 

O<_j<_d C O 2 

[] 

Lemma 3.2. Round  t can be executed in t ime at most  proportional to 

(y - -  + + ~ Inl~12-v(ISl~l + 1)d+2 + 2 Int~l 2-v+4/3 
log n r 2/3 s e . Y t R  ~) s e ~ - t R  ~) 

for  some f i x ed  0 < v < 1. 

Proof.  Our first step must be to compute the approximations As for each simplex 

s e J-(R~). Conservatively, this takes time proportional to 

IHI~+I-q- ~ IHis+l 1+4/3. 
se..~-(R ~ ) se  aJ-(R ~) 

Recall that at step k we must find a hyperplane h o whose score (k(ho) does not 

exceed the average score 

1 
~k(h) �9 

n -- r -- k hEH\(RuSk) 

To speed up the process, we set up a rudimentary priority queue structure in the 

form of a tree of height 2, whose leaves are in bijection with the hyperplanes of 

H \ ( R  w Sk), and whose internal nodes have degree at most x//n. Our first attempt 

might be to store at each node z the average score of the hyperplanes in the set 

L(z) associated with the set of leaves below z, i.e., 

1 
r 

IL(z)l h~L(z) 

Indeed, this would allow us to home in fairly quickly toward a good h o. Updating 

the tree would be too costly, however, so instead we store only partial scoring 
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informat ion at  the nodes. Recall that  E [ r  ISk - S] is equal  to 

1 ( ) 
s~(R~)j>_O r - - k - - j  J \  j J / \  r - k  ' 

and E[r is equal  to 

1 
corld/22(n/r) c~ s~J tR  ~) ~ r 1 6 2  

IH,,IV -~' 

x r - k - d + ( P v  r - k  ' 

where Zv -- 1 if H i o  v r Sk ---- ~ and 0 otherwise. After regrouping,  E [ ~ l  ISk ~-- S] 

can be expressed as 

~,  S , ( S k ,  i, oOF(k, i, oO, 
i,ct 

where 

and 

F(k,i, o O = ~ j ~ ( n - r - k - i ) ~ . ) / ( n - r - k )  
j , r - k - j  r - k  

where the sum ranges over all s~  J - (R  ~) such that  [His\Ski---- i. We must  adop t  

the convent ion  that  [Skl~] ~ = 1, even if ISklsl = 0. Note  that  0 < i < max~lHt~ \Sk[  

and 0 < :t < c 1. Similarly, we can write 

E[e~(SR) ] = ~ N2(S k, i, j)G(k, i, j), 
i , j  

where 

(n - r - k - i ) / ( n  - r - k)  
G(k, i , j )  = r - k - j  r - k ' 

with 0 < i < m a x s l H l , \ S k l  and 0 < j  _< d, and  

1 J~i~', 
N2(Sk ,  i, j )  - Co~-a/2J(n/r) c' ~ertR~)~ 
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where the inner sum ranges over all v e ~ ( R u S k u A s ) n s  such that 

(i) HlovC~ Sk = ~Z~, (ii) d -  tpv = j ,  and (iii) 6~ = i - j .  We do this to separate 

quantities (i.e., F, G) that are purely combinator ia l  and depend on k from quantities 

that are essentially geometric. 

We now have 

(k(h) = ~ N,(Sk w {h}, i, ct)F(k + 1, i, a) + ~, N2(S k u {h}, i, j)G(k + 1, i, j). 
i, at i , j  

We can now write (k(h) as the sum (k + Ak(h) of two terms, the first of which does 

not depend on h. We have 

(k = ~ N,(Sk,  i, ~t)F(k + 1, i, ct) + ~. N2(Sk, i,j)G(k + 1, i,j), 
i,~t i , j  

or in vector form 

The vectors bT~, ff are indexed by (i, ~), or more  simply by a single index running 

between 1 and (cl + 1Xmaxs[Hl~l + 1). In this way the two vectors have a fixed 

length during the entire round.  Similarly, the vectors b~ 2, (~ can be made to have 

a fixed length equal to (d + 1)(max,[Hts [ + 1). We also have 

ak(h ) = ~ (N,(S  k u {h}, i, ~) - NI(Sk, i, a))F(k + 1, i, ~) 
i, at 

+ ~ (N2(S k w {h}, i,j) - N2(Sk, i,j))G(k + 1, i,j), 
i , j  

or in vector form 

Ak(h ) = A]V,(h)" P + Ab72(h ) �9 (~. 

We store the two vec to r s /~ ,  and /~2  separately. Each node z of the tree stores 

the two vectors (i = 1, 2) 

1 
() A]V/(h), 

where we recall that  L(z) is the set of hyperplanes associated with the set of leaves 

below z. 

To  find ho we evaluate (k and go down the tree until we reach a leaf. At internal 

node z, we compute  the average 

1 1 
~ (k( h)---~k+- 

IL(z,)l h ~,, IL(z~)l hEL(z,) 

(A/~,(h). ff + Ab72(h ) �9 d) 

= Ch + ~(z~). ; + ~(z3" d 
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for each child zg and branch toward the child with the smallest average. This 

clearly takes us to a leaf whose score is at most the average. Note that the 

computation at each z~ requires only two inner products since we have stored the 

relevant vectors at the nodes (assuming that all vectors P, (~ are also available). 

Once ho has been found, we delete the corresponding leaf and update all the 

vectors N~, A~7~(h) that need updating as well as the relevant nodes of the tree. 

Let us review each step of the process in detail. First, how hard is it to 

precompute all the vectors F, (~? Since Y(R n) is a semicutting, 

/ n \  c~ 
z i i , , : , =  o . )  • 

se,~'-(R ~) 

and therefore max~l Hlst = O(n/r ~ -0  for an arbitrarily small constant e = ~(cl) > 0. 

So, all the necessary binomial coefficients can be precomputed, as well as the 

vectors F needed in round t, in time proportional to 

r n n 
(r~-~) x man{r, r~- ,  } , 

which is (conservatively) O(n2/log n), for, say, e = ~. All the vectors t7 are easily 

obtained in time O(n:)= O(nl+O. Note that computing binomial coefficients 

exactly might be a problem if O(log n)-bit precision words are used. However, we 

can compute them with a relative error of 1/n ~, for an arbitrarily large constant 

c > 0, which, we can easily verify, is good enough for our purposes. 

At the beginning of round t, the vector NI can be obtained trivially by exploring 

each conflict list, which takes time 

s~.~(R ~) 

(To simplify the notation all our analysis is done up to within constant factors.) 

For each s e ~-(R n) we set up a data structure for computing 3~ efficiently. This 

consists of a triangulation of the arrangement formed by a (1/I His+ I C)-approxima - 

tion for His+, for some small positive constant c. For each vertex w of the 

triangulation we compute 8,~ by examining the entire set HI~+. Then any 6v (v e s +)  

can be obtained very simply by locating the face tr enclosing v (in the computed 

triangulation) and examining each hyperplane cutting it. Knowing the value 5 w 

of, say, the closest vertex w of tr to O, it is then straightforward to derive 5 v. The 

preprocessing time is o(Inls+l 2-v) and each query can be answered in time 

O(iHis + 11 -v) for some fixed 0 < v < 1. It follows that, counting preprocessing, 57 2 

can be found in time 

IHl,+l 2-~ + ~ tHl,+lX-~ x IAJ. 
se ~'-(R ~) se ~r(R ~) 
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At the beginning of round t, to compute AbTi(h) (i = 1, 2) requires only the 

examination of the simplices s e 3-(R ~) cut by h or separated from O by h, and 

thus takes time 

nr ~-1 -4- ~ [Ht~+ l  1 - v  • I A J .  
s : s + n h ~ ~  

The term nr ~- 1 comes from the fact that the entire vector, represented as an array, 

needs to be initialized and its size is max~lHl~ I = O(nr ~- 1). We omit the details of 

the data structure needed to find all the relevant simplices s because they are 

straightforward. So, to set up the tree in its entirety takes time 

n2r ~ - 1 +  ~ IHis+[ = - ' X I A s l  a. 
s ~ . ~ ( R  ~) 

Once all the relevant vectors are available, h 0 is obtained by computing O(n 1/2) 

inner products, which takes O(n3/er ~- 1) time. 

Once ho has been found, we delete its corresponding leaf from the tree. To 

update ~7 i (i = 1, 2) requires only work within the simplices s cut or separated 

from O by h o. Let us consider the update in the midst of the round. For N2, a 

straightforward solution involves examining each vertex formed by R w Sk W As 

within s and checking whether it is separated from 0 by Sk W {ho}. The distance 

6v for each such vertex v is computed using the data structure. Note that ~0 v might 

change. An obvious upper bound on the time for updating both N1 and ~7 2 is 

nr ~- I + ~ Int~+l 1-v • ISI~ u A~I a+ l. 
s:s  + nhor ~ 

To update ANi(h) (i = 1, 2) we must examine each s ~ ~--(R ~) that is cut or separated 

from 0 by both h and h o, and modify the vector ANi(h) accordingly. Care must 

be taken not to look at the whole vector unless this is needed. In other words, we 

update only those entires that are no longer valid, without looking at those that 

are not affected by the insertion of h o. Thus, the time required is at most 

I HI~ +11-" x IStsu Asl d+l, 
s 

where the sum ranges over all s ~ J-(R ~) that are cut or separated from 0 by both 

h and ho. Summing over all h gives us an upper bound on the time required to 

update all AbTi(h ) as well as the information stored at the internal nodes of the 

tree. (Again, we do not look at the entire vectors stored at the nodes, but only at 

the entries to be updated.) The upper bound is 

IHl~+l 2-~ • ISI~ u A~I a+l 
s : s+  c~ho~= O 
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Finally, taken over the entire round, the updat ing time amounts  to 

nr~+ ~ [ S t s + l x l n l s + 1 2 - ~ x l S l s u Z s l d + L  
s e J ( R  ~) 

We conclude that  round t can be executed in time 

n 2 

_ _  + n 3 / 2 r  ~ + n 2 r  ~ -  1 _1_ n r  ~ + 

log n sEY(R~) 
iHis + [ 2 - v  X ISis+ k..) a s l  a+2 .  

Up to within a constant  factor we have 

]nl~ +[2-v x ISis + u As[ a+2 
se.Y-(R ~) 

- < Z  [H,s+l 2-'~ • ISts+[ '+2 +,Y__, IH,~+I 2-" x IAsl "+2. 
s s 

From the relation 

IZ~l-< + 1, 

again unders tood up to within a constant  factor, we derive 

Inls+l 2-~ x ISis+ whs l  a+2 
s e ~ - ( R  ~) 

< ~  IH,s+l 2-v x IS,s+l a+2 
s 

+ - IRis+ + ~  
S S +  ' 

since IHlsl _< IHis+ I. All subscripts s +  can be replaced by s without  losing more  

than a constant  factor. Setting e = �89 and taking into account the cost of comput ing  

the initial approximat ions  A s (and making some obvious simplifications) estab- 

lishes the lemma. [ ]  

Lemma 3.3. 

where c = c 2/3. 

Proof. 

A k  - -  < C 2 r l  +Ld/2J/c se ~) ks  J , 

To begin with, notice that g l  has no drift, therefore 

1 
E 

rl - -  r - -  k heH\ (RuSk )  
A k = --EI-g*(Sk)] + E[g*(Sk W {h})]. 
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Let �9 = n - r -  k and fl = r -  k; we have 

1 

AR -- corLd/2J(n/r) c~ ~ B~, 
seY(R ~) 

where 

BS ~-" 
l ( I H l . [ ' ] a - ~ ' ~  

heH\(RuS~) 

-~kl,4sl,/ k B-d+~o. ) I \B) 

In the first sum, v ranges over all the vertices of ~ ( R  w Sk w As w {h}) within 

s n (Sk w {h}) ~, while in the second one, v ranges over all the vertices of 

, ~ t ( R w S k U A s )  within s c~S~. Note  that q~v is defined with respect to 

R w Sk U {h} in the first sum and with respect to R u Sk in the second sum. We 

further derive 

1 

Ak corLd/2J(n/r)~ ~ ~. F.6v,  
se.~-(R ~) 

where v ranges over all the vertices within s c~ S~ formed by any of the arrange- 

ments .~(R u Sk u As u {h}) for h e H \ ( R  w Sk u A,). To express Fv, we distinguish 

between two cases. (In the following, ~o v is defined with respect to R w SR.) If  v is 

a vertex of .s~(R w Sk ~ As), then what is the contribution of v to the positive sum 

in B,? The 6v hyperplanes h cutting Ov contribute nothing; the d - ~o~ hyperplanes 

passing th rough  v, not  in R u Sk, each contribute one term, with ~o~ raised by 1. 

Finally, the other ~t - 6~ - d + % hyperplanes contribute one term each, with ~. 

unchanged:  

k ~ /KIA.I) ~-d+~o )IkP 

klk, I) k fl-d+q~v , I /kf l )  

We derive 

F~ = i - I-~I)\IA~I~I) /~ - d + ~ )I\/~ ' 
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and, hence, 

F,  = 1 - ] ~ / \ ] - ~ . ]  fl - d + tp,, I / \ f l } "  
(A.4) 

If v is not  a vertex of d ( R  w S k k..)A~), then it must be formed by the rater- 

section of d -  1 hyperplanes in R w Sk w A s and one other hyperplane h not in 

R w Sk w A s. This hyperplane must be chosen in order for v to contribute to B~; 

note that picking h raises q~ by 1. No  contribution can be made to the negative 

sum.  

F~= ~ k.l ~ (  / \ f l - d  + tp, / / k.fl 

1 ( I H l ~ l ~ - ~ ~  + (p~ / (~ t~  

= ~ - ~ - a + ~o 1 1 \ ~ /  

Note  that we use the convention that 

Let Ak(j) be the contribution to Ak of the vertices v such that j = d - ~o v. These 

vertices lie on j-dimensional flats defined by hyperplanes in R w Sk. Any s E J ( R  n) 

that contains such vertices must be of dimension at least j. Since these are also 

vertices of s n S~, it is possible (by triangulation of s n d ( R  u Skis)) to identify 

O(ISk]sl Ld/2]) disjoint j-dimensional simplices that collectively contain all these 

vertices; actually, we use the conservative b o u n d  O(ISklst d) for convenience. Let 

be one of  them, and let e be a line segment formed by the intersection of tr with 

j - 1 hyperplanes of A s. By (A.4), it is easy to see that Ak(j) = 0, i f j  = 0 or j > fl, 

so let us assume that 0 < j < ft. A vertex v of d ( R  w Sk W As) n a n S~ appears 

on j distinct edges e, therefore, by summing over all e, it will be counted j times 

if it is a vertex of ~r u Sk u As) and only once if it is not, i.e., if it lies on exactly 

one hyperplane not  in R u SR w A s. Thus, we can immediately verify that 

1 

'" 

+ 2 ~ \ IA. I /  \ /~-J 
vz  (H\As)le 
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In the first (resp. second) inner sum v ranges over all vertices formed by the 

intersection of e with the hyperplanes  in A~ (resp. not  in As). Therefore, 

1 1 ( I H i s l y  -1 

Ak( J ) -  corLa/2J(n/r) c' ~s ~ ~e fl \~A~,]  Ge' 

where 

Ge = 
~a.,. IA.IIX f l - - j  ,]/\f l ,] + ~" 6~' .~(n\a.),, fl -- J ,] / \fl,] 

To find an upper  bound  on Ge we are now ready to use the sampling-based 

integrat ion method  int roduced in the p roof  of  L e m m a  3.1. No te  that  we can 

trivially assume that  His + # (ZJ (else s can be ignored), therefore p, > 0. Let 

[Inl ,+ 17 x,--/~/" 

By subdividing e into subsegments  e' such that  Hle, has size xs or less, it appears  

that  

E 1 _< IHl't + (IH,,I'~ 
~.,.. p~- \ ~ i - /  X 

v ~ Aste" 

, 

therefore 

y 
veHle" 

S~'C t fl _ j ,] / \fl,] 

< X (~o+x,) 4 ~ " ' ' q ? - ~ + ~ ' - ; ~ / ( ~ ' ~  
- ,,,A,,.. k IA, I /k  fl - -  j , / / \ f l , ]  +', , , , /  

where 3w = m a x v { Q l v z H w } .  Since 3w < IHis+ I, it follows that  

~n,, ", fl--J / l \ f l /  

. - . , . . . . + ,  , 
+ / x , / \  p, / .~ 
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From the fact that ps = 2'~ Iln] ,/~', we easily verify that x,  < nl(4r), and, 

therefore, 

( " 7 - ' ( ~ ) '  c,.~ 
1 +  - -  < 1 +  < l + - -  

a - b ,  f l + l  - n 

Consequently, 

( ) I 0 ) (  " )'-'('-"-')I0) ~ - - b . +  x , - j  < 1 +  f l - J  
fl - j - o~ - 6 v fl + -i 

We have 

IA,l, l  x IHl, l  IHi,I 
-I-1-/l'~l-i -< ~ l i l 7  + ........... + 1, 

xs I XsPs 

therefore 

(~. ~'-JWr Z 6;' --o j 
VeHIr 

--,~a,,, f l i j  J l \ f l J  

+ ~ ( ( , L+~y ' -a~ ' )  l +  
~,,,,. /7-. i  ) / t , /V  

+,, , , . ,  t,~.,., x ,-.., ,,,.., )(0 ~ x,p, t, iA, I + p, + xs ; iH~,+i <'. 

If we substitute the right-hand side of the inequality into the expression for G., 

we find that the 1 of the factor (1 + clxsr/n) cancels out. Specifically, we derive 

Ge < 
Y" "\i~Ti-,i)\~--,st, p - J  Sl\~, ,  

0,) (~)( ~':T - ~ - < ~  
+ Z Y. ' a~,<,-' a+ 

o~,,.,, o_<<<, ,a - j  J /k / t )  

] fl I H , + I ~ , + z + ~  ; Id t '+  + - -  IHi,+( '+' 
+ x,p--~ t o t / k  lasl I x , p ,  p, a " 
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Note  that  clx~r/n is less than  a constant .  Since there are O(IAis] j - a )  segments e 

for each j -d imens iona l  tr and  O(]Skl~l a) simplices a for each s, we now find that  

cl (IH,~ly -~ 
Ak(j) < flcorLd/2J(n/r)~' ~' \ ~ 1  I S~lsl ~ 

se:~-(R ~) 

+ c 1 2  ~' ~ x~lHis+l~ x IAs[J-l+x~ps ~ IHis+l ~'+2 x IA~I j - x  

1 2 • [A j - 1  + _  His+lC~+l • tAsli-1 

+ ~ Ps " 

If  x~ = 1, then Ps -> IHis+ 12 > ]Hlsl 2 and therefore A s = HI~. This implies that 

G~ = 0 for e ~ s, and  so we can assume tha t  x,  > 1 in the summat ion  below. 

A k( j )  --< f lcorLa/2d(n/r )  c~ s r  

f/clx~r'X i~,+ j + j -1  

Since xs > 1, we have 

F r o m  the inequali t ies,  

and  

(:rY x, < 21-~~ - IHI,+t 1-'/~'/z. 

X s p  s >-- 2 co/2 _ IHl~+l,fii,/2+l 

p, >__ 2~~ IH,,, i ~ ,  

we derive 

Ak(j) < cgr La/z-----~j \-~J\~J \r,I E l s ~ J  • I HI,+ t ~'+j+~-'fiT/2 
s~.~-(R ~) 

+ cg, ~a/2--q \~,/\~) \r) E IS~J • Inl,+ 
s e S ( R  ~) 
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By H61der's inequality, 

where Pl = c2/3(cl +J + 1 - ~/~1/2)/(c~/3 - 1) and q = 1 - 1/c~/3. Similarly, 

IHI~+ 1 p~ , 
$ 

w h e r e  P 2  - -  c2/3(ci + J -- x/f~l/2)/(c~/3 - 1). Finally, we have 

a iHis + ip3 , 
$ 

where P3 = c2/3(c1 ' ~ J -  ~ 1 ) / ( c 2 1 / 3 -  1 ) .  Because 5-(R ~) is a semicutting and 

P3 < P2 < Pl < cl (recall that c a can be chosen as large as we want) we have, for 

some constant  b = b(cl), 

Z I H I s + [ ~ ' = O ( 1 ) •  IHl~lP'<-bcorLa/Tj(n-r)P" 
s e , ~  ~)  s e  . ~ - ( R  ~ ) 

therefore 

l(1-'](~-y(n-]JrLa/2~q-"( ~ " ac2.'~ 1/ff~ 
- - _  ~kls I ) . 

Since we have assumed that j > O, 

y(.y 
1 n 

r-k r -- k)r \r(n ~ r  2 k)J = 0 , 

and, hence, 

Ak(j) ~ ~ rLa/E-~q-l)-l( ~ ISkl~[a~) 1/:'/~. 
C O \ s e ~ ( R  n) 

Adding up Ak(j) for all j _< d completes the proof. [] 
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Lemma 3.4. The eneryy of R w S at the end of  round t is less than 1. 

Proof. It suffices to prove that 

E*[e[Sk ~-S] < �89 + ~), 

which we do by induction. The case k = 0 follows from Lemma 3.1. Assume that 

it holds up to k < r. From the analysis of Lemma 2.4 and from Lemma 3.3, we 

derive 

E*[r -~ 53 < E*[SIS,  --- S] + Ak 

< � 8 9  + + 

From the induction hypothesis we find that 

E[~IlSk ~- S] < E*I-~ISk ~ S-1 < 1, 

therefore 

and 

ts~,~l ~'/~ < c~r Ld/2j 
s~-tR ~) 

< 1 +  
r 

which completes the induction. [] 
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